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1. INTRODUCTION

The phase space densjfyf a dilute gas evolves according to the Boltz-
mann equation. In the physically relevant case, the gasddmitonfined to
asubsef2 C R?3, and thenf(z,v,t) : @ xR3xRT — R*, wherex denotes
a position in spacey € R? is a velocity, and denotes the time. From a
mathematical point of view, it is equally natural to consittee Boltzmann
equation in any spatial dimension, and in some cases becbsgmmetries
of , it is also relevant to considér ¢ R% andv € R% with d; < ds.

By a dilute gas we mean one where the particles interact with ether
essentially only bypairwiseinteractions. Moreover, the Boltzmann equa-
tion assumes that the particles are so small compared toditiances, that
they can be considered to be points.

Under these hypothesis, one can formally derive the Boltamegua-
tion (see [7])

The left hand side describes the evolution of the densityreg fransport,
and the right hand side describes the impact of collisioms.definition, a
collision is a pairwise interaction that takes place ins&tarously and at one
single point in space. Henaeandt appear only as parametersan f, f),
and we can write

QRN = [ [ )00 = F0) )l cosd) as(ude.
@

where the velocities “before and after a collision” are retbby

Vo= (v+u)+|wlu
®3) 1
v, = 3(v+uv)—|wlu,
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with w = (v, — v)/2, and withcos 6 = fars dv, is the Lebesgue measure
in RY, anddS(u) is the surface measure @if~!. Note that the pair of
velocities before a collisiony andv,, and the pair of velocities after the
collision, v’ andv’, are the endpoints of a diameter on the sphere which has
its centre at£** and diametefv, —v|. This is exactly the condition needed
in order that the collisions preserve the momentum and gnafrthe pair
of particles. Ford = 2, the sphere becomes a circle, and this motivates the
title of the paper.

In a discrete velocity model (DVM), the velocities are comicated on a
(usually finite) set of points; € R? in the velocity space:

f(ilf,v,t) = ij(ajvt)év:vj-
J

The Boltzmann equation (1) is then changed into a nonlingstes of
conservation laws,

(4) Oufj+vj-Vafj= Z F?:/’ﬁk/ (firfor = fife)

k7k/7j/

where the constanBjj;f’ > 0 must be chosen so that (4) makes sense from
a physical point of view. In particular we require that, v;,) and (v, vi/)
define two diameters on the same sphere, just as for the usltzhiann
equation.

The first example of a discrete velocity model is that of Cadar([4]),
which has two velocities ifiR. Many other models have been proposed,
and there is a large literature on how to construct and aaghysically
realistic models (i.e., that satisfy the right conservatews and an entropy
principle), see eq.[3].

Besides offering many interesting mathematical challenger exam-
ple, there is no general theory of global existence of sohgito systems
like (4)) the DVM:s are also candidates for the numericalrappnation
of the real Boltzmann equation (1). This leads naturallyht® following
guestion, which is the subject matter of the paper:

Suppose that we choose the discrete set of velocities tZbgi.e. the
integer lattice inR?, scaled by a factak, and that we take

) = Z JenOv=ne ;

¢ezd

so thatf* — f, in some suitable sense, wheffec L'(R%). Is it then true
thatQ(f", f*)(v) — Q(f, f)(v) for all v € hZ? whenh — 0?

This property, which is calle@¢onsistencytogether withstability are
main ingredients when proving that a numerical method cagese
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The answer is yes. This was proven by Bobylev, PalczewskEahdei-
der ([2]) for dimensions! > 3. In this paper, we prove that it is also true
for d = 2, and hence for all relevant cases.

Results of this kind are interesting, because they providenples that
are relevant to previous results of Desvillettes and Misc(jB]), who proved
that solutions to families of DVM:s can converge to DiPeln@ns’ solu-
tions to (1) if certain conditions are satisfied.

Our result should not, however, be considered as relevamiumerical
analysis, because the rate of convergence is so slow thaterioal method
based on the theory presented here would hardly ever becsefiel u

The family of models considered here can be seen as coming dro
rather straightforward discretization of the collisiotiagral (2). This inte-
gral should be interpreted as an average oveRthe 1-dimensional mani-
fold defined by

(5) —{v*, c R st. v +v, —v,=v
[0 + L = o = ol
and (2) is an iterated integral over this manifold. For a fixedve write
w = (v, — v)/2, and then (3) becomes
Vo= v+ w+ |wu

L= vtw—|wu

and alsaw, = v 4+ 2w. We then write

(6) go(w,u) = (f()f(v) = f(v)f(v.)) q(jw], cosB),

and so (after changing variables in the integral),

arnw =2 [ ([ atwwdsw)

If ¢ is sufficiently regular (continuous), and decays suffidierdpidly for
largew, then the Riemann sum for the outer integral converges:

2hd2/ o(hC, ) dS(u)

¢eza

7) Y /R ) ( /S gl dS(u)) dw

whenh — 0. In order to construct a consistent DVM, it is then sufficient
to evaluate the inner integral in terms of the valueg of the lattice points
hZ?, in such a way that the result convergesfto , g(w, u) dS(u). While
with the formula (3), the collision integral should be takever all u €
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S4-1 we have here only access to thaséor which v andv’ belong to
hZ<. But this is automatically achieved{fe Z<, and ifu = ¢’/|(’|, where
¢' € Z* and|{’| = |¢]; then for allv € hZ4,

v+ h¢ £ h|Clu € hZ?

However, note that with this construction, the center of $pbere is re-
stricted to lie on a lattice point, and so it excludes cadesdi= (0,0),

Ve = (h, h).
Giving all points on the sphere equal weight, one arriveB@tkpression
1 / /
®) i D (S = f(0)f(0.)) a(|hC], cosb),
rallP) &,
I¢'[=I<]

for approximating the inner integral in (7). The functiof(n) denotes the
number of points with integer coordinates on a sphef®dmwith center at
the origin and radius/n, i.e. the number of integer solutions® + - - - +
2
Ty =n.
We write, for allv € hZ“.
Q"(f, fH(v) =
1 / !/
©) @)D ey 2 (TS = F(0)f () a(lhc]. cos)
¢cezd d ¢'ezd
I¢"1=I¢]
In the two-dimensional case, all the terms in the sum2argeriodic
functions off, and assuming sufficient regularity, they can be expressed a

a convergent Fourier series. It is then natural to introdiheeexponential
sum

(10) S(n, k) = Z eklu

u€Z?:|ul2=n

whered, is defined byu = |u| - (sin 6, cosf,). We will see in Section 4
that to prove that (8) converges to the angular integral jni(% enough to
prove that fork # 0, the termsS(n, k) converge to zero sufficiently fast as
n — oo. Similar exponential sums are relevant for any dimension, the
work of Bobylev et al. also involves such estimates.

Here the needed estimate is given as Proposition 6 in Segtidhen in
Section 4 we put the estimates togheter to a proof of the nesiult

Theorem 1. Consider the Boltzmann equation in two dimensions. Assume
that f and ¢ are so smooth that the function(w, «) defined in (6) is a
C?-function. Then for alb € hZ?

Q(f, F)(v) — Q"(f, /)(w)| — 0
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whenh — 0.

Section 5, finally, contains a numerical illustration on thistribution
terms where the circles contain many points, and we indicatethe com-
putational cost could be reduced without loosing accuratly {ithout the
intention of actually giving an effective algorithm).

A more general construction of discrete velocity models caled inte-
ger latticeshZ? consists in finding sets of integer points on the manifold
M defined in (5). In this way, mass and energy conservationereati-
cally satisfied, but one also needs to verify that these &rerily conserved
guantities. And finally, in order that the models convergémcontinuous
model whemh — 0, it is necessary that the integer points are more or less
uniformly distributed onM.

The models studied here are constructed by discretizing,abra time,
the iterated integrals (2). An alternative way of writingstintegral was
introduced by Carleman [4]. Using that— v andv, — v are orthogonal,
one can write (here we specializeda= 3)

1

lv —v'|?

dE(v.) dv',

QUf, f)v) =

[ ] 60056 = 1) atw,cost) *

R3 JE,
whereFE, . is the plane that containsand is orthogonal to’ —v, and where
dE(v.) is the Euclidean measure on this plane. Heintz and Panfégjv [
have analysed a DVM based on this interated integral, angedrthat the
method is consistent with the continuous model. This is $mweeasier,
because oall planes, the integer points are uniformly distributed, dreyt
are all found by solving linear Diophantine equations. Hegvethe density
of points depends strongly arn— v, and so it is far from trival to prove the
consistency. And again, the two-dimensional situationasenlifficult, and
has not yet been studied.
Yet another approach was introduced by Rogier and Schngdgmwho

used the theory of Farey series to discretize the angul@hbiarin the col-
lision integral.

2. NUMBER THEORETIC BACKGROUND

2.1. Points on spheres; Asymptotics. To prove that (8) converges to the
correct limit whenh — 0, one has to study the set

{¢/lcl ¢ ez ¢ =n}

and to show that the points of this set are sufficiently wedtribhuted on
S4-1 whenn is large; it is here that the number theoretical issues aheer
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game. Indeed, we can view the set of points with integer doatds on a
sphere of squared radiwscentered at the origin,

d
{(z1,...2q4) € Zd,fo =n},
i=1

as the solution set for a quadratic form, and use the theomytegral qua-
dratic forms to get estimates on the number of points (se$taince [13]).
The expected number of points with integer coordinates qrhare clearly
depends on the dimensiah The naive approach to find the order of mag-
nitude for a given dimension is to use the volume of a balljddig by
the number of spheres contained in the ball. The volume ofllaobaa-
dius /n grows asn?/? whilst the number of spheresis Ford = 2, this
leads us to expect a constant number of lattice points ofesirtord = 3

a growth proportional ta/n, etc. However, for smalll this approach is
misleading; the growth is quite irregular, and depends erdikiisor struc-
ture ofn. Ford = 2, we will see below that only values of of the form

n = 25¢*p{ ... p%, whereq is a product of primes of the fora¥ + 3 and
thep,’s are primes of the forrdk + 1 (see below), yield circles with lattice
points, and thus most circles have no points at all. In faahdau proved
in 1908 that the number of circles with at least one latticep@f integer
squared radius smaller than grows asC'z/+/log z. Moreover, there are
also infinite families of circles with very few lattice postradii that are a
power of 2 yield 4 points for instance, and radii that are tpease root of
a prime of the fornp = 4k + 1 yield exactly 8 points. On the other hand,
the number of lattice points on a circle is not bounded, fstance a circle
withn = p; ... p, as above where all the are distinct from each other has
4 - 2" points.

In dimension 3, all values of not of the formn = 4°(8k + 7) yield
spheres containing points with integer coordinates. Tiilidesave a fairly
large number of spheres with no points on, but for our purpdbkes does
not really matter, as such spheres do not appear in the suomfatmulas
(there is no relevant value fa@r) Among the spheres with lattice points,
multiplying the radius by a power of 2 does not increase thealmer of
points, but if we correct for this fact, the ratio between tloenber of points
and the naive estimate is bounded, up to constants only depeone,
from above byn<, and below by» for all ¢ > 0 (see [13] Ch. 4 for exact
formulas involving class numbers érseries.)

The higher-dimensional cases behave in a somewhat morkardgsh-
ion. Lagrange proved that every positive integer can bet@vrias the sum
of four squares, and thus for dimensi@r»> 4, every sphere whose squared
radius is an integer, has lattice points. Hot 4 the number of points still
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oscillates rather wildly, with spheres with radius a powggdaving just
24 points, but for greater dimensions, the naive estimatesgiie correct
asymptotic growth of the number of points.

Getting circles (or spheres) with “sufficiently many” lagi points, how-
ever, is not quite enough for our purposes: we also need tiealattice
points are sufficiently uniformly distributed when projedton the unit
sphere. In dimensiorsand higher, this follows from estimates on Fourier
coefficients of modular forms. The cage> 4, with some restrictions
on the set of numbers in which tends to infinity whend = 4, is due
to Pommerenke [23]. Faf = 3, Duke [11] and Golubeva-Fomenko [14]
used Iwaniec’s [19] estimates on Fourier coefficients of iné¢gral weight
forms to obtain uniform distribution. Unfortunately, tleetechniques do
not apply in dimensio2. Moreover, there are circles with large number of
lattice points that are poorly distributed:

Theorem 2. (Cilleruelo [6]) For anye > 0 and for any integerk, there
exists a circler? + y? = n with more thank lattice points such that all the
lattice points are on the arcg/ne™ 2+ with |9| < ¢,t € {0,1,2,3}.

Onthe other hand, we may use some other techniques fromtigmaiyn-
ber theory to show that lattice points on circles are eqtnfistedon aver-
age and this is good enough for our purpose.

2.2. From points on circles to Gaussian integers. In the plane, we can
view lattice points on a circle of radiugn, centered at the origin, as com-
plex numbers with integer real and imaginary parts, andsguaodulus..
It might seem as a trivial restatement, but doing so allowts use use some
techniques from algebraic number theory. Thaussian integers.e., the
set
Z[i) = {x +iy € C, (z,y) € Z*},

is the ring of integers of the fiel@(:). It shares an important property
with the ordinary integers, namely unique factorizatidre., just as every
integer inZ factors into prime numbers, and the factorization is unigpe
to ordering the primes and multiplying byl, Gaussian integers factor into
Gaussian primes, uniquely up to ordering and multiplicaty —1,4, —i
(these and are the units, i.e. the elements having a multiplicativeeiae
in Z[i]). For a more thorough introduction to primes in quadraticber
fields, see for instance [17], Ch. XV.

The Gaussian primes (i.e. the element& @f that cannot be written as a
product of Gaussian integers with smaller modulus), aréi&e types:

IThis is rather unusual, the ring of integers in most numbéddiavill not have this
property.
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e the prime numbers € Z such thaty = 3 mod 4 remain prime in
Z[i] (e.g. 3,7,11, 19,...);

e for prime numberg € Z such thatp = 1 mod 4, there exists
r,y € Z s.t. p = x? + y*. Hencep factors inZ[i] as a product of
two Gaussian primes

p=(z+1iy)(z —iy)

(e.g.5 factors into(2 +4)(2 — @) in Z[i])

e last (and least!)] + i is prime (note thatl +¢)(1 — ) = 2 and that
1 —i = —i(1+1) is merely “another form of the same prime” just
as3 and—3 represent the same prime).

If n is the sum of two squares, then it can be factoredif
n=X+Y?=(X+iY)(X —iY).

If z = 2z + iy is a prime factor ofX + Y, thenz = x — iy must be a
prime factor of X — ¢Y". It follows that prime factorgy = 3 mod 4 of n
must appear in even powers. In addition, multiplyindpy an even power
of a primeq that is congruent witB mod 4 changes neither the number of
solutions ton = X2 +Y? nor the distribution of arguments of the solutions.

Suppose now that contains a factgp®, wherep = 1 mod 4. The num-
berp can be factored ifZ[:] as(z + iy)(x — iy), and hence the multiplicity
of z 4 iy as a factor of: is o, and the same is true far— iy. It follows that
the multiplicity of z 4 iy in X + ¢Y can be any integef, with 0 < 5 < a,
and the multiplicty ofr — iy is thena — ;.

The same calculation can be done for powers of 2; howevesdlitions
given by different choices of in that case differ by a multiplication by a
power ofi, and so the power of 2 does not influence the number of sokition

All solutions ton = X2 + Y2 can now be expressed & + iY =
Vv/nexp(if), where all possible values of the arguméntan be computed
as sums of terms deriving from the different factorsnoi the following
way:

(1) X +iY can be multiplied by any unit, i.e. ki1 or 4. This gives
atermkn/2 in the argumenty = 0, 1,2, 3.
(2) If the multiplicity of 2 inn is odd, then the argument must contain
7/4, the argument of +-i; the number of solutions does not change.
(3) For each prime factgf =1 mod 4 in n, let o, be the multiplicity
of pinn, letp = 22 + ¢2, and setd, = arg(z, + iy,). Fora
particular choice ofj, 0 < j < «,, the argument added t§ + Y
is j0p — (ap — J)0p = (2] — ).
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Since the choices df, and of the differenj’s are independent, the number

of different solutionsis 4 [ (a,+1).
p=1mod 4

2.3. Results on the distribution of primes and on the angular distribu-
tion of points. We will need the following results:

Theorem 3 (Merten’s Theorem, see [17], Ch. 22.8)
H (1—-1/p) ~e7/logx,

p<w
p prime

wherey ~ 0.57 is Euler’s constant.

As for the angular distribution of Gaussian primes, a relsulKubilyus
gives that the angle¥, },=1 moa 4 are equidistributed ifD, 7 /4] in the fol-
lowing sense:

Theorem 4 (Kubilyus, [21]) The number of Gaussian primesn the sec-
tor0 < a < arg(w) < B < 2m, |w|? < uwis equal to

%(5—04)/; dv +O<uexp(—b\/@))7

log v

whereb is an absolute positive constant.
From Kubilyus’ Theorem, it is straightforward to deduceg§¥2], p. 92):
Corollary 5. If &k € 4N andlog k£ < by/log x, then

1
Z M < —loglogz + (1 —2/m)loglogk + O(1).
p m

p<w
p=1 mod 4

3. EQUIDISTRIBUTION OF LATTICE POINTS ON CIRCLES

What is needed for the proof of consistence of the discretecitgimodel
are estimates on the equidistribution of lattice pointsiocies.

The aim of this section is to show that lattice points on es@re equidis-
tributedon averagen the sense that the exponential susiis:, k) converge
to zero whenn goes to infinity. We recall the definition of(m, k):

S(m, k) = Z kb

[w[P=m
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Proposition 6. If 4 1 k then|S(m, k)| = 0. If 4]k andk # 0, there exisC
andb > 0 such that

1 log X
log | — |S(m, k)| | <C—(1—-2/m)log (—)
(X n; (log [k])*
for X sufficiently large andog |k| < by/log X.

Remark:The mean discrepancy of the angles of Gaussian integers were
studied by Katai and Kirnyei in [20], and by Er@s and Hall in [12]. Our
method is similar to theirs, except that they bound

)|

X/+/log X = r(m)
instead of .
= D S(m. k).
m<X
The proof is based on the observation tft&tn, k)|/4 is amultiplicative
function, i.e. a functiory : N — C such thatf(mn) = f(m)f(n) for all
m,n such that'm,n) = 1. It turns out that the mean value of a multiplica-
tive function, under fairly general circumstances, can berued in terms
of an exponential of a sum over primes. To make the paper nadreen-

tained, we include a weak form of thi¢alberstam-Richert inequalitfcf.
[15]).

Theorem 7. Let f be a nonnegative multiplicative function such that

(11) Y f(n)=0(x),

n<x

and f(p*) = O(k) for all primesp andk > 1. Then there exist§' > 0
such that

%m;(f(m) <C-exp (ZX fo)-1 @;‘ 1) +0<@>

for all sufficiently largeX.
Proof. Following Wirsing [25], let

F(t)=> f(n).

n<t

Then

/1 @dt = F(X)log X +O(1) = ) _ f(n)logn.

n<X
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On the other hand, by assumption, we ha\) = O(t), thus
X
/ @ dt = O(X),
1

and hence
F(X)log X <O(1 +X+Zf )logn.

n<X

Usinglogn =}, A(d), whereA is the von Mangoldt functichwe have

Y f)logn="72 fn)) Ad)=) Ad) ) f(dm)

n<X n<X din d<X m<X/d
(12) =D Ad) D fldm)+ ) Ad) D f(dm).
d<X m<X/d d<X m<X/d,
(m,d)= (m,d)>1

Now, sinceA(d) = 0 unlessd is a prime power, we have

(13) ZA(d) Z fldm) = Z log(p Z f(p klm

d<X m<X/d, pFHi<x m< X /pht!
(m,d)>1 ki>1 (p,m)=1
= D> le®f@™) Y fm
prPti<x m<X/pht!
k)i=1 (p,m)=1

By the assumptions ofy,

PSS fmy <okl Y fm ((’Hl)ﬁz)’

m(SX/)p"“ m<X/pht!
p,m)=1

and thus the second termin (12) is

=0 Zlog n— =0(X),
<X
n>2

since

ZZlog npn<20g Z2+m)22_m<oo.

p n>2 m>0

2Thatis,A(d) = log p if d = p* andk > 1, otherwiseA (d) =
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As for the first term in (12), we have (recall thatis multiplicative and
nonnegative)

D OAd) D fldm) =D Ad)f(d) Y f(m)

d<X m<X/d, d<X m<X/d,
(m,d)=1 (m,d)=1
<D fm) Yy, Adf()
m<X d<X/m
Now,
A = D> logp)f') < D> log(p)O(k) = O(X/m)
d<X/m pP<X/m pF<X/m
k>1 k>1
since
> log(p) = O(X/m)
p<X/m
by the Prime number theorem, and
> klog(p) = O ((X/m)log®(X/m)) = O(X/m).
pF<X/m
E>2
Thus,

S fm) Y Adf(d) =0 (Z f(m)%) .

m<X d<X/m m<X
But sincef is nonnegative and multiplicative, we have

Zf <H (L+ F0)/p+ FO2)/p* +...)

< [T @+ 1w - 0+ 76D /0 + 16/ + )
and sincepSX
S P+ L0/ +
we find fhga):t n
2;@ 0 <1<IX<1 +f(p)/p)) .

Thus,
F(X)logX =0 <X+X~ [Ta +f(p)/p)> ,

p<X
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hence

FX) _ (L +ngﬂ+ﬂMM)
X log X log X '
Now, by Merten’s theorem, we have

p<X
and thus
FX) 1 flp) =1 f(p)
X _O@%X+MXO+ p __ﬁ)>

U

Proof of Proposition 6.To see thatS(m, k)/4| is a multiplicative function,
it is enough to recall the factorization of into Gaussian primes. Namely,
if p*,...p57 are all prime factors ofn withp =1 mod 4,

3 ol aj
S(m, k) = Z ikt Z . Z iR (B0 +(01=2j1)0p, ... (s —255)0p ;)
/=0

J1=1 Js=1
Here 0, is a multiple of7/4 which comes from powers df in m, and
the 0,, can be computed from the Gaussian factorization as desciibe
Section 2.2. Also, becau$€;_, i** = 4if 4| k and zero otherwise,

M — i e ZJ: eik((a1*2j1)9pl+...+(aL]72jJ)9pJ)
4 ; ,
J1=1 Jji=1
and this sum clearly factorizes, each factor containingma sfiterms cor-
responding to one of the prime factgrsHence

|S(m, k)|
fr(m) = 1
iS a nonnegative multiplicative function, as stated. Initold it satisfies

fr(m) < r(m)/4 for all m. Thus, since

Zr(n):]{x,yEZ:x2+y2§T}\Nﬂ(ﬁ)zzﬂT

n<T

we have

> fuln) = O(T).

n<T
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Moreover, ifp = 3 mod 4 then

1if [ is even
14 N = :
(14) fep) {Oiflisodd,

and ifp =1 mod 4 then

ik(1—25)6,

(15)

and thusf,(p') < [ + 1 for all primep and/ > 1. The assumptions in in
Theorem 7 are thus satisfied, and we obtain

fr(p) —1 1
_ Z |S(m, k)| Z fr(m) < Cexp (Z pT>—|—O (logX) i

m<X m<X p<X

Now, by (14) and (15), we have

fe(p) = {2| cos(kby)| ifp=1 mod 4,

0 ifp=3 mod4.
Hence
ALy Ayl
p<X p=X p<X
p=1 mod 4
By Corollary 5,
2 k0 2
S 2 2ot e oglogi + 01
p<X b "
p=1 mod 4

if log k < by/log X. By Merten’s theorem,

1
Z — =loglog X + O(1),
p<X
and thus

ka _1 < (2/m —1)loglogz + 2(1 — 2/m) loglog k + O(1) .

p<X
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4. PROOF OFTHEOREM1

Here we carry out the steps of the proof as indicated in thredioiction.
First recall that the collision operator can be written

a e =4[ ([ awoms)a.

—T

where, if we identifyu € S* with 6 € [—7, 7],
go(w,0) = q(|wl, cos(0)) (f (V') f(vi) = f(v)f(vs)),

and
vo= v+ w+ Row
v, = v+w-— Ryw;

as beforew = (v. —v)/2, andR, denotes a rotation by an angleWriting
the Boltzmann equation for two-dimensional velocitiescofirse we have
already stepped away from the physically realistic casédisregarding
this, a common assumption gns that

q(wl,cos(0)) = qi(|lwl)gz(0),

whereq, (Jw|) ~ |w|* for somea € [0, 1], and wherey(0) ~ |0]~" for
some~y €]1,3[. This corresponds to a molecular interaction by hard in-
verse power law forces. With the stronger assumption §has smooth
and strictly positive, it is possible to prove that there isnaooth solution
f(v,t) to the Boltzmann equation (see [10]), and then this alscsgioene
regularity tog(w, #), in spite of the singularity ofs.

However, much work on the Boltzmann equation has been daothethna
hypothesis that; is bounded or continuous with respectéo With that
assumption, the solutiofi(v, t) keeps exactly the regularity of the initial
data.

Because of this, it is relevant to assume whatever regylafithe so-
lutions that is needed for the computations. With the aim akimg the
calculations easy, Theorem 1 has been written with unnadgsstrong
hypothesis.

To simplify notation a little, let

Go(w) = / " gu(w.0)d6,

in the continuous case, and for the discrete case (then wenassf course,
thatv € hZ?)

Gi(h¢) = |<| > g0(h¢,0),
¢’ IEZIZI
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whered is the angle betweefi and¢. As before;(|¢|?) denotes the number
of integer points on a sphere with radiygs.

Let
(17) Znr={2€Z* st |z| < R/h}

for someR > 0 (this is the most natural example, but other choices might
be more efficient, as we shall see later). We want to prove that

(18) Q(f, Hw) = (2h)* >~ Gi(h¢) =0

CE€EZn,R

whenh — 0, and also make as precise a statement as possible about the
rate of convergence.
Theorem 8. Suppose thajg, (w, #) in (16) satisfies

(1) g.(w,0) is aC*-function w.r.t.w

(2) g.(w,0) is aC?-function w.r.t.0

(3) Ngo( )X+ |- P lztw < C
(This holds e.g. if the functiofi and the crossection are C2.) For given

R > 0andh > 0, let Z, r be as in (17). Then given> 0 there are reals
R > 0 andh > 0 such that

QUf, H(v) = (20)* Y Gh(h¢)| <«

C€EZn,R

Proof. We still considerQ(f, f) as an iterated integral, and write (fore
hZ?)

Q(f, f)(v > ) Gk
C€EZn,R
= | Gy(w)dw—(20)* Y G,(hC)
R? C€EZn,R
(19) +(2h)? D (Go(hQ) — GA(RQ)) -
C€EZn,R

From the third part of the hypothesis grn(which is implied by a decay
of f(v) for large velocities), it follows that for alk > 0,

o
(20) /|w|>RG( w)dw < ok

Continuity of G,,(w) would be enough to conclude that

/| |<RGv(w) dw — (2h)* )" G,(h¢)| — 0

CE€EZp,R
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whenh — 0. The hypothesis op,(w, §) implies that actually=,(-) € C*,
and there is a constant, such that the difference is smaller than

(21) CoR*h = C'max |0, G, (w)| R*h.
w,Jj

Next we turn to the differenc@v(hC) — GM(hQ), i.e. of

1 T
(22) %/_ng(hg,e) do — IC! C/ZZ:Q 9u(h¢,0)
e

(recall that in the second terr,is the angle betweetf and(). We first
write the periodic function, (h(, 0) as a Fourier series,

go(hC,0) = §u(¢, k)™,

keZ

where
p — 1 " —ik0
9u(C k) = o /_ng(hc,e)e de .
The assumptions onimply the existence of a constafi§ so that

(23) |90(C, k)| <

Then (22) becomes

30(¢,0) — <|<|> > 5:(¢0)+ |c| Z > Gu(C ke

/ c7? 'c72 k#0
\C| 19 |C| I<]

where the first terms cancel out, and only last sum remainsné&ie split
that sum into a part withk| < M, and a remainder, which can be made
small by choosingV/ large, if g is sufficiently smooth with respect
Using (23),

!CI >0 alC k)™ <2£.

¢'ez? |k|I>M
I¢"1=I<]

To find the contribution of this term to (19), we multiply §9/)? and sum
over( € Zy i to find a bound of the form

R%*Cy

(24) =
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For the remaining part, using (23) again, we find a bound ofdha

Gy 1 ko S(ICP, k) Cs
Z 2 2 Z el s 2y |- Z 2
0<|k|<M L+k T<‘C| ) ¢'ez? O<lkl<M 7’(|C’ ) 0<|k|<M 1+k
<" |=I¢]

(25)
Adding the error terms (20), (21), (24) and (25) gives
Q(f, ) (0) = Q"(f", ) (w)|

R2C, S(I¢I k)
< 2 2 )
S + CyR*h + 7 + C3(2h) 0<I|III;IL§MC€E |—7”(m2) ‘

(26)
In the sum on the right hand side,

Z M‘: Z |S(n, k)

(EZn.r r(I<P?) n<(R/h)?
and this can be estimated by using Proposition 6 With- (R/h)?. To do
this, we must require that
(27) R/h > exp (log(M)?/b)
for some positive constant Then there is a constatt, such that

> Jstnb) < o((£) e (~0 - 2 RELIY

2
n<(R/h)2 ™ (log M)

The last term in (26) will always be the dominating one, anihigtpoint,
it does not give much to try to optimise the choiced®fM andh. Hence
to achieve an error of magnitudeve

(1) takeR = \/4C /e,

(2) observe that we must havie< ¢/(4R?Cy) = &2 /(4C,Cy),

(3) chooseM = 4R*C, /e = 64C,Cy /2.
With these choises ok and M, the last term can then be bounded by

4 2 log(4 h?
(28) 40305ﬁexp (_(1 =2y 10g 0g(4Cy/(eh?)) 2) ’
€ m (10g(640104/82))

which converges to zero whén— 0, and so there is aln so small that also
the last term in (26) is smaller thar4. We see that in order to achieve an
error of maginitude, one must také very small:h = o (exp(—Q (loge)? 5—2/(1—%))>
(note that (27) is then satisfied).

)

O
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5. SOME EXAMPLES AND REMARKS

From a numerical point of view, the discretization discusalbove would
be far too costly: a discrete velocity model withvelocities would at least
correspond to a computational cost@f N) per time step, because one
needs to compute a value for each velocity. When the collistom is
computed by the sum (18), the costi$N?) times some logarithmic factor
of N (which comes from the summation over the points on the @jcle
And the calculation above showed thgtgrows exponentially in terms of
the accuracyN ~ 3 >> exp(c~*) for some positive constant

However, rather than estimating the computational coseims of the
number of discretization points used, it is more relevargite the cost in
terms of the desired accuracy, given that the discretingimnts are used
in an optimal way. The discussion around (18) suggests ti@atan reduce
the computational cost considerably without compromisiregorder of ac-
curacy. The poor rate of convergence is due to the approiomat G, (w).
Generalizing the formula (18) slightly, we can write

(29) [ Gutwyde~ - 3 Guthe)
R Ph iz,
wherep;, is the local density of/;,. ForZ, = {¢ € Z* s.t. |h(| < R},
one has, = h=2. Of course, even more generally one could take a local
density which is not constant.
The procedure for constructing a DVM would then be

e Choose a density, so that the sum (29) is approximated to the
desired order.

e Chooseh so small that there exist a s&t with this density so that
forall { € Z;, the angular integral is well approximated by the sum.

For such a model, the computational cost for each velocitulevde
of the order==? (this estimate is based on the assumption that the cost of
evalutating the angular integral is!, and that the number of velocities
is O(¢72); lower cost can be acheived if higher order formulas are used
for approximating the integrals). The problem remainst thaery large
number of velocities are needed, and hence the total comnmehcost is
still excessive. A more challenging task would be to dilubé only the set
Z,, but to choose in a systematic way subdétsc hZ? for the discrete
velocity model, so tha®)( f, f)(v) would be well approximated for all €
U, and to do this in a way that does not require too large talolestoring
all possible collisions.

In the last part of this paper, we wish to illustrate the distrion of good
radii. We then considef = ((;,¢) € Z% st. 0<¢G (i =1,2) [¢] <
20000}. This is an extremely large set of points, which correspaods
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huge number of velocities (th@(/N?) factor would in this case be of the
order10'7, which is of course absurd)

Among the circles with radii(| in this set, the largest number of points on
one circle, is 384. In Fig. 1, we show all poinfs= ({1, (2) with 0 < ¢; <
2000, such that the circle passing throughas more than 72 points. There
are 36163 points in this set. This is a small fraction of th@altaumber
of integer points, but they are seemingly well distributedcept near the
origin.

Figure 2 shows points in the ran@e000 < ¢; < 12000. Here the small
dots denote points on circles having at least 72 points, lamdiarger dots
denote points on circles with at least 192 points (there 41&62 and 1120
points respectively in these sets).

2000

180

1600

140

1200}
1000
800
sooi
4oo'i f;i:<

200

! it

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

FIGURE 1. Lattice points such that circles containing these
points, contain at least 72 lattice points
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1.1
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FIGURE 2. Lattice points such that circles containing these
points, contain at least 72 lattice points (small dots), tor a
least 192 points (the larger dots)
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