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ABSTRACT. The construction of discrete velocity models or numerical methods
for the Boltzmann equation, may lead to the necessity of computing the collision
operator as a sum over lattice points. The collision operator involves an integral
over a sphere, which corresponds to the conservation of energy and momentum.
In dimension two there are difficulties even in proving the convergence of such an
approximation since many circles contain very few lattice points, and some circles
contain many badly distributed lattice points. This paper contains a brief descrip-
tion of the proof that was recently presented elsewhere ([L. Fainsilber, P. Kurlberg,
B. Wennberg, preprint 2004]). It also presents the results of numerical experi-
ments.
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2 LAURA FAINSILBER1, PÄR KURLBERG2, AND BERNT WENNBERG1

1. INTRODUCTION

The Boltzmann equation is

∂tf(x, v, t) + v · ∇xf(x, v, t) = Q(f, f)(x, v, t) .(1)

We consider this equation in two spatial dimensions, so x ∈ R2, and v ∈ R2. The
collision operator in the right hand side acts only in velocity space, and is defined
as

Q(f, f)(v) =

∫
R2

∫
S1

(f(v′)f(v′∗)− f(v)f(v∗)) q(|w|, cos θ)
dθ

2π
dv∗ .

(2)

The velocities “before and after a collision” are related by

v′ = 1
2
(v + v∗) + |w|u

v′∗ = 1
2
(v + v∗)− |w|u .

(3)

Here w = (v∗ − v)/2, and the unit vector u ∈ R2 is defined as a rotation by the
angle θ of w/|w|:

u = Rθ
w

|w|
.

The two velocities v and v∗ are antipodal points on a well defined circle, and (3)
implies that after a collision, the two new velocities are different antipodal points
on the same circle. We parametrise this circle by θ, and dθ/2π is simply the unit
measure. Finally, q(|w|, cos θ) is the differential crossection.

In a discrete velocity model (DVM), the velocities are concentrated on a (usually
finite) set of points vj ∈ Rd in the velocity space:

f(x, v, t) =
∑

j

fj(x, t)δv=vj
.

The Boltzmann equation (1) is then changed into a nonlinear system of ordinary
differential equations, or, when also the spatial dimension is taken into account, a
system of conservation laws:

∂tfj + vj · ∇xfj =
∑

k,k′,j′

Γj′,k′

j,k (fj′fk′ − fjfk) .(4)

The constants Γj′,k′

j,k ≥ 0 must be chosen so that (4) makes sense from a physical
point of view. In particular we require that (vj, vk) and (vj′ , vk′) are two pairs of
antipodal points on the same circle, just as for the usual Boltzmann equation.

The first example of a discrete velocity model is that of Carleman ([5]), which
has two velocities in R, but there are many other models with different number of
velocities.
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There are at least two reasons for studying such models. First, from certain points
of view, they are mathematically more tractable than the continuous Boltzmann
equation (though certainly not in all respects), and results pertaining to the discrete
models could also say something about the full equation. Also they provide a means
of doing numerical calculations for gases far away from equilibrium.

When used for real gas simulations, it is essential that the model is physically
realistic (i.e., that satisfy the right conservation laws and an entropy principle), and
this problem has recently been addressed e.g. by [4, 22, 23].

The family of models considered here can be seen as coming from a rather
straightforward discretization of the collision integral (2), where the integrand is
evaluated only on lattice points, v ∈ hZ. Integrating over w = (v∗ − v)/2 rather
than over v∗ gives

v′ = v + w + |w|u ,

v′∗ = v + w − |w|u .

Also, v∗ = v + 2w, and writing

gv(w, u) = (f(v′)f(v′∗)− f(v)f(v∗)) q(|w|, cos θ) ,(5)

we find

Q(f, f)(v) = 4

∫
R2

(∫
S1

gv(w, u) d
θ

2π

)
dw.(6)

If g is sufficiently regular (continuous), and decays sufficiently rapidly for large w,
then the Riemann sum for the outer integral converges:

(2h)2
∑
ζ∈Z2

∫
S1

gv(hζ, u) dθ

−→ 4

∫
R2

(∫
S1

gv(w, u)
dθ

2π

)
dw(7)

when h → 0. In order to construct a consistent DVM, it is then sufficient to evaluate
the inner integral in terms of the values of g on the lattice points hZ2, in such a way
that the result converges to

∫
S1 g(w, u) dθ

2π
.

While with the formula (3), the collision integral should be taken over all u ∈ S1,
we have here only access to those u for which v′ and v′∗ belong to hZ2. But this is
automatically achieved if ζ ∈ Z2, and if u = ζ ′/|ζ ′|, where ζ ′ ∈ Z2 and |ζ ′| = |ζ|;
then for all v ∈ hZ2,

v + hζ ± h|ζ|u ∈ hZ2 .

However, note that with this construction, the center of the sphere is restricted to lie
on a lattice point, and so it excludes cases like v = (0, 0), v∗ = (h, h).
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Giving all points on the circle equal weight, one arrives at the following expres-
sion for the full collision operator, valid for all v ∈ hZ2:

Qh(f, f)(v) =

(2h)2
∑
ζ∈Z2

1

r(|ζ|2)
∑
ζ′∈Z2

|ζ′|=|ζ|

(f(v′)f(v′∗)− f(v)f(v∗)) q(|hζ|, cos θ) .(8)

The function r(n) denotes the number of points with integer coordinates on a sphere
in R2 with center at the origin and radius

√
n, i.e. the number of integer solutions

to x2
1 + x2

2 = n. The angle θ is the angle between ζ and ζ ′. To obtain the discrete
velocity model (4) one can then take fξ(x, t) = f(hξ, x, t). This would then be
a model with countably many velocities, but it is natural to restrict velocities to
belong to a bounded subset of Z2.

We are interested in proving that

Qh(f, f) → Q(f, f),(9)

when h → 0, at least for sufficiently regular functions f . If this convergence holds,
we say that the model is consistent, which together with stability is a main ingredi-
ent when proving that a numerical method converges.

Indeed, (9) holds. For dimensions strictly larger than 2, this result was established
by Palczewski, Schneider and Bobylev([3]). The same result was proven for d = 2

in [12]. In this paper we give a short description of the proof, and present some
numerical calculations, which have not been presented elsewhere.

Although we do not pretend to construct valid and useful methods for solving the
Boltzmann equation, it is interesting to test whether the model is admissible from
a physical point of view. For the particular model given in equation (8), we know
that it is admissible, because it is an example of a general method of constructing
discrete velocity models that is presented in [4]. We discuss that general method in
Section 4, and present some results from a computer implementation of the method.

We also show the results of some calculations for a spatially homogeneous relax-
ation to equilibrium.

Discretizations of the Boltzmann equation have been discussed by several au-
thors. The most relevant papers in connection with the present one are [3], [2], and
also [19]. A different method based on Farey series was presented in [21]. The col-
lision operator in the two-dimensional Boltzmann equation is a three-fold integral,
which is evaluated as an iterated integral. A different discretization based on the
so-called Carleman representation of the collision integral was presented in [15].



BOLTZMANN EQUATION ON A LATTICE 5

2. MAIN RESULT AND IDEAS OF THE PROOF

The purpose of this section is to properly state the convergence result (7), and to
discuss its proof. All details of the proof can be found in [12].

In addition to the notation in Section 1, we write

Gv(w) =
1

2π

∫ π

−π

gv(w, θ) dθ ,

in the continuous case, and for the discrete case (then we assume, of course, that
v ∈ hZ2)

Gh
v(hζ) =

1

r(|ζ|2)
∑
ζ′∈Zd

|ζ′|=|ζ|

gv(hζ, θ) ,

where θ is the angle between ζ ′ and ζ . As before, r(|ζ|2) denotes the number of
integer points on a sphere with radius |ζ|.

We also write

(10) Zh,R = {z ∈ Z2 s.t. |z| ≤ R/h}

for some R > 0 (this is the most straight forward way of restricting to a finite set of
velocities, but other choices might be more efficient, as we shall see later).

The convergence result can now be expressed as

Q(f, f)(v)− (2h)2
∑

ζ∈Zh,R

Gh
v(hζ) → 0(11)

when h → 0.

Theorem 1. Suppose that gv(w, θ) in (5) satisfies

(1) gv(w, θ) is a C1-function w.r.t. w

(2) gv(w, θ) is a C2-function w.r.t. θ

(3) ‖gv(·, θ)(1 + | · |2)‖L1(dw) ≤ C

(This holds e.g. if the function f and the crossection q are C2.) For given R > 0

and h > 0, let Zh,R be as in (10). Then given ε > 0 there are reals R > 0 and
h > 0 such that ∣∣∣∣∣∣Q(f, f)(v)− (2h)2

∑
ζ∈Zh,R

Gh
v(hζ)

∣∣∣∣∣∣ ≤ ε .

For a given ε, one can take h

h = o
(
exp(−2 (log ε)2 ε−2/(1− 2

π
))
)

,(12)

which corresponds to a rate of convergence no better than O((log(1/h))−p), where
p < (1− 2/π)/2.



6 LAURA FAINSILBER1, PÄR KURLBERG2, AND BERNT WENNBERG1

Proof. We still consider Q(f, f) as an iterated integral, and write (for v ∈ hZ2)

Q(f, f)(v)− (2h)2
∑

ζ∈Zh,R

Gh
v(hζ)

=

∫
R2

Gv(w) dw − (2h)2
∑

ζ∈Zh,R

Gv(hζ)

+(2h)2
∑

ζ∈Zh,R

(
Gv(hζ)−Gh

v(hζ)
)

.(13)

The difference between the integral in the right hand side and the first sum can
be estimated easily by truncating the integral for large velocities and using that the
sum is a Riemann sum for the remaining part of the integral. So the difference is
bounded by

C1

R2
+ C2R

2h ,

where the constants depend on the C1-bounds of g.
Next we turn to the difference Gv(hζ)−Gh

v(hζ), i.e. of
1

2π

∫ π

−π

gv(hζ, θ) dθ − 1

r(|ζ|2)
∑
ζ′∈Z2

|ζ′|=|ζ|

gv(hζ, θ) ,(14)

(recall that in the second term, θ is the angle between ζ ′ and ζ). We first write the
periodic function gv(hζ, θ) as a Fourier series,

gv(hζ, θ) =
∑
k∈Z

ĝv(ζ, k)eikθ ,

where

ĝv(ζ, k) =
1

2π

∫ π

−π

gv(hζ, θ)e−ikθ dθ .

The assumptions on g imply the existence of a constant C3 so that

|ĝv(ζ, k)| ≤ C3

1 + k2
.(15)

Then (14) becomes

ĝv(ζ, 0)− 1

r(|ζ|2)
∑
ζ′∈Z2

|ζ′|=|ζ|

ĝv(ζ, 0) +
1

r(|ζ|2)
∑
ζ′∈Z2

|ζ′|=|ζ|

∑
k 6=0

ĝv(ζ, k)eikθ ,

where the first terms cancel out, and only last sum remains. We next split that sum
into a part with |k| ≤ M , and a remainder. The estimate (15) implies that the
remainder is smaller than

R2C4

M
.(16)
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The terms that remain after these truncations add up to the main contribution.
This is the the most difficult part to estimate. Using (15) again, we find a bound of
the form∣∣∣∣∣ ∑

0<|k|<M

C3

1 + k2

1

r(|ζ|2)
∑
ζ′∈Z2

|ζ′|=|ζ|

eikθ

∣∣∣∣∣ ≤ max
0<|k|<M

∣∣∣∣S(|ζ|2, k)

r(|ζ|2)

∣∣∣∣ · ∑
0<|k|<M

C3

1 + k2

(17)

Here we have introduced the notation

S(n, k) =
∑

u∈Z2:|u|2=n

eikθu(18)

where θu is defined by u = |u| · (sin θu, cos θu). From this it is straightforward to
derive (we refer to [12] for the details)

|Q(f, f)(v)−Qh(fh, fh)(v)|

≤ C1

R2
+ C2R

2h +
R2C4

M
+ C3(2h)2 max

0<|k|<M

∑
n<(R/h)2

∣∣S(n, k)
∣∣ ,(19)

Proposition 3, which is stated in the next section, gives an estimate of exponential
sums of this kind, and using it, we obtain∑

n<(R/h)2

∣∣S(n, k)
∣∣ ≤ C5

(
R

h

)2

exp

(
−
(
1− 2

π
) log

log ((R/h)2)

(log M)2

)
,

where C5 is a positive constant. We conclude the proof by choosing

(1) R =
√

4C1/ε,
(2) h < ε/(4R2C2) = ε2/(4C1C2),
(3) M = 4R2C4/ε = 64C1C4/ε

2.

With these choices of R and M , the last term in (19) can then be bounded by

4C3C5
4C1

ε
exp

(
−
(
1− 2

π
) log

log(4C1/(εh
2))

(log(64C1C4/ε2))2

)
,(20)

which converges to zero when h → 0, and so there is an h so small that also the last
term in (19) is smaller than ε/4. Solving for h in (20) gives (12). �

3. NUMBER THEORETIC BACKGROUND

In order to explain the origin of Proposition 3, and also to explain the numerical
algorithm used to produce the results in Section 4, we need to introduce the concept
of Gaussian integers, and give some related results.
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To prove that the inner sum of (8) converges to the correct limit when h → 0, one
is lead to study the set

{ζ/|ζ| : ζ ∈ Z2, |ζ|2 = n}(21)

and to show that there are many points in this set, and also that these points are well
distributed on S1 when n is large. This is not true in general. For example, when n

is a power of 2, there are exactly four points in the set. But even circles which do
have a large number of points may behave poorly, as the following theorem shows:

Theorem 2. (Cilleruelo [6]) For any ε > 0 and for any integer k, there exists a
circle x2 + y2 = n with more than k lattice points such that all the lattice points are
on the arcs

√
ne(π/2)(t+θ)i with |θ| < ε, t ∈ {0, 1, 2, 3}.

On the other hand, we may use some other techniques from analytic number
theory to show that lattice points on circles are equidistributed on average, and this
is good enough for our purpose. To do this it is convenient to rephrase the problem
in terms of the Gaussian integers, i.e., the ring of integers of the field Q(i),

Z[i] = {x + iy ∈ C, (x, y) ∈ Z2}.

The Gaussian integers behave in many ways like the usual integers, and in particular
there is a unique factorization into Gaussian primes. We refer to [14], for basic
number theoretical results.

The Gaussian primes (i.e. the elements of Z[i] that cannot be written as a product
of Gaussian integers with smaller modulus), are of three types:

• the prime numbers q ∈ Z such that q ≡ 3 mod 4 remain prime in Z[i] (e.g.
3, 7, 11, 19,...);

• for prime numbers p ∈ Z such that p ≡ 1 mod 4, there exist x, y ∈ Z s.t.
p = x2 + y2. Hence p factors in Z[i] as a product of two Gaussian primes

p = (x + iy)(x− iy)

(e.g. 5 factors into (2 + i)(2− i) in Z[i])
• last, 1 + i is prime (note that (1 + i)(1− i) = 2 and that 1− i = −i(1 + i)

is merely “another form of the same prime” just as 3 and −3 represent the
same prime).

If n is the sum of two squares, then it can be factored in Z[i]:

n = X2 + Y 2 = (X + iY )(X − iY ).

If z = x+ iy is a prime factor of X + iY , then z̄ = x− iy must be a prime factor
of X − iY . It follows that prime factors q ≡ 3 mod 4 of n must appear in even
powers. In addition, multiplying n by an even power of a prime q that is congruent
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with 3 mod 4 changes neither the number of solutions to n = X2 + Y 2 nor the
distribution of arguments of the solutions.

Suppose now that n contains a factor pα, where p ≡ 1 mod 4. The number p

can be factored in Z[i] as (x + iy)(x− iy), and hence the multiplicity of x + iy as
a factor of n is α, and the same is true for x − iy. It follows that the multiplicity
of x + iy in X + iY can be any integer j, with 0 ≤ j ≤ α, and the multiplicity of
x− iy is then α− j.

The same calculation can be done for powers of 2; however, the solutions given
by different choices of j in that case differ by a multiplication by a power of i, and
so the power of 2 does not influence the number of solutions.

All solutions to n = X2 + Y 2 can now be expressed as X + iY =
√

n exp(iθ),
where all possible values of the argument θ can be computed as sums of terms
deriving from the different factors of n in the following way:

(1) X + iY can be multiplied by any unit, i.e. by ±1 or ±i. This gives a term
kπ/2 in the argument, k = 0, 1, 2, 3.

(2) If the multiplicity of 2 in n is odd, then the argument must contain π/4, the
argument of 1 + i; the number of solutions does not change.

(3) For each prime factor p ≡ 1 mod 4 in n, let αp be the multiplicity of p in
n, let p = x2

p + y2
p , and set θp = arg(xp + iyp). For a particular choice of j,

0 ≤ j ≤ αp, the argument added to X+iY is jθp−(αp−j)θp = (2j−αp)θp.

Since the choices of k, and of the different j′s are independent, the number of
different solutions is 4

∏
p≡1mod 4

(αp + 1).

This description is constructive, and can easily be implemented as a computer
program for tabulating the sets (21).

The key estimate remaining for the proof of Theorem 1 is the following estimate
for averages of exponential sums:

Proposition 3. If 4 - k then |S(m, k)| = 0. If 4|k and k 6= 0, there exist C and
b > 0 such that

log

(
1

X

∑
m≤X

|S(m, k)|

)
≤ C − (1− 2/π) log

(
log X

(log |k|)2

)
for X sufficiently large and log |k| ≤ b

√
log X .

The proof is based on the observation that |S(m, k)|/4 is a multiplicative func-
tion, i.e. a function f : N → C such that f(mn) = f(m)f(n) for all m,n such that
(m, n) = 1.
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It turns out that the mean value of a multiplicative function, under fairly general
circumstances, can be bounded in terms of an exponential of a sum over primes.
The precise result that is proved and used in [12] is the following weak form of the
Halberstam-Richert inequality (cf. [13]).

Theorem 4. Let f be a nonnegative multiplicative function such that

(22)
∑
n≤x

f(n) = O(x) ,

and f(pk) = O(k) for all primes p and k ≥ 1. Then there exists C > 0 such that

1

X

∑
m≤X

f(m) ≤ C · exp

(∑
p≤X

f(p)− 1

p

)
+ O(

1

log X
)

for all sufficiently large X .

One can check that 1
4
|S(p, k)| is a multiplicative function that satisfies the condi-

tions for Proposition 3, and so

1

X

∑
m≤X

|S(m, k)| ≤ C exp

(∑
p≤X

1
4
|S(p, k)| − 1

p

)
+ O

(
1

log X

)
.

It is also straightforward to check that

1

4
|S(p, k)| =

{
2| cos(kθp)| if p ≡ 1 mod 4,
0 if p ≡ 3 mod 4 ,

where θp is the argument of the Gaussian prime z such that zz̄ = p. Hence∑
p≤X

1
4
|S(p, k)| − 1

p
=

∑
p≤X

p≡1 mod 4

2| cos(kθp)|
p

−
∑
p≤X

1

p
.

This is the precise point where the angular distribution of Gaussian primes is im-
portant, and we rely on the following estimate, which is a corollary of a theorem by
Kubilyus (see [18, 11])

Theorem 5. If k ∈ 4N and log k ≤ b
√

log x, then∑
p≤x

p≡1 mod 4

| cos(kθp)|
p

≤ 1

π
log log x + (1− 2/π) log log k + O(1).

Using this corollary, together with Merten’s theorem see [14], Ch. 22.8,∑
p≤X

1

p
= log log X + O(1) ,
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we find∑
p≤X

1
4
|S(p, k)| − 1

p
≤ (2/π − 1) log log x + 2(1− 2/π) log log k + O(1) .

4. SOME NUMERICAL EXAMPLES AND REMARKS

From a numerical point of view, the discretisation discussed above would be far
too costly: a discrete velocity model with N velocities would at least correspond to
a computational cost of O(N) per time step, because one needs to compute a value
for each velocity. When the collision term is computed by the sum (11), the cost
is O(N2) times some logarithmic factor of N (which comes from the summation
over the points on the circles). And the calculation above showed that N grows
exponentially in terms of the accuracy, N ∼ 1

h
>> exp(ε−c) for some positive

constant c.
However, rather than estimating the computational cost in terms of the number

of discretisation points used, it is more relevant to give the cost in terms of the
desired accuracy, assuming that the discretization points are used in an optimal
way. The discussion around (11) suggests that one can reduce the computational
cost considerably without compromising the order of accuracy. The poor rate of
convergence is due to the approximation of Gv(w). Generalizing the formula (11)
slightly, we can write ∫

R2

Gv(w) dw ∼ 1

ρh

∑
ζ∈Zh

Gv(hζ)(23)

where ρh is the local density of Zh. For Zh = {ζ ∈ Z2 s.t. |hζ| ≤ R}, one has
ρh = h−2.

An important reduction in computational cost could then presumably be obtained
by replacing Zh by a much smaller carefully selected set in such a way that the
integrals over the corresponding circles are well approximated.

In addition to the problem of keeping the overall accuracy, one would also need to
address the question of spurious invariants, which we will do briefly before giving
some numerical illustrations. Since our main concern in this work was to study
how well the discretised collision operator agrees with the continuous one, we have
not discussed the question of whether the models admits the correct number of
conserved quantities, a rather delicate problem, which we will briefly discuss here.

By a collision invariant, we mean a function Ψ(v) that satisfies

∀(j, k, j′, k′) such that Γj′,k′

j,k > 0,

Ψ(vj) + Ψ(vk) = Ψ(vj′) + Ψ(vk′)(24)



12 LAURA FAINSILBER1, PÄR KURLBERG2, AND BERNT WENNBERG1

The only invariants should be the ones corresponding to the conservation of mass,
momentum and energy, i.e.,

Ψ(v) = 1, Ψ(v) = b · v (b ∈ R2), and Ψ(v) = |v|2.

All other functions satisfying (24) are called spurious invariants.
That the present planar lattice model does not admit any spurious invariants, at

least under some very modest requirements on the differential crossection follows
from the fact that it can be constructed according to a general method for construct-
ing “normal” models. The construction, which can be found in [4] is as follows:

Starting from a model which is known to possess the correct invariants, one adds
one point in a suitable way. More precisely, suppose that a discrete velocity model
consists of the velocities

{v1, ...., vm},

together with a set of Γj′,k′

j,k . If a new velocity vm+1 is added together with an
augmented set of Γj′,k′

j,k , such that for at least one choice of j, k, j′ (all different),
Γj′,m+1

j,k > 0, then

{v1, ...., vm, vm+1},

is also an admissible model. In our situation, we see the model as a discretisation of
the continuous Boltzmann equation. Under the mild assumption that the collision
crossection is strictly positive, the above amounts to saying that the new velocity
belongs to a circle which has at least three velocities from the original set of veloc-
ities.

With the model introduced in Section 1, only circles with centers at lattice points
are considered, and then it is natural to use only lattice points (x, y) such that x + y

is an even number. This corresponds to an integer lattice scaled by a factor
√

2

rotated by π/2.
Following the idea in [4] we construct a sequence of models {Um} inductively,

and the model Um+1 is constructed by adding all points in Z2 \ Um, (or Zh \ Um)
that belong to a circle which contains at least three different points from Um. As the
first generation in this construction we can choose an augmented Broadwell model
consisting of the velocities (±1, 0), (0,±1), extended with the point (0, 0), or, to
satisfy the condition that the sums of the coordinates be even, (±1,±1) and (0, 0),
or any suitably scaled and rotated version of this.

With this construction, one can see that in fact it is enough to use points on a
very small number of circles. This would then be an example of how to reduce the
computational cost, while keeping a physically correct model. As an example we
consider a model allowing only circles with exactly 128 points. This model has
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FIGURE 1. The points added in the second, third and fifth generation of
the iteration from the implementation of the Bobylev-Cercignani method.
In the fourth generation 1862118 of the in all 2 million points are added,
and with the dot size used in the other plots, the square would be completely
filled. The plots show one quadrant, with the origin in the upper left corner.

been chosen because within the chosen square (2000x2000 points), we don’t find
circles with a larger number of points. The first generation in this example is a
model with the velocities ±(905, 885), and ±(−885, 905) and also (0, 0). Then e.g.
(0, 0), (905, 885), and (885,−905) all are on the same circle with radius

√
801125,

and hence one can add all the other 128 − 3 on that same circle. In this way, be-
cause of the four fold symmetry of the problem, a first round of adding points to the
Broadwell model gives 4 × (128 − 3) = 500 points new to the second generation.
Figure 1 shows one quadrant of the second, third and fifth generation of this proce-
dure; it is in this case enough with four iterations to obtain a model with all “even”
(in the sense discussed above) points.



14 LAURA FAINSILBER1, PÄR KURLBERG2, AND BERNT WENNBERG1

The conclusion of this is that allowing only circles with 128 points yields an ad-
missible model, but it would correspond to a, from a physical point of view, very
unrealistic differential crossection in the continuous case. The continuous model
would have a very restricted differential crossection, and because of this the solu-
tions could converge very slowly to equilibrium.

Finally, we give two examples of numerical calculations based on the discrete
velocity model. The purpose of the simulation is to illustrate the equilibrium states.
The exact time dependence of the solution is not important in this case, and a simple
time stepping method has been choosen. With fm(ζ) = f(hζ,m∆t),

fm+1(ζ) = fm(ζ) + ∆t Q(fm, fm)(ζ),

and ∆t has been arbitrarily chosen to 0.1. For reasons of computational cost, we
restrict the calculation to integers ζ = (j, k) with |j|, |k| < 100. The iteration is
computed with the formula

fm+1(ζ) =fm(ζ)+

∆t
∑

n

∑
|ζ1|2=n

1

rζ+ζ1(n)

∑
|ζ2|2=n

[
fm(ζ + ζ1 + ζ2)fm(ζ + ζ1 − ζ2)−

fm(ζ + 2ζ1)fm(ζ)
]

(25)

This corresponds to carrying out the integration over w in equation (6) with polar
coordinates. Note that this summation counts all integers in the lattice exactly once,
and that there is no need for a Jacobian as when changing to polar coordinates in
a plane integral. The list of solutions to |ζ1|2 = n was tabulated in advance, using
the techniques discussed in Section 3. The function rζ+ζ1(n) denotes the number of
integer points on a circle with radius

√
n as before, but counting only points inside

the square domain for the simulation, and therefore it depends also on the center
point ζ + ζ1.

The graphs in Figure 2 show the result for a few of the iterates, for the case
when the summation is carried out for circles with between 20 and 48 points (48 is
the largest possible number of points on a circle in this case, and the restriction to
circles with at least 20 was made to reduce computational cost). The corresponding
values of |ζ2|2 lie between 325 and 10000, i.e., to a differential crossection that is
strictly zero in a ball |w| <

√
325. Because the density of circles with more than

20 points is larger in intervals of n = |ζ1|2 with large n, this corresponds to hard
potentials. However, the simulation is carried out without any particular differential
crossection in mind.
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FIGURE 2. The initial data and iterations number 1, 200 and 800. The
summation in equation (25) includes circles with at least 20 points. The
graphs to the right show the support of the iterate or a contour plot.
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FIGURE 3. Initial data is as in Figure 1. Here only three different values
of n are included in eq. (25). The first two plots show the support of the first
iterate and the difference f1 − f0. The next two plots show iterate number
300000 (i.e. f300000) and the difference f300000−f0, and then iterate f600000

and f600000 − f300000. The last row shows f900000 and f900000 − f600000.
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The plots in figure 3 illustrate that when taking only a small set of values for n

(in this case circles with either 40 or 48 points, in total three values for n), the rate
of convergence to equilibrium is extremely slow. The model is physically not very
realistic, as it corresponds to a differential crossection that is concentrated on only
three values of |v − v∗|, and so it should be considered only as an illustration to the
the discussion in the paper.
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