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1. SHORT GAPS BETWEEN PRIMES

1.1 Introduction

Let p1 = 2 < p2 = 3 < p3 = 5 < · · · be the sequence of all prime numbers,

and let π(x) :=
∑

pn6x
1 be the prime counting function. The prime number

theorem implies that π(2x) − π(x) ∼ x/ log x as x → ∞, and in this sense the

“average” gap between consecutive primes of size around x is about log x. Of

course, such gaps are sometimes less than log x, and one might well ask whether

it can happen infinitely often that the gap between consecutive primes is much

shorter than average. Indeed, in 20051, D. Goldston, J. Pintz and C. Yıldırım

[15] succeeded in proving that, given any ε > 0, there exist arbitrarily large x

for which the interval (x, x+ ε log x] contains two or more primes, thereby laying

to rest an 80 year-old conjecture of Hardy and Littlewood2. In words, the gap

between consecutive primes is infinitely often arbitrarily smaller than average.

The work of Goldston-Pintz-Yıldırım represented a major breakthrough in

multiplicative number theory, and was the culmination of decades of work by

various authors. Prior to the groundbreaking work of Goldston-Pintz-Yıldırım,

the most significant progress on the problem of short gaps between primes had

been due to Bombieri and Davenport [2], who proved that there exist arbitrarily

large x for which the interval (x, x+η log x] contains two or more primes, provided

η > (2 +
√

3)/8 = 0.46650 . . .. More important than their value for η was the

fact that they introduced Bombieri’s work [1] on the large sieve to the problem

of gaps between primes. What is now commonly referred to as the Bombieri-

Vinogradov theorem, one of the greatest achievements of 20th century number

theory, has been an essential feature of all progress in this area, including the

work of Goldston-Pintz-Yıldırım.

Of course, the aforementioned conjecture of Hardy and Littlewood, which

is now a theorem thanks to Goldston-Pintz-Yıldırım, only hints at the most

famous of all conjectures concerning gaps between primes, namely the twin prime

1 Published in the Annals of Mathematics in 2009, “Primes in tuples I” appeared on the
preprint archive in August 2005: http://arxiv.org/abs/math/0508185v1.

2 This conjecture was made in the unpublished manuscript [23] (see [2]).

http://arxiv.org/abs/math/0508185v1
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conjecture. The twin prime conjecture asserts that the gap between consecutive

primes is ifinitely often as small as it possibly can be, that is, pn+1 − pn = 2 for

infinitely many n. Goldston-Pintz-Yıldırım[15] were able to use their method to

prove, conditionally, that pn+1−pn 6 16 for infinitely many n. The condition here

is that the Elliott-Halberstam [4] conjecture is true. This conjecture concerns

the “level of distribution” of the primes. We will precisely define this notion in

the next chapter (see Section 2.2), but loosely speaking, to say that the primes

have level of distribution θ is to say that, for large x, the primes are very well

distributed among the arithmetic progressions modulo q, for q up to (almost) xθ.

The Bombieri-Vinogradov theorem states that θ = 1/2 is an admissible level of

distribution for the primes, and the Elliot-Halberstam conjecture goes beyond

this to assert that the primes have level of distribution θ = 1.

Naturally, the announcement of the results of Goldston-Pintz-Yıldırım gener-

ated a lot of excitement, and at the time it was hoped that their method would

be applicable to many other interesting open questions in multiplicative number

theory3. Though some remarkable results have indeed been proved using the

method of Goldston-Pintz-Yıldırım, this initial optimism has perhaps not been

fully borne out. The purpose of this thesis is, therefore, to gather together some

of the results that can be seen as applications of the method of Goldston-Pintz-

Yıldırım, and to add to this list a novel result concerning the divisor function at

consecutive integers (see Theorem 1.8).

1.2 Organization of the thesis

In the next section, we will state the main result of Goldston-Pintz-Yıldırım,

as well as some of its extensions. We will then give some applications of their

method, including our result on the divisor function at consecutive integers. We

will end this chapter with a brief historical survey of the incremental progress

towards the establishment of the conjecture of Hardy and Littlewood on short

gaps between primes, and beyond.

In Chapter 2, we will begin with a discussion of the prime k-tuple conjecture,

including a heuristic that lends credence to it. We will then give an exposition of

the proof of the main result of Goldston-Pintz-Yıldırım (Theorem 1.1), highlight-

ing some of the most important ideas involved. We will also give a more-or-less

self-contained proof of this theorem.

3 For instance, see Angel Kumchev’s notes from the December 2005 ARCC workshop on
gaps between primes: http://www.aimath.org/WWN/primegaps/WorkshopProblems.pdf.

http://www.aimath.org/WWN/primegaps/WorkshopProblems.pdf
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In Chapter 3, we will very briefly discuss the result (Theorem 1.4) of Goldston-

Pintz-Yıldırım to the effect that there are infinitely often bounded gaps between

almost primes. This will be the starting point for the proof of our result on the

divisor function at consecutive integers (Theorem 1.8). We will then discuss the

Erdős-Mirsky conjecture on the divisor function at consecutive integers, before

proving Theorem 1.8.

1.3 The main results

In the introduction we stated that the “average” or gap between consecutive

primes around x is about log x, by virtue of the prime number theorem. An

alternative way of phrasing this is to say that we “expect” the nth prime gap,

pn+1 − pn, to be about log pn. For the prime number theorem implies that

n ∼ pn/ log pn as n→∞, whence

1

N
·
∑
n6N

pn+1 − pn
log pn

∼ 1 as N →∞,

and consequently we also have

∆ := lim inf
n→∞

pn+1 − pn
log pn

6 1. (1.3.1)

We can now state the main result of Goldston-Pintz-Yıldırım[15] as it is usu-

ally given, namely, it states that ∆ = 0. This is easily seen to be equivalent to

the statement that there exist arbitrarily large x for which (x, x+ε log x] contains

(at least) two primes, for any given ε > 0.

Theorem 1.1 (Goldston-Pintz-Yıldırım (2005)). Let p1 = 2, p2 = 3, p3 = 5, . . .

be the sequence of all primes. We have

lim inf
n→∞

pn+1 − pn
log pn

= 0. (1.3.2)

Theorem 1.2 (Goldston-Pintz-Yıldırım (2005)). Let p1 = 2, p2 = 3, p3 = 5, . . .

be the sequence of all primes. If the primes have level of distribution θ > 1/2,

then there exists a constant c(θ), depending only on θ, such that

lim inf
n→∞

(pn+1 − pn) 6 c(θ). (1.3.3)
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Moreover, if θ > 20/21 (in particular, if the Elliott-Halberstam conjecture is

true), then we can take c(θ) = 16.

In Chapter 2 we will prove both of the above theorems, except in Theorem

1.2, in the case θ > 20/21, we will only prove that c(θ) = 20 is admissible.

Goldston-Pintz-Yıldırım also generalized (1.3.1) for primes in arithmetic pro-

gressions a mod q with a fixed q and any a with (a, q) = 1 and obtained analogue

of (1.3.3) for E2 numbers (i.e. numbers which are product of exactly two distinct

primes).

Theorem 1.3 (Goldston-Pintz-Yıldırım (2006)). Let a coprime pair of integers

a and q be given, and let p′1 < p′2 < · · · be the sequence of all primes in the

arithmetic progression a mod q. Then

lim inf
n→∞

p′n+1 − p′n
log p′n

= 0. (1.3.4)

Theorem 1.4 (Goldston-Graham-Pintz-Yıldırım (2009)). Let q1 = 6, q2 = 10,

q3 = 14, . . . be the sequence of all numbers, which are products of exactly two

distinct primes. Then

lim inf
n→∞

(qn+1 − qn) 6 26. (1.3.5)

An old conjecture of Chowla asserts that there exist infinitely many pairs

of consecutive primes pk, pk+1 such that pk ≡ pk+1 ≡ a mod q. In 2000, Shiu

[37] proved this conjecture. Combining the ideas of Shiu and Goldston-Pintz-

Yıldırım, Freiberg [9] improved their result in another direction

Theorem 1.5 (Freiberg (2010)). Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence

of all primes. Let a coprime pair of integers a and q be given, and fix any ε > 0.

Then there exist infinitely many n such that

pn+1 − pn < ε log pn and pn ≡ pn+1 ≡ a mod q.

Applying the Goldston-Pintz-Yıldırım construction to the set of powers of a

fixed integer, Friedlander and Iwaniec [10] obtained the following result

Theorem 1.6 (Friedlander-Iwaniec (2010)). Let a ≥ 2 be an integer. There are

infinitely many n ∈ N that have two distinct representations

n = p+ am = p′ + am
′
, (1.3.6)
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where p, p′ are primes and m,m′ ∈ N.

One of the interesting applications of the Goldston-Pintz-Yıldırım method

is the solution of Erdős-Mirsky conjecture on the divisor function at consecu-

tive integers. Erdős conjectured that d(n) = d(n + 1) infinitely often. In 1984

Heath-Brown [24] succeeded in proving this conjecture. Using the method, which

yielded the existence of small gaps between primes and bounded gaps for E2

numbers, Goldston-Graham-Pintz-Yıldırım [19] were able to show the following

stronger variant of the Erdős-Mirsky conjecture:

Theorem 1.7 (Goldston-Graham-Pintz-Yıldırım (2010)). For any positive in-

teger A with 24|A, there are infinitely many integers n with

d(n) = d(n+ 1) = A. (1.3.7)

Let E denote the set of limit points of the sequence {d(n)/d(n+ 1) : n ∈ N},
and let L denote the set of limit points of {log(d(n)/d(n + 1)) : n ∈ N}. Erdős

conjectured [6] that E = [0,∞], or equivalently, L = [−∞,∞].

We can now formulate the main result of this thesis

Theorem 1.8. (a) For any number x > 0 we have

|L ∩ [0, x]| > x

3
and |L ∩ [−x, 0]| > x

3
, (1.3.8)

where | · | denotes the Lebesgue measure. Moreover, there exists a number A > 0

such that, for any number x > A, we have

|L ∩ [0, x]| > x− A
2

and |L ∩ [−x, 0]| > x− A
2

. (1.3.9)

(b) There exists a number B > 0 such that, for any number x > 0, we have

|E ∩ (0, x]| > x

B + 1
. (1.3.10)

It should be mentioned that Kan and Shan [30],[31] proved that for any real

number α > 0, either α or 2α is in E, and deduced from this that |E ∩ [0, x]| >
x/3 for x > 0.

1.4 A survey of results

Hardy and Littlewood [23] were the first who investigated
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Tab. 1.1:
Year Author ∆1

1926 Hardy,Littlewood [23] ≤ 2
3

1940 Erdös [5] < 1
1954 Ricci [35] ≤ 15

16

1965 Wang Yuan, Hsiek, Yu [40] ≤ 29
32

1966 Bombieri, Davenport [2] ≤ 2+
√

3
8

= 0.4665...

1972 Pilt’jǎi [34] ≤ 2
√

2−1
4

= 0.4571...

1975 Uchiyama [39] ≤ 9−
√

3
16

= 0.4542...
1977 Huxley [26] ≤ 0.4425...
1984 Huxley [27] ≤ 0.4394...
1988 Maier [32] ≤ 0.2484...
2005 Goldston,Pintz,Yildirim [15] 0

∆ν := lim inf
n→∞

pn+ν − pn
log pn

, (1.4.1)

where pn is the nth prime. The prime number theorem trivially gives ∆ν ≤
ν. Using the circle method and under assumption of the Generalized Riemann

Hypothesis (GRH) for Dirichlet L-functions, they proved

∆1 ≤
2

3
. (1.4.2)

Many authors improved this bound (see Table 1).

In 1940, the first step toward showing unconditionally ∆1 = 0 was taken

by Erdős [5], who obtained the bound ∆1 < 1− c, where c is an unspecified

explicitly calculable constant.

In 1965 Bombieri and Davenport [2] proved unconditionally that

∆ν ≤ ν − 1

2
. (1.4.3)

Combining their method with that of Erdős, for the case ν = 1 they obtained

∆1 ≤ 0.4665... (1.4.4)

This was possible by replacement of GRH in Hardy-Littlewood method by

the Bombieri-Vinogradov theorem, one of the most powerful tools in analytic

number theory.
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Later Huxley [26] refined (1.4.4) to

∆1 ≤ 0.44254... (1.4.5)

and for general ν ≥ 2

∆ν ≤ ν − 5

8
+O

(
1

ν

)
. (1.4.6)

In 1988 Maier [32], using his matrix method, improved Huxley’s result (1.4.4)

to ∆1 ≤ e−γ · 0.4425.. = 0.2484..., where γ = lim
n→∞

(
n∑
k=1

1

k
− log n) is Euler’s

constant.

Finally, in 2005 Goldston, Pintz and Yildirim proved that for any ε > 0, there

exist infinitely many n such that pn+1 − pn < εlog pn, i.e. ∆1 = 0. Moreover, for

general ν ≥ 1 Goldston-Pintz-Yıldırım[15, Theorem3] proved the following

Theorem 1.9 (Goldston-Pintz-Yıldırım (2009)). Suppose that the primes have

level of distribution θ. The for ν ≥ 2

∆ν ≤ (
√
ν −
√

2θ)2, (1.4.7)

and unconditionally for ν ≥ 1 we have

∆ν ≤ (
√
ν − 1)2. (1.4.8)

By combining Maier’s method with their own, Goldston-Pintz-Yıldırım re-

fined (1.4.8) to

∆ν ≤ e−γ · (
√
ν − 1)2. (1.4.9)

In [16] the result ∆1 = 0 was strengthened to

lim inf
n→∞

pn+1 − pn
(log pn)1/2(log log pn)2

<∞. (1.4.10)

In fact, Goldston-Pintz-Yıldırım [16] obtained the following general result for

very sparse sequences

Theorem 1.10 (Goldston-Pintz-Yıldırım (2011)). Let A ⊆ N be an arbitrary

sequence of integers satisfying

A(N) = |{n;n ≤ N, n ∈ A}| > C
√

logN(log logN)2 for N > N0, (1.4.11)
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where C is an appropriate absolute constant. Then infinitely many elements of

A−A can be written as the difference of two primes, that is,

|(P − P) ∩ (A−A)| =∞, (1.4.12)

where P denotes the set of primes. (Here we use the notation A− B = {a− b :

a ∈ A, b ∈ B})

Some sequences for which this method works are:

A = {km}∞m=1, k ≥ 2 fixed (k ∈ N),

A = {kx2+y2}∞x,y=1, k ≥ 2 fixed (k ∈ N).

Let S denote the set of limit points of the sequence { dn
logn
}, where dn =

pn+1 − pn. It is conjectured that S = R+ ∪ {∞}. Goldston-Pintz-Yıldırım’s

result implies that 0 ∈ S (as was shown by Westzynthius ∞ ∈ S). In 1988

Hildebrand and Maier proved that the sequence { dn
logn
} has arbitrarily large finite

limit points. In fact, they proved the following general statement

Theorem 1.11 (Hildebrand-Maier (1988)). Let k be a positive integer, and let

S(k) be the set of limit points in Rk of the sequence

(
dn

log n
, . . . ,

dn+k−1

log n
) (n = 1, 2, 3, ...)

Then we have, for any sufficiently large number T ,

|S(k) ∩ [0, T ]k| ≥ c(k)T k,

where | · | denotes the Lebesgue measure in Rk and c(k) is a positive constant

depending only on k.

Goldston-Pintz-Yıldırım [20] have recently proved, by adding a new idea to

their method, that short gaps between primes make up a positive proportion of

all gaps between primes, in the sense of the following theorem.

Theorem 1.12 (Goldston-Pintz-Yıldırım (2011)). There exists a constant c > 0

such that, for any given η > 0, we have

1

π(x)

∑
pn6x

pn+1−pn<η log pn

1 & e−c/η
6

, x→∞. (1.4.13)
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(The notation f(x) & g(x) stands for lim supx→∞ g(x)/f(x) 6 1.)

Even under the strongest assumptions the Goldston-Pintz-Yıldırım method

has limitations. It fails to prove that there are three or more primes in admissible

k-tuples with large enough k. In this connection the following result of Maynard

[33] is of interest

Theorem 1.13 (Maynard(2012)). Let k ≥ 1 be an integer and assume that the

primes have level of distribution 1/2 < θ < 0.99. Let

r(θ, k) =
240k2

(2θ − 1)2
.

Then there exists constant C(θ, k) such that are infinitely many integers n for

which the interval [n, n+C(θ, k)] contains two primes and k integers, each with

at most r(θ, k) prime factors.



2. THE METHOD OF GOLDSTON-PINTZ-YıLDıRıM

Notation

Throughout this thesis, we use the notation F � G, G � F and F = O (G)

as shorthand for |F | 6 c|G| for some constant c. Unless stated to the contrary,

c shall denote an absolute constant. When we write F �A G, G �A F or

F = OA (G), we mean that the implied constant c depends on A. We may

sometimes write F � G to denote that F � G� F .

2.1 The prime k-tuple conjecture

One of the greatest unsolved problems in mathematics is to show that there exist

infinitely many twin primes, that is pairs of prime numbers that differ by 2 (like

5 and 7, 11 and 13, etc.). This a special case of the k-tuple conjecture, which we

will now explain.

Let us consider k distinct linear forms

H = {g1x+ h1, g2x+ h2, . . . , gkx+ hk}, gix+ hi ∈ Z[x], gi ≥ 1. (2.1.1)

If, for a given x = n ∈ N, gin + hi is a prime for each i,we say that (2.1.1) is a

prime k-tuple. It is natural to ask how often (2.1.1) is a prime tuple for n ∈ N.

Consider, for example, the tuple (n, n + 1). For n > 2 one of the numbers is an

even. Likewise, the tuple (n, n+ 2, n+ 4) can’t be a prime tuple since for n ≥ 1

one of the components is the multiple of 3. On the other hand, we expect that

there are infinitely many prime tuples of the form (n, n + 2). This is the twin

prime conjecture. In general, (2.1.1) can be a prime for at most finitely many n

if Ωp(H) = Z/pZ for some prime p, where

Ωp(H) := {n mod p :
k∏
i=1

(gin+ hi) ≡ 0 mod p}.
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In other words, (2.1.1) is a prime k-tuple if

|Ωp(H)| < p for all primes p. (2.1.2)

We say that H is an admissible k-tuple if (2.1.2) holds. Hardy and Littlewood

[22] conjectured that admissible tuples will infinitely often be prime tuples.

The prime number theorem states that the number of primes less than N

is around N
logN

. So if we choose a random integer m from the interval [1, N ],

the probability that m is a prime is around to 1
logN

. In other words, the primes

behave like independent random variables X(n) with X(n) = 1 (n is prime) with

probability P(X(n) = 1) = 1
logn

and X(n) = 0 (n is composite) with probability

P(X(n) = 1) = 1 − 1
logn

. This is known as the Cramer’s model. These ideas

can be used, for example, to predict the probability that, given a prime number

pn, the next prime lies somewhere between pn + α log pn and pn + β log pn with

0 ≤ α < β. Thus we want pn + 1, . . . , pn + h − 1 to be composite, and pn + h

to be prime for some integer h ∈ [α log pn, β log pn]. According to our heuristics,

this occurs with probability

∑
α logn≤h≤β logn

h−1∏
i=1

(
1− 1

log(pn + j)

)
1

log(pn + h)

∼
∑

α logn≤h≤β logn

(
1− 1

log n

)h−1
1

log n

since, as pn ∼ n log n and i < h� log n, log(pn + i) ∼ log n. This gives

∑
α logn≤h≤β logn

(
1− 1

log n

)h−1
1

log n
∼

∑
α<h/ logn<β

e−h/ logn 1

log n
∼
∫ β

α

e−t dt,

for large n since the middle sum looks like a Riemann sum approximation to the

right hand side integral.

Now consider

g1n+ h1, g2n+ h2, . . . , gkn+ hk, 1 ≤ gin+ hi ≤ N.

By our heuristics, for each n the number of gin + hi should be prime with

probability 1
logN

. If the probabilities that each term is a prime are independent

then the whole set should a be prime with a probability 1
(logN)k

. But this is not

true in general and we need an extra factor to correct our naive estimation. The
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probability that each element of (2.1.2) is coprime to p is 1− |Ωp(H)|
p

in contrast

to (1 − 1
p
)k, which would be true if the events p | gin + hi, p | gjn + hj were

pairwise independent. So the correction factor for p is

(
1− |Ωp(H)|

p

)(
1− 1

p

)−k
and we have to multiply 1

(logN)k
with the product of all correction factors modp.

Denote this product by

S(H) :=
∏
p

(
1− |Ωp(H)|

p

)(
1− 1

p

)−k
(2.1.3)

This is a so-called singular series1. If H is admissible then S(H) 6= 0. Indeed,

for large p |Ωp(H)| = k, and for such p,
∏
p>k

(
1 − k

p

)(
1 − 1

p

)−k
=
∏
p>k

(
1 +

Ok

(
1

p2

))
converges and S(H) �k 1. Now we can state the prime k-tuple

conjecture in the quantitative form:

Conjecture 1 (Hardy–Littlewood [23]). LetH = (g1x+h1, g2x+h2, . . . , gkx+

hk) be an admissible k-tuple. Then

#{n ≤ x : g1n+h1, g2n+h2, . . . , gkn+hk are prime} ∼ S(H)
x

(log x)k
, x→∞.

2.2 The level of distribution of the primes

The level of distribution of the primes plays an important rôle in the proof of

theorems 1.1 and 1.2, and indeed most of the significant results on short gaps

between primes. We will discuss the level of distribution of the primes in this

section, and precisely define this notion.

The level of distribution of the primes concerns the distribution of primes in

arithmetic progressions. Given a modulus q > 1 and an integer a > 1,

π(N ; q, a) :=
∑
p6N

p≡a mod q

1

is the prime counting function for the primes in the arithmetic progression a mod

q. For obvious reasons, this progression contains more than one prime only if

q and a are coprime, and there is no apparent reason for suspecting that the

primes might be biased towards any particular arithmetic progression a mod q

1 Hardy and Littlewood originally defined this as a series.
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with (q, a) = 1. In other words, we expect the primes to be equidistributed

among the possible arithmetic progressions to the modulus q. Thus, we expect

that

π(N ; q, a) ∼ π(N)

φ(q)
, N →∞,

where φ(q) — Euler’s totient function of q — counts the number of congruence

classes a mod q with (q, a) = 1.

The prime number theorem for arithmetic progressions states that this expec-

tation is indeed the truth. We state it in the following form: for any A > 0 we

have, for fixed q and a,

∑
p6N

p≡a mod q

log p =
N

φ(q)
·
(

1 +O

(
1

(logN)A

))
, (2.2.1)

provided (q, a) = 1. Recall that the prime number theorem for arithmetic pro-

gressions asserts that π(N ; q, a) = Li(N)
φ(q)

+O
(
Ne−c(logN)1/2

)
which by partial sum-

mation, is equivalent to the more elegant expression

ϑ(N ; q, a) :=
∑

p6N
p≡a mod q

log p = N
φ(q)

+ O
(
Ne−c(logN)1/2

)
, where c is a constant

(not always the same one). The Siegel-Walfisz theorem [3, §22] states that (2.2.1)

holds uniformly for q > 1 and a with (q, a) = 1. This, however, is only non-trivial

for q � (log x)A.

The Grand Riemann Hypothesis (GRH) implies

∑
p6x

p≡a mod q

log p =
x

φ(q)
+O

(
x

1
2 (log x)2

)
, (2.2.2)

where the constant is absolute and this is non-trivial for q � x
1
2 (log x)−2 [29].

Although GRH is unattackable by current methods of the prime number the-

ory, there is a good approximation for it.

Let

ϑ(n) =

{
log n if n prime,

0 otherwise,

and consider the function

ϑ(N ; q, a) =
∑
n6N

n≡a mod q

ϑ(n).
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Theorem (Bombieri-Vinogradov) For any A > 0 there exist a B = B(A) such

that, for Q = N
1
2 (logN)−B

∑
q6Q

max
a

(a,q)=1

|ϑ(N ; q, a)− N

φ(q)
| �A

N

(logN)A
. (2.2.3)

(For a proof see [1]). If (2.2.3) holds for any A > 0 and any ε > 0 with

Q = N θ−ε, then we say that the primes have level of distribution θ . Thus by

Bombieri-Vinogradov theorem the primes have level of distribution 1/2. Elliott

and Halberstam [4] conjectured that the primes have level of distribution 1.

Let H = {0, 2m}. This is clearly admissible for every k, and let Λ(n) denote

the von Mangoldt function which equals log p if n = ps, s ≥ 1, and zero otherwise.

The Hardy-Littlewood conjecture asserts that

∑
n≤N

Λ(n)Λ(n+ 2m) = S(H)N + o (N) , N →∞. (2.2.4)

In the above sum, we substitute Λ(n) with the truncated von Mangoldt func-

tion

ΛR(n) =
∑
d|n
d6R

µ(d) log

(
R

d

)
.

For R ≥ n obviously ΛR(n) = Λ(n). Then

∑
n≤N

ΛR(n)Λ(n+ 2m) =
∑
n≤N

∑
d|n
d6R

µ(d) log

(
R

d

)Λ(n+ 2m)

=
∑
d≤R

µ(d) log

(
R

d

) ∑
n6N+2m

n≡2m mod d

Λ(n)

=
∑
d≤R

µ(d) log

(
R

d

)
Ψ(N + 2m; d, 2m), (2.2.5)

where

Ψ(N ; q, a) =
∑
n6N

n≡a mod q

Λ(n).

The contribution from the terms with (d, 2m) > 1 is O (R logN); thus the

right hand side of (2.2.5) is equal to
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(N + 2m)
∑
d6R

(d,2m)=1

µ(d)

φ(d)
log

(
R

d

)

+
∑
d6R

(d,2m)=1

µ(d) log

(
R

d

)(
Ψ(N + 2m; d, 2m)− N + 2m

φ(d)

)
+O (R logN) .

(2.2.6)

Estimation of the second sum in (2.2.6) depends on the level of distribution

of the primes. For large R (hence, for large θ) the sum (2.2.5) is quite near to

the expected asymptotic value (2.2.4) (see [12]).

2.3 The Goldston-Pintz-Yıldırım sieve

Consider the following weighted sum

S :=
∑

N<n62N

(∑
hi∈H

ϑ(n+ hi)− log(3N)

)
ΛR(n;H, `)2, (2.3.1)

where ΛR(n;H, `) is a non-negative weight to be defined later. If S > 0 then

there exist at least two integers hi, hj ∈ H, such that n + hi, n + hj are primes.

Thus we can conclude that lim inf
n→∞

(pn+1 − pn) ≤ max
1≤i<j≤k

|hj − hi|.
The main idea consists in appropriate choice for the ΛR(n;H, `) such that it

detects n for which {n + h1, n + h2, . . . , n + hk} contains at least two distinct

primes. One candidate for this role is the k-th generalized von Mangoldt function

Λk(n) =
∑
d|n

µ(d)

(
log

n

d

)k
,

which is 0 if ω(n) > k (of course, it detects also prime powers, but their ef-

fect is negligible). This can be verified using the recurrence formula Λk(n) =

Λk−1(n) log n+ Λk−1(n) ∗Λ(n), where ∗ denotes the Dirichlet convolution. Thus

our prime tuple detecting function is

Λk(n;H) :=
1

k!
Λk(PH(n)). (2.3.2)

where PH(n) =
∏k

i=1(n + hi) is the polynomial corresponding to the k-tuple

H = {x+h1, x+h2, . . . , x+hk} and the factor 1
k!

is for simplification of estimates.
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Instead of (2.3.2), we consider the truncated divisor sum

ΛR(n;H) =
1

k!

∑
d|PH(n)
d6R

µ(d)

(
log

R

d

)k
, (2.3.3)

which is smooth approximation to (2.3.2) and show the same behaviour as

Λk(n;H) on some averages.

This approximation is not adequate to prove ∆ = 0 (with the aid of (2.3.3)

Goldston and Yıldırım [14] obtained only ∆ ≤
√

3−1
2

).

Rather than approximate only prime tuples, we consider tuples with many

primes in components, that is ω(PH(n)) ≤ k + `, where 0 6 ` 6 k and specify

ΛR(n;H, `) =
1

(k + `)!

∑
d|PH(n)
d6R

µ(d)

(
log

R

d

)k+`

. (2.3.4)

The following two lemmas collect the main results on ΛR(n;H, `) [13, Lemma

1, Lemma 2]:

Lemma 1. Let H = {h1, h2, . . . , hk} ⊆ [1, H] ∩ Z with hi 6= hj for i 6= j;

k, ` are arbitrarily, but fixed positive integers, |H| = k. Provided H � logN �
logR 6 logN and R ≤ N1/2/(logN)C hold with a sufficiently large C > 0

depending only on k and `, we have∑
N<n≤2N

ΛR(n;H, `)2

=
S(H)

(k + 2`)!

(
2`

`

)
N(logR)k+2` +O(N(logN)k+2`−1(log logN)c). (2.3.5)

Lemma 2. Assume H � logN � logR 6 logN hold and primes have level

of distribution θ. Then for R 6 N θ/2

∑
N<n≤2N

ϑ(n+h)ΛR(n;H, k+`)2 =



S(H∪{h})
(k+2`)!

(
2`
`

)
N(logR)k+2`

+O(N(logN)k+2`−1(log logN)c) if h /∈ H

S(H)
(k+2`+1)!

(
2(`+1)
`+1

)
N(logR)k+2`+1

+O(N(logN)k+2`(log logN)c) if h ∈ H.
(2.3.6)
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Proof of Theorem 1.2. Suppose θ = 1/2 + δ, δ > 0. Fix an ε′ ∈ (0, δ/4) so that

θ/2− ε′ > (1 + δ)/4. Fix integers k = k(θ) = k(δ) and ` = [
√
k] such that

2(2`+ 1)

`+ 1
· k

k + 2`+ 1

(
θ

2
− ε′

)
= 1 + ε,

for some ε > 0. Then set R = N θ/2−ε′ . Let H = {h1, . . . , hk}, where the hi are

any integers such that H is admissible.

Now applying (2.3.5) and (2.3.6) we get as N →∞

S : =
∑

N<n62N

(∑
hi∈H

ϑ(n+ hi)− log(3N)

)
ΛR(n;H, `)2

= k

(
2`+ 2

`+ 1

)
(logR)k+2`+1

(k + 2`+ 1)!
(S(H) + o (1))N

− log 3N

(
2`

`

)
(logR)k+2`

(k + 2`)!
(S(H) + o (1))N

=
( 2k

k + 2`+ 1

2`

`+ 1
logR− {1 + o (1)} log 3N

)(logR)k+2`

(k + 2`)!

(
2`

`

)
S(H)N

= (ε− o (1))
(logR)k+2`

(k + 2`)!

(
2`

`

)
S(H)N logN. (2.3.7)

The term inside the brackets is greater than a positive constant. Assuming

θ > 20/21, we can take ` = 1 and k = 7. Since the 7-tuple {0, 2, 6, 8, 12, 18, 20}
(or {0, 2, 8, 12, 14, 18, 20}) is admissible, we have lim inf

n→∞
(pn+1 − pn) ≤ 20.

Proof of Theorem 1.1 . Now consider the modified weighted sum

S1 :=
2N∑

n=N+1

( ∑
16h06H

ϑ(n+ h0)− log 3N

) ∑
H⊆{1,...,H}
|H|=k

ΛR(n;H, `)2. (2.3.8)

For any fixed n, the inner sum is negative unless there exist at least two

integers 1 ≤ hi < hj ≤ H, such that n + hi, n + hj are primes. Fix ε > 0 first

of all and let N be a parameter. Set h = ε logN . Set ε′ = ε/100, which we may

suppose is less than 1/4. Set R = N1/4−ε′ . Fix integers k = k(ε) and ` = [
√
k]

such that
2(2`+ 1)

`+ 1
· k

k + 2`+ 1

(
1

4
− ε′

)
> 1− ε

2
.



2. The method of Goldston-Pintz-Yıldırım 21

To evaluate (2.3.8), we need a result of Gallagher [11], namely that∑
H⊆{1,...,H}
|H|=k

S(H) = (1 + o(1))Hk. (2.3.9)

Applying (2.3.5), (2.3.6) and (2.3.9), we obtain

S : =
∑

H⊆{1,...,H}
|H|=k

(
k

2

(k + 2`+ 1)!

(
2`+ 1

`

)
S(H)N(logR)k+2`+1

+
∑

16h06H
h0 6∈H

1

(k + 2`)!

(
2`

`

)
S(H ∪ {h0})N(logR)k+2`

− log 3N
1

(k + 2`)!

(
2`

`

)
S(H)N(logR)k+2` +O(N(logN)k+2`(log logN)c)

)

=

(
2k

k + 2`+ 1

2`+ 1

`+ 1
logR +H − log 3N

)
1

(k + 2`)!

(
2`

`

)
NHk(logR)k+2`

+ o
(
NHk(logN)k+2`+1

)
, N →∞. (2.3.10)

Hence, there are exist at least two primes in the interval (n, n+H], N < n 6 2N .

Therefore, lim inf
n→∞

pn+1 − pn
log pn

= 0, as desired.

2.4 Proof of the key estimates

In this section we shall outline the proofs of Lemma 1 and Lemma 2. First of all

we extend to arbitrary squarefree moduli d the definition of Ωp(H). Let Z/dZ
be the ring of integers mod d and define

Ωd(H) = {n ∈ Z/dZ : PH(n) ≡ 0 (mod d)},

where PH(n) =
∏k

i=1(n + hi) is the polynomial corresponding to the k-tuple

H = {x+ h1, x+ h2, . . . , x+ hk}. We have to state some auxilary propositions.

Proposition 1. (a) We have

∑
N<n62N
d|PH(n)

1 = |Ωd(H)|
(
N

d
+O (1)

)
, (2.4.1)

(b) For every A > 0 and d 6 (logN)A, we have, given h0 and squarefree d
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∑
N<n62N
d|PH(n)

ϑ(n+ h0) = |Ω∗d(H+)|
(

N

φ(d)
+OA

(
N

(logN)A

))
, (2.4.2)

where H+ = H ∪ h0 and |Ω∗p(H+)| = |Ωp(H+)| − 1 for each prime p. Note that

when h0 ∈ H then H+ = H.

Proof. (a) For each m mod d, d|PH(m) we get [N
d

] values of n ≡ m mod d,

n ∈ (N, 2N ]. The number of such m by definition is |Ωd(H)|.
(b) Nonzero terms of sum (2.4.2) comes from n such that n + h0 is prime.

Then
∑

N<n62N
d|PH(n)

ϑ(n + h0) =
∑

N+h0<n62N+h0
(n,d)=1

d|PH(n−h0)

ϑ(n). This sum over n can be replaced

by
d∑
v=1

(d,v)=1
d|PH(v−h0)

(ϑ(2N +h0; d, v)−ϑ(N +h0; d, v)). Now let f(d) =
d∑
v=1

(d,v)=1
d|PH(v−h0)

1. This

is multiplicative function of d (by the Chinese Remainder theorem) and f(p) is

the number of solutions of PH(v− h0) ≡ 0 mod p with 1 ≤ v ≤ p− 1. If h0 ∈ H,

say h0 = hi, then we exclude the possible solution v ≡ h0−hi since it contradicts

the condition (p, v) = 1. Thus f(p) = |Ωp(H)| − 1 and so f(p) ≤ k − 1 (note

that |Ωp(H)| < k if and only if p|
∏

1≤i<j≤k

|hj − hi|). On the other hand, when

p -
∏

1≤i<j≤k

|hj − hi|, we have f(p) = k − 1. If h0 6∈ H , then f(p) = |Ωp(H+)| − 1

and so f(p) ≤ k and when p -
∏

0≤i<j≤k

|hj − hi| we have f(p) = k.

By the virtue of the Siegel-Walfisz theorem, we can replace ϑ(2N +h0; d, v)−
ϑ(N + h0; d, v) by N

φ(d)
. Hence (2.4.2) holds.

Proposition 2. For any t ∈ N and x > 1

∑
d6x

tω(d)

d
6(log x+ 1)t, (2.4.3)∑

d6x

tω(d) 6x(log x+ 1)t, (2.4.4)

where summation is over squarefree integers.
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Proof. For the first inequality, we have

∑
d1...dt6x

µ2(d1 . . . dt)

d1 . . . dt
6

(∑
n6x

1

n

)t

6 (log x+ 1)t.

For (2.4.4), we note that the left-hand side is

∑
d6x

tω(d) =
∑
d6x

tω(d)

d
d 6 x

∑
d6x

tω(d)

d
,

and we apply first inequality.

Proposition 3. Assume that primes have level of distribution θ > 1/2 and

let t ∈ Z+. Denote by

E∗(N, d) = max
x6N

max
a

(a,d)=1

|
∑

x<n62x
n≡a mod d

θ(n)− x

φ(d)
|.

Then for any positive constant C and any ε > 0, we have∑
d<Nθ−ε

tω(d)E∗(N, d)�C,h,ε N(logN)−C , (2.4.5)

where summation is over squarefree integers.

Proof. For E∗(N, d) we have the boundE∗(N, d)� N(logN)/d since ϑ(N ; d, a) =∑
n6N

n≡a mod d

ϑ(n) < logN
∑
n6N

n≡a mod d

1� N(logN)/d. Using the Cauchy-Schwartz in-

equality we get

∑
d<Nθ−ε

tω(d)E∗(N, d) 6

(
N logN

∑
d<Nθ−ε

t2ω(d)

d

)1/2( ∑
d<Nθ−ε

E∗(N, d)

)1/2

�h,ε,A N(logN)(t2−A+1)/2.

In the last line we have used (2.4.3) (A is positive integer from the definition

of the level of distribution of the primes). Setting A = h2 + 1 − 2C, we obtain

(2.4.5).
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Proposition 4 (Gallagher). For each fixed k ∈ N∑
0≤h1,h2,...,hk≤H

h1,h2,...,hk
distinct

S(H) ∼ Hk (2.4.6)

Proof. Take y = 1
2

logH. First note that |Ωp(H)| = k if p - Q, where Q =∏
i<j

|hj−hi|. Note that Q is the absolute value of the Vandermonde’s determinant

and by the Hadamard’s inequality Q ≤ kk/2Hk. The number of prime factors of

Q is O
(

logQ
log logQ

)
= O

(
logH

log logH

)
since in the worst case if Q =

∏
i≤r

pi and then by

the prime number theorem we have ω(Q) = r = π(pr), logQ =
∑
i≤r

log pi = ϑ(pr)

and ω(Q) ∼ ϑ(pr)
log pr

∼ logQ
log logQ

. For any h1, h2, . . . , hk by the binomial theorem we

have

∏
p>y

(
1− |Ωp(H)|

p

)(
1− 1

p

)−k
=

∏
p|H,p>y

(
1 +O

(
1

p

)) ∏
p-H,p>y

(
1 +O

(
1

p2

))

= 1 +O

(
logH

y log logH

)
= 1 +O

(
1

log logH

)
. (2.4.7)

Using (2.4.7), the left hand side of (2.4.6) can be written as the product MN ,

where

M =

(
1 +O

(
1

log logH

))(
1− 1

p

)−k
, N =

∑
0≤h1,h2,...,hk≤H

h1,h2,...,hk
distinct

∏
p≤y

(
1− |Ωp(H)|

p

)
.

By simple combinatorial reasoning we have N = N ′ + O
(
Hk−1

)
, where N ′

corresponds to the sum without the condition that h1, h2, . . . , hk are distinct. Set

P =
∏
p≤y

p and note that by the prime number theorem P = ey+o(y) = h1/2+o(1).

Now, in the expression for N the product is

1

P

∏
p|P

(p− |Ωp(H)|) =
|{n mod P : (n+ hi, P ) = 1 for each i}|

P
. (2.4.8)

Indeed, first note that |Ω′p(H)| := p− |Ωp(H)| = |{n mod p : (n+ h1) . . . (n+

hk) 6≡ 0 mod p}|. By the Chinese remainder theorem for distinct primes p and q
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we have an isomophism

Ω′p(H)× Ω′q(H)→ Ω′pq(H) (a mod p, b mod q) 7→ n mod pq,

where n ≡ a mod p and n ≡ a mod q, and (2.4.8) follows by noting that (n +

h1) . . . (n+ hk) 6≡ 0 mod p if and only if (n+ hi, p) = 1 for each i.

Therefore

N ′ =
∑

0≤h1,h2,...,hk≤H

1

P

P−1∑
n=0

k∏
i=1

∑
di|(n+hi,P )

µ(di)

=
1

P

P−1∑
n=0

∑
di,...,dk|P

µ(d1) . . . µ(dk)
k∏
i=1

(
H

di
+O (1)

)

= Hk
∑

di,...,dk|P

µ(d1) . . . µ(dk)

d1 . . . dk
+O

Hk−1P
∑

di,...,dk|P

1

d1 . . . dk


= Hk

∏
p≤y

(
1− 1

p

)k
+O

(
Hk−1/2+o(1)

)
,

since di|P (1 ≤ i ≤ k) and denominators of the fractions in the error term can

contain primes up to the power k−1. Combined with the expression for M , this

proves (2.4.6).

We are now ready to give the proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1. Using (2.4.1), we find

2N∑
n=N+1

ΛR(n;H, `)2

=
1

(k + `)!2

∑
d1,d2≤R

µ(d1)µ(d2)

(
log

R

d1

)k+`(
log

R

d2

)k+` ∑
N<n62N

[d1,d2]|PH(n)

1

=
1

(k + `)!2

∑
d1,d2≤R

µ(d1)µ(d2)|Ω[d1,d2](H)| N

[d1, d2]

(
log

R

d1

)k+`(
log

R

d2

)k+`

+O (T ) , (2.4.9)

where T =
∑

d1,d2<R

|λd1,`λd2,`||Ω[d1,d2](H)| , λdi,` = µ(di)
(k+`)!

(
log R

di

)k+`

, (i = 1.2) and
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[d1, d2] denotes the least common multiple of d1 and d2. By (2.4.4)

T � (logR)2(k+`)
∑

d1,d26R

kω([d1,d2])

� (logR)4k
∑
r<R2

(3k)ω(r) � R2(logR)7k � N1−ε,

provided R < N1/2−ε. We have also used the fact that |Ωd(H)| 6 kω(d), which

follows from the multiplicativity property of |Ωd(H)|.
Using Perron’s formula [3, §17]

1

2πi

∫
(c)

xs

sk+1
=

0, if 0 < x ≤ 1

(log x)k

k!
if x ≥ 1

with (c) the vertical line in the complex plane passing through c, we can rewrite

the main term of (2.4.9) in the following form

I :=
1

(2πi)2

∫
(1)

∫
(1)

F (s1, s2; Ω)
Rs1+s2

(s1s2)k+`+1
ds1ds2,

where

F (s1, s2; Ω) =
∑
d1,d2

µ(d1)µ(d2)
|Ω([d1, d2])|
[d1, d2]ds11 d

s2
2

=
∏
p

(
1− |Ω(p)|

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

))
, (2.4.10)

Define the function

G(s1, s2; Ω) = F (s1, s2; Ω)

(
ζ(s1 + 1)ζ(s2 + 1)

ζ(s1 + s2 + 1)

)k
, (2.4.11)

which is absolutely convergent in the region Re s1,Re s2 > −c. Note that using

the Euler product expansion of the right side of (2.4.11), we have

G(s1, s2; Ω)� exp(c(logN)−2σ log log logN) (2.4.12)

with σ := min(Re s1,Re s2, 0) ≥ c. We’ll use this bound in truncation of the

infinite integral.
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Now we get

I =
1

(2πi)2

∫
(1)

∫
(1)

G(s1, s2; Ω)

(
ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k
Rs1+s2

(s1s2)k+`+1
ds1ds2.

(2.4.13)

Take U = exp(
√

logN). Define the following contours:

T1 = {c0(logU)−1 + it : t ∈ R}

T
′

1 = {c0(logU)−1 + it : |t| ≤ U}

T2 = {c0(2 logU)−1 + it : t ∈ R}

T
′

2 = {c0(2 logU)−1 + it : |t| ≤ U/2}

T1 = {−c0(logU)−1 + it : |t| ≤ U}

T2 = {−c0(2 logU)−1 + it : |t| ≤ U/2},

where c0 > 0 is a sufficiently small constant. We write the integrand in (2.4.13)

as

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
,

where

H(s1, s2) = G(s1, s2; Ω)

(
(s1 + s2)ζ(s1 + s2 + 1)

s1ζ(s1 + 1)s2ζ(s2 + 1)

)k
(2.4.14)

is regular in a neighborhood of (0, 0). Now, we recall some standard facts about

the Riemann zeta-function. There exists a small constant c1 > 0 such that

ζ(σ + it) 6= 0 in the region

σ ≥ 1− 4c1

log(|t|+ 3)
(2.4.15)

for all t. Moreover,

ζ(σ + it)− 1

σ − 1 + it
� log(|t|+ 3), (2.4.16)

1

ζ(σ + it)
� log(|t|+ 3) (2.4.17)

in this region. From (2.4.11), (2.4.15) and (2.4.16), we get the following estimates
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if s1, s2 and s1 + s2 lie in the region (2.4.14) then

H(s1, s2)� (log logN)c(log(|s1|+ 3))2k(log(|s2|+ 3))2k (2.4.18)

and

H(s1, s2)� (log logN)c if |s1|, |s2| � 1. (2.4.19)

We will show now that∫
T2

∫
T1\T

′
1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 � exp(−c

√
logN). (2.4.20)

The same bound holds if the domain of integration is T1 × T2 \ T
′
2. If (s1, s2) ∈

T1 × T2 then

(log logN)c
Rs1+s2

(s1 + s2)k
� (log logN)c(logU)kR

3c0
2 logU � exp((

3c0

2
+ c)

√
logN)

and so by (2.4.17)∫
T2

∫
T1\T

′
1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

� exp((
3c0

2
+ c)

√
logN)

∫
T2

∫
T1\T

′
1

(log(|s1|+ 3))2k

|s1|`+1
· (log(|s2|+ 3))2k

|s2|`+1
ds1ds2.

(2.4.21)

Now, since ` ≥ 1∫
T1\T

′
1

(log(|s1|+ 3))2k

|s1|`+1
ds1 �

∫ ∞
U

(log(t+ 3))2k

t`+1
dt� (logU)2k

U

and∫
T2

(log(|s2|+ 3))2k

|s2|`+1
ds2 �

{∫ c0
2 logU

+i

c0
2 logU

+

∫ c0
2 logU

+i∞

c0
2 logU

+i

}(log(|s2|+ 3))2k

|s2|`+1
ds2

� (logU)`+1 +

∫ ∞
1

(log(t+ 3))2k

t`+1
dt

� (logU)`+1.

By Fubini’s theorem, the double integral in the right-hand side of (2.4.20) can

be written as the product of the two integrals we have just estimated and from

this (2.4.19) follows.
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We shift the s1- and s2-contours to the lines T1 and T2 respectively, then we

truncate them to get T
′
1 and T

′
2. Thus

I =
1

(2πi)2

∫
T2

∫
T1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

=
1

(2πi)2

{∫
T
′
2

∫
T
′
1

+

∫
T2\T

′
2

∫
T
′
1

+

∫
T2

∫
T1\T

′
1

} H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

=
1

(2πi)2

∫
T
′
2

∫
T
′
1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 +O

(
exp(−c

√
logN)

)
(2.4.22)

by (2.4.19).

Now we shift the s1-contour to the line T1. We have singularities at s1 =

0 and s1 = −s2, which are poles of orders ` + 1 and k, respectively (since

lim
s1→0

(ζ(1 + s1))ks1
k = 1). By Cauchy’s residue theorem we get

∫
T
′
2

∫
T
′
1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

=

∫
T
′
2

{∫
C1
−
∫
T1∪K1

} H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

= 2πi

∫
T
′
2

{
Res
s1=0

+ Res
s1=−s2

} H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

−
∫
T
′
2

∫
T1∪K1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2, (2.4.23)

where K1 = {σ ± iU : |σ| ≤ c0(logU)−1 + it} and C1 = T
′
1 ∪ T1 ∪K1. Similarly

to (2.4.19), one can obtain that∫
T
′
2

∫
T1∪K1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 � exp(−c

√
logN). (2.4.24)

We’ll show that the residue at s1 = −s2 may be neglected. For this we rewrite

the residue in terms of the integral over the circle C1 : |s1 + s2| = (logN)−1

Res
s1=−s2

{
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

}
=

1

2πi

∫
C1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1. (2.4.25)

By (2.4.11), (2.4.13) and (2.4.16), we have G(s1, s2; Ω)� (log logN)c, ζ(s1 +

s2 + 1)� logN , Rs1+s2 = O (1). Also (s1ζ(s1 + 1))−1 � (|s2|+ 1)−1 log(|s2|+ 3)
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since |s2| � |s1| � |s2|. Altogether this gives us

Res
s1=−s2

{
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

}
� (logN)k−1(log logN)c

(
log(|s2|+ 2)

|s2|+ 1

)2k

|s2|−2`−2.

(2.4.26)

Inserting this into (2.4.25) we have

I =
1

(2πi)

∫
T
′
2

Res
s1=0

{
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

}
ds2 +O

(
(logN)k+`−1/2(log logN)c

)
.

(2.4.27)

Note that H(s1, s2) is holomorphic near (0, 0) and

Res
s1=0

{
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

}
=

Rs2

`!s`+1
2

(
∂

∂s1

)`
s1=0

{
H(s1, s2)

(s1 + s2)k
Rs1

}
, (2.4.28)

since the pole has order `+ 1. We insert this into (2.4.27) and apply the similar

argument: that is, we shift now the s2-contour to the line T2. Again, it can be

shown that the new integral is O
(
exp(−c

√
logN)

)
and all we get is the residue

at s2 = 0. Therefore

I = Res
s2=0

Res
s1=0

{
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

}
+O

(
(logN)k+`

)
. (2.4.29)

Take some sufficiently small r > 0 and let C2 : |s1| = r, C3 : |s2| = 2r. Then

we can rewrite (2.4.29) in the form

I =
1

(2πi)2

∫
C3

∫
C2

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 +O

(
(logN)k+`

)
. (2.4.30)

We now introduce new variables t, λ such that s1 = t, s2 = tλ with contours

C
′
2 : |t| = r, C

′
3 : |λ| = 2. Then the double integral is equal to

I =
1

(2πi)2

∫
C
′
3

∫
C
′
2

H(t, tλ)Rt(λ+1)

(λ+ 1)kλ`+1tk+2`+1
dtdλ

Thus we get

I =
H(0, 0)

2πi(k + 2`)!
(logR)k+2`

∫
C
′
3

(λ+ 1)2`

λ`+1
dλ+O

(
(logN)k+`−1(log logN)c

)
,

where we used (2.4.12) and regularity of H(s1, s2) around (0, 0).
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But
1

2πi

∫
C
′
3

(λ+ 1)2`

λ`+1
dλ = Res

λ=0

(λ+ 1)2`

λ`+1
=

(
2`

`

)
and by (2.4.10), (2.4.11),

(2.4.14) and Euler’s product formula ζ(s) =
∏
p

(1 − p−s)−1 we have H(0, 0) =

S(H). This completes the proof.

Proof of Lemma 2 . Let h0 6∈ H and H+ = H ∪ h0. Applying (2.4.2) we see

2N∑
n=N+1

ΛR(n;H+, `)2ϑ(n+ h0)

=
1

(k + `)!2

∑
d1,d2≤R

µ(d1)µ(d2)

(
log

R

d1

)k+`(
log

R

d2

)k+` ∑
N<n62N

[d1,d2]|PH(n)

ϑ(n+ h0)

=
1

(k + `)!2

∑
d1,d2≤R

µ(d1)µ(d2)|Ω∗[d1,d2](H+)| N

φ([d1, d2])

(
log

R

d1

)k+`(
log

R

d2

)k+`

+O(T1)

=
N

(2πi)2

∫
(1)

∫
(1)

∏
p

(
1− (|Ωp(H+)| − 1)

(p− 1)

(
1

ps1
+

1

ps2
− 1

ps1+s2

))
Rs1+s2

(s1s2)k+`+1
ds1ds2

+O(T1)

=
N

(2πi)2

∫
(1)

∫
(1)

G∗(s1, s2; Ω)

(
ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k−1
Rs1+s2

(s1s2)k+`+1
ds1ds2

+O(T1), (2.4.31)

where

G∗(s1, s2; Ω) =
∏
p

(
1− (|Ωp(H)+|−1)

(p−1)

(
1
ps1

+ 1
ps2
− 1

ps1+s2

))(
1− 1

p1+s1+s2

)k−1

(
1− 1

p1+s1

)k−1 (
1− 1

p1+s2

)k−1
,

T1 =
∑
d1,d2

|λd1,`λd2,`||Ω∗[d1,d2]|E∗(N, [d1, d2])

and λdi,` = µ(di)
(k+`)!

(
log R

di

)k+`

, (i = 1.2) Note that G∗(s1, s2; Ω) is absolutely

convergent when Re s1,Re s2 > −1/2. The result follows from Lemma 1 (with

the translation k → k−1, `→ `+1) since G∗(0, 0) = S(H+). We have to justify

our estimation by evaluating error term T1 and showing that it is negligible.
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By (2.4.5)

T1 � (logR)2(k+`)
∑
r<R2

(3k)ω(r)E∗(N, r)� N/ logN, (2.4.32)

provided R < N θ/2−ε.

If h0 ∈ H then we can aplly above evaluation with k − 1 in place of k and

`+ 1 in place of `.



3. ALMOST PRIMES IN TUPLES AND THE DIVISOR

FUNCTION AT CONSECUTIVE INTEGERS

Using the same technique, which was successfully applied for short gaps between

primes, Goldston, Graham, Pintz and Yıldırım [17] proved the existence of small

gaps between E2 numbers (i.e. numbers which are products of exactly two dis-

tinct primes). Instead of ϑ(n) we consider the function ϑ∗ϑ(n) :=
∑
d|n

ϑ(d)ϑ(
n

d
).

Note, that ϑ ∗ ϑ(n) 6= 0 if and only if n is a product of two primes or n is a

square of a prime. If n ∈ (N, 2N ] then ϑ ∗ ϑ(n) ≤ (log 3N)2

2
. Further we need the

following natural analogue of Bombieri-Vinogradov theorem for E2 numbers and

analogue of Lemma 2 for the function ϑ ∗ ϑ(n)

Theorem. Let Ẽ(N ; q, a) be defined by

∑
N<n62N
n≡a mod q

ϑ ∗ ϑ(n) =
N

φ(q)

logN + C0 − 2
∑
p|q

log p

p

+ Ẽ(N ; q, a),

where C0 is the absolute constant. Then for every A > 0, there exists B > 0

such that if Q 6 N1/2 log−B N∑
q6Q

max
x6N

max
a

(a,q)=1

|Ẽ(x; q, a)| �A N(logN)−A.

Lemma 3. Suppose that H = {h1, h2, . . . , hk} ⊆ [1, H] ∩ Z with hi 6= hj for

i 6= j; k, `, 0 < ` ≤ k are arbitrarily, but fixed positive integers, |H| = k and

{x+h1, x+h2, . . . , x+hk} is an admissible k-tuple. Suppose that the primes have

level of distribution θ and above theorem is satisfied with Q ≤ N θ−ε; R ≤ N (θ−ε)/2.

If h0 ∈ H then

∑
N<n62N

ϑ ∗ ϑ(n+ h0)ΛR(n;H, `)2 =

{(
2`+ 2

`+ 1

)
(N logN)S(H)

(logR)k+2`+1

(k + 2`+ 1)!

+2T (k, `)NS(H)
(logR)k+2`+2

(k + 2`+ 2)!

}
{1 +O (log logN/ logN)}
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where

T (k, `) = −2

(
2`+ 3

`+ 1

)
+

(
2`+ 2

`+ 1

)
,

ΛR(n;H, `) =
∑

d|PH(n)

λd,`,

λd,` = µ(d)
f(d)

f1(d)

S(H)

(`)!

∑
r<R

d
(r,d)=1

µ2(r)

f1(r)
(logR/rd)`,

f(d) =
d

|Ωd(H)|
, f1(d) = f ∗ µ(d)

and the implied constant depends at most on k.

Now, consider the weighted sum

S2 =
∑

N<n62N

(∑
hi∈H

ϑ ∗ ϑ(n+ hi)−
(log 3N)2

2

)
ΛR(n;H, `)2. (3.1)

For each n, the inner sum is negative unless there are two values hi, hj ∈ H such

that n + hi, n + hj are products of two primes. From Lemmas 1 and 3, one can

obtain

S2 &

[(
2`+ 2

`+ 1

)
k

(k + 2`+ 1)!

θ

2
+ 2

{(
2`+ 2

`+ 1

)
− 2

(
2`+ 3

`+ 1

)}
k

(k + 2`+ 2)!

θ2

4

− 1

2

(
2`

`

)
k

(k + 2`)!

]
S(H)N(logN)2(logR)k+2` =

{
2`+ 1

`+ 1

k

k + 2`+ 1
θ

− 6`2 + 11`+ 4

(`+ 1)(`+ 2)

k

(k + 2`+ 1)(k + 2`+ 2)
θ2 − 1

2

}
×
(

2`

`

)
1

(k + 2`)!
S(H)N(logN)2(logR)k+2`

Assuming the level of distribution of primes is θ = 1/2− ε, R = N (θ−ε)/2, we

want to find the minimal k ≥ 1 such that there exists ` ≥ 0 with

2`+ 1

`+ 1

k

k + 2`+ 1
− 6`2 + 11`+ 4

2(`+ 1)(`+ 2)

k

(k + 2`+ 1)(k + 2`+ 2)
> 1.

The answer is k = 9, ` = 1. Indeed

` = 0 :
2

k + 2
< 0 is impossible,

` = 1 : 2k2 − 11k − 48 > 0⇒ k > 8.36,
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` = 2 : 8k2 − 37k − 360 > 0⇒ k > 9.4,

` = 3 : 30k2 − 131k − 2240 > 0⇒ k > 11.09,

` ≥ 4 : k2 > 4`2 + 6`+ 2 ≥ 90⇒ k > 9.48,

because 1 < 2`+1
`+1

< 2, 3`+4
`+2

> 2 for ` ≥ 4. Since H = {0, 2, 6, 8, 12, 18, 20, 26, 30}
is an admissible set the limit infimum of gaps between products of two primes

(i.e. E2 numbers or prime squares) is bounded by 30. With a more elaborative

weight Goldston-Graham-Pintz-Yıldırım [17] were able to prove

Theorem 1.4. Let qn denote the nth number that is a product of exactly two

primes. Then assuming the level of distribution of primes is θ = 1/2 − ε, we

have

lim inf
n→∞

(qn+1 − qn) 6 26.

As an application of their work in [18], Goldston, Graham, Pintz and Yıldırım

[19] have shown, among several other interesting results, that d(n) = d(n+ 1) =

24 for infinitely many integers n, where d(n) is the number of divisors of n. That

d(n) = d(n+ 1) for infinitely many n is the well-known Erdős-Mirsky conjecture

[7]. In 1983 Spiro [38] showed that d(n) = d(n+5040) for infinitely many n ∈ N.

We sketch the key idea behind the Spiro’s proof. Consider the set of 8 primes

{p1, . . . , p8} = {11, 17, 23, 29, 41, 47, 53, 59}

and denote by L the least common multiple of the pairwise differences of these

8 primes:

L = l.c.m.{pj − pi : 1 ≤ i < j ≤ 8}.

Define the polynomial

F (n) =
8∏
i=1

(pin+ 1).

By a result from sieve theory [21, Theorem 10.5], there exist infinitely many n

such that ω(F (n)) ≤ 34. Moreover, one can require F (n) to be, in addition,

squarefree and (F (n), L
8∏

k=1

pk) = 1. Indeed, a restriction of the type p(F (n)) ≥

xδ, δ = const > 0, where p(n) denotes the least prime factor of n, is implicit in

the proof of the sieve-theoretic result, and using this property, one sees that the

contribution of the non-squarefree integers is negligible. Since
8∑
i=1

i = 36 > 34

and F (n) is squarefree, it follows that for each of these values of n, two of the
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linear factors of F (n), say pin+ 1 and pkn+ 1, have the same number of prime

factors, are squarefree and are relatively prime to L
8∏
j=1

pj. In fact, by the pigeon

hole principle there exist a fixed pair (i, k) with 1 ≤ i < k ≤ 8 such that above

conditions hold for infinitely many n. Now, it is easy to verify that, for each such

n ∈ N, the integers

n1 =
L

pk − pi
pi(pkn+ 1), n2 =

L

pk − pi
pk(pin+ 1) = n1 + L

have the same number of divisors. Since L = 5040, it follows that there are

infinitely many integers n1 with d(n1) = d(n1 + 5040).

In 1984, Heath-Brown [24], using Spiro’s argument, proved the conjecture of

Erdős and Mirsky. The key idea behind his proof was to try replace set of primes

in Spiro’s construction by a set of positive integers {ai}Ni=1 (for arbitrarily large

N) having the properties

aj − ai|aj (1 ≤ i < j ≤ N)

and

d(aj)d(
ai

|aj − ai|
) = d(ai)d(

aj
|aj − ai|

) (1 ≤ i < j ≤ N).

Moreover, he showed that for large x

D(x) = #{n ≤ x : d(n) = d(n+ 1)} ≥ x

(log x)7
.

Hildebrand [25] improved the lower bound to x
(log log x)3

. Using a heuristic ar-

gument, Bateman and Spiro claimed that D(x) ∼ cx(log log x)−1/2 for some

constant c > 0.

The Erdős-Mirsky conjecture is equivalent to the statement that d(n)
d(n+1)

= 1

holds for infinitely many n. More generally, one can ask which numbers occur as

limit points of the sequence {d(n)/d(n + 1)}∞n=1. Let E denote the set of limit

points of the sequence {d(n)/d(n+ 1)}, and let L denote the set of limit points

of {log(d(n)/d(n + 1))}. Then the Erdős-Mirsky conjecture implies that 1 ∈ E.

Erdős conjectured [6] that E = [0,∞], or equivalently, L = [−∞,∞]. Erdős,

Pomerance and Sarközy [8] proved that for any α ∈ R+, at least one of the 7

numbers 2iα, i ∈ {0,±1,±2,±3}, belongs to E. This result was improved by

Kan and Shan [30],[31], who showed that for any real α > 0, either α or 2α

belongs to E. On the other hand, it can be shown under assumption of the
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prime k-tuple conjecture that for any r ∈ Q+ there exist infinitely many n ∈ N
such that d(n)

d(n+1)
= r. For this we need the following

Conjecture ([36, C2]). Let a, b, c ∈ N such that (a, b) = (a, c) = (b, c) = 1 and

2|abc. Then there exist infinitely many pairs of primes (p, q) such that ap−bq = c.

Proof. Since (a, b) = (a, c) = (b, c) = 1 and 2|abc, there exist natural numbers

r and s such that ar − bs = c. Set f1(x) = bx + r, f2(x) = ax + s, therefore

f1(x)f2(x) = abx2 + (ar + bs)x+ rs.

If there were a prime p such that p|f1(x)f2(x) for any integer x, then (for

x = 0) p|rs and (for x = ±1) p|ab± (ar + bs). Hence p|2ab and p|2(ar + bs). If

p = 2, then from p|rs we had either 2|r or 2|s. If 2|r, we can not have 2|s since

then 2|ar ± bs, so 2|ab and 2|c contrary to (ab, c) = 1. So if 2|r, s is odd and

2|ab + (ar + bs) implies 2|(a + 1)b. That is a is odd or b is even. If b is even

then, according to ar − bs = c, c is even unlike (b, c) = 1. So b is odd, a is odd

then also c = ar − bs is odd unlike 2|abc. Therefore r can not be even, hence s

is even. Repeating again above argument, we see that s also can not be even.

Hence we have p 6= 2. As p|rs, p|ar2+brs. From this p|ar2 and p|ar. Similarly

we get implications p|ars + bs2, p|bs2, p|bs. Thus p|ar − bs which is impossible

since (ab, c) = 1.

Therefore f1(x) and f2(x) satisfy all conditions of the prime k-tuple conjecture.

So there exist infinitely many x ∈ N such that f1(x) = p and f2(x) = q are prime

numbers. Then bx+ r = p, ax+ s = q which gives ap− bq = ar − bs = c.

Now take r = k
l

for some k, l ∈ N, (k, l) = 1 and set a = 3l−1, b = 2k−1, c = 1

in the above conjecture. Then there exist infinitely many primes p, q such that

3l−1p− 2k−1q = 1 and for n = 2k−1q we have

d(n)

d(n+ 1)
=

d(2k−1q)

d(2k−1q + 1)
=
d(2k−1q)

d(3l−1p)
=
k

l
.

Hildebrand [25, Theorem 3] proved that for x > 0,

|L ∩ [0, x]| > x

36
, |L ∩ [−x, 0]| > x

36
. (3.2)

We will now show how the results in [19] can be used to improve upon this.

A triple of linear forms is called admissible if for every prime p, there is at

least one m mod p such that L1(m)L2(m)L3(m) 6≡ 0 mod p. Unconditionally we

have
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Lemma 1 ([19, Corollary 2.1]). Let Li(x) := aix+bi, i = 1, 2, 3 be an admissible

triple of linear forms, and let r1, r2, r3 be coprime integers with (ri, ai) = 1 for

each i and (ri, aibj − ajbi) = 1 for each i 6= j. Then there exists 1 6 i < j 6 3

such that there are infinitely many integers n for which Lk(n) equals rk times an

E2 number that is coprime to all primes 6 C, for k = i, j.

In the lemma, C can be any constant. Hildebrand deduced (3.2) from the fact

that among any 7 integers a1, . . . , a7, there exists i < j such that d(n)/d(n+1) =

ai/aj for infinitely many n. We can replace x/36 by x/3, in view of

Corollary 2. Let a1, a2, a3 be positive integers. For some i < j, there are in-

finitely many integers n such that d(n)/d(n+ 1) = ai/aj.

Proof. Define a triple of linear forms

L1(x) := 9x+ 1, L2(x) := 8x+ 1, L3(x) := 6x+ 1,

and note that

8L1(x) + 1 = 9L2(x), 2L1(x) + 1 = 3L3(x), 3L2(x) + 1 = 4L3(x).

Choose any positive integers a1, a2, a3, and let

r1 := 5a1−1, r2 := 3 · 7a2−1, r3 := 11a3−1.

We check that the hypotheses of Lemma 1 are satisfied. First of all the triple is

admissible because if m ≡ 0 mod p then L1(m)L2(m)L3(m) ≡ 1 mod p, for all

p. (It suffices to check this for p = 2, 3.) We have (ri, rj) = 1 for i 6= j, and

(r1, 9) = (r1, 9 · 1 − 8 · 1) = (r1, 9 · 1 − 6 · 1) = 1, (r2, 8) = (r2, 8 · 1 − 9 · 1) =

(r2, 8 · 1− 6 · 1) = 1, and (r3, 6) = (r3, 6 · 1− 9 · 1) = (r3, 6 · 1− 8 · 1) = 1.

We put C = 11 in the lemma. Then for some i < j, there exist infinitely many

integers m for which Lk(m) equals rk times an E2 number, all of whose prime

factors are > 11, for k = i, j. If the forms are L1(x) and L2(x), then for infinitely

many m, we have E2 numbers A1 and A2, such that (2 · 3 · 5 · 7 · 11, A1A2) = 1

and

d(8L1(m))

d(8L1(m) + 1)
=
d(8L1(m))

d(9L2(m))
=
d(23r1A1)

d(32r2A2)
=
d(23)d(5a1−1)d(A1)

d(33)d(7a2−1)d(A2)
=
a1

a2

.

Similarly, if L1(x) and L3(x) are the relevant forms, then we have E2 numbers
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A1, A3 such that

d(2L1(m))

d(2L1(m) + 1)
=
d(2L1(m))

d(3L3(m))
=
d(2r1A1)

d(3r3A3)
=

d(2)d(5a1−1)d(A1)

d(3)d(11a3−1)d(A3)
=
a1

a3

.

Finally, if the forms are L2(x) and L3(x), then

d(3L2(m))

d(3L2(m) + 1)
=
d(3L2(m))

d(4L3(m))
=

d(3r2A2)

d(22r3A3)
=

d(32)d(7a2−1)d(A2)

d(22)d(11a3−1)d(A3)
=
a2

a3

.

Let q1 = b1
b2

, q2 = b3
b4

be positive rational numbers. If we take a1 = b1b3,

a2 = b2b3, a3 = b2b4, then from Corollary 2 we get d(n)
d(n+1)

∈ {q1, q2, q1q2} for

every q1, q2 ∈ Q+. Since rational numbers are dense in R and every irrational

number can be approximated by rationals, we have that for every r1, r2 ∈ R+

either r1 ∈ E or r2 ∈ E or r1r2 ∈ E.

We are now ready to improve Hildenbrand’s result.

Proof of Theorem 1.8. (a) Let

L′ = {log
r

s
: r, s ∈ N;

d(n+ 1)

d(n)
=
r

s
for infinitely many n ∈ N} (3.3)

It is obvious that L′ ⊂ L. Corollary 2 shows, that for any positive integers

a1, a2, a3 there exist indices i < j such that log
aj
ai
∈ L. From this follows that

given any positive real numbers u1, u2, u3 we get

uj − ui ∈ L′ ⊂ L for some i < j (3.4)

Applying (3.4) with ui = iu, (i = 1, 2, 3), we get that for all u > 0

u ∈ L
⋃ L

2

Now, using subadditivity and positive homogeneity properties of Lebesgue

measure, for x > 0 we have

x = |[0, x]
⋂
{L
⋃ L

2
}| ≤ |L

⋂
[0, x]|+ |L

2

⋂
[0, x]| ≤ 3

2
|L
⋂

[0, 2x]|

and therefore

|L
⋂

[0, x]| ≥ x

3
(x > 0).
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A similar argument with ui = (4− i)u yields

|L
⋂

[−x, 0]| ≥ x

3
(x > 0).

Hence (1.3.8) holds.

If L = R we’re done. Otherwise there exist A > 0 such that A /∈ L. By

Corollary 2 for every x ∈ R either A or x or A + x ∈ L. Hence under our

assumption x or A+ x ∈ L. Then

x = |L
⋂
{[0, A]

⋃
[A,A+x]}| ≤ |L

⋂
[0, A]|+|L

⋂
[A,A+x]| ≤ 2|L

⋂
[0, A+x]|

and therefore |L
⋂

[0, x]| ≥ x−A
2

for x ≥ A.

(b) If E = R+ we’re done. Otherwise there exist B > 0 such that B /∈ E.

By Corollary 2 for every x ∈ (0,∞) either B or x or Bx ∈ E. Hence under our

assumption x or Bx ∈ E. Then

x = |[0, x]
⋂
{E
⋃ E

B
}| ≤ |E

⋂
[0, x]|+ |E

B

⋂
[0, x]|.

If B > 1 then using subadditivity and homogeneity properies of Lebesgue

measure, we have

x ≤ |E
⋂

[0, x]|+ 1

B
|E
⋂

[0, Bx]| ≤ B + 1

B
|E
⋂

[0, Bx]|.

Hence

|E
⋂

[0, x]| ≥ x

B + 1
.

If 0 < B < 1, then B = 1
c

for c > 1 and

x = |[0, x]
⋂
{E
⋃

cE}| ≤ |E
⋂

[0, x]|+ |cE
⋂

[0, x]|

≤ |E
⋂

[0, x]|+ c|E
⋂

[0, Bx]| ≤ (1 + c)|E
⋂

[0, x]|.

Therefore

|E
⋂

[0, x]| ≥ x

1 + c
.
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consecutive integers’, Int. Math. Res. Not. IMRN (2010), Article ID rnq124,

12 pages. doi:10.1093/imrn/rnq124

[20] D. A. Goldston, S. Graham, J. Pintz, and C. Y. Yıldırım, ‘Positive propor-

tion of small gaps between consecutive primes’, Publ. Math. Debrecen 79

(2011), 433–444. MR2907978

[21] H. Halberstam and H.- E. Rihert, Sieve Methods, Academic Press (London,

1974).

http://dx.doi.org/10.1112/S0025579300006793
http://dx.doi.org/10.1112/S0025579300006793
http://www.ams.org/mathscinet-getitem?mr=1176465
http://www.ams.org/mathscinet-getitem?mr=93h:11102
http://projecteuclid.org/getRecord?id=euclid.pja/1146576181
http://projecteuclid.org/getRecord?id=euclid.pja/1146576181
http://www.ams.org/mathscinet-getitem?mr=2222213
http://www.ams.org/mathscinet-getitem?mr=2007a:11135
http://www.claymath.org/publications/Gauss_Dirichlet/yildirim.pdf
http://www.claymath.org/publications/Gauss_Dirichlet/yildirim.pdf
http://www.ams.org/mathscinet-getitem?mr=2362197
http://www.ams.org/mathscinet-getitem?mr=2008j:11122
http://dx.doi.org/10.4007/annals.2009.170.819
http://www.ams.org/mathscinet-getitem?mr=2552109
http://www.ams.org/mathscinet-getitem?mr=2011c:11146
http://dx.doi.org/10.1007/s11511-010-0044-9
http://www.ams.org/mathscinet-getitem?mr=2600432
http://www.ams.org/mathscinet-getitem?mr=2011f:11121
http://dx.doi.org/10.1090/S0002-9947-09-04788-6
http://dx.doi.org/10.1090/S0002-9947-09-04788-6
http://www.ams.org/mathscinet-getitem?mr=2515812
http://www.ams.org/mathscinet-getitem?mr=2010d:11108
http://dx.doi.org/10.1112/plms/pdn046
http://dx.doi.org/10.1112/plms/pdn046
http://www.ams.org/mathscinet-getitem?mr=2500871
http://www.ams.org/mathscinet-getitem?mr=2010a:11179
http://imrn.oxfordjournals.org/cgi/reprint/rnq124v1
http://imrn.oxfordjournals.org/cgi/reprint/rnq124v1
http://imrn.oxfordjournals.org/cgi/reprint/rnq124v1
http://imrn.oxfordjournals.org/cgi/reprint/rnq124v1
http://dx.doi.org/10.5486/PMD.2011.5140
http://dx.doi.org/10.5486/PMD.2011.5140
http://www.ams.org/mathscinet-getitem?mr=2907978


Bibliography 43

[22] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio Numerorum’:

III On the expression of a number as a sum of primes, Acta Math. 44

(1923), 1–70.

[23] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio Numerorum’:

VII. Unpublished manuscript.

[24] D. R. Heath-Brown, ‘The divisor function at consecutive integers’, Mathe-

matika 31 (1984), 141–149. MR762186 (86c:11071)

[25] A. J. Hildebrand, ‘The divisor function at consecutive integers’, Pacific J.

Math. 129 (1987), 307–319. MR909033 (88k:11062)

[26] M.N. Huxley, ’An application of the Fouvry-Iwaniec theorem’, Acta Arith.

43, (4), (1984), 441–443. MR756293 (85k:11043)

[27] M.N. Huxley, ’Small differences between consecutive primes. II’, Mathe-

matika 24, (2), (1977), 142–152. MR0466042 (57 #5925)

[28] A.E. Ingham, The distribution of prime numbers, Stechert-Hafner, Inc., New

York, 1964 MR0184920 (32 #2391)

[29] H. Iwaniec, E. Kowalski Analytic number theory, AMS Colloquium Publi-

cations, Providence, RI, 2004. MR2061214 (2005h:11005)

[30] J. Kan and Z. Shan, ‘On the divisor function d(n)’, Mathematika 43 (1996),

320–322. MR1433278 (98b:11101)

[31] J. Kan and Z. Shan, ‘On the divisor function d(n) II’, Mathematika 46

(1999), 419–423. MR1832632 (2003c:11122)

[32] H. Maier, ‘Small differences between prime numbers’, Michigan Math. J.

35, (3), (1988), 323–344. MR978303 (90e:11126)

[33] J. Maynard, ‘Bounded length intervals containing two primes and an almost-

prime’, (2012), Pre-print, available at http://arxiv.org/abs/1205.5020v1
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