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Abstract. In this paper, we show that for almost all primes p
there is an integer solution x ∈ [2, p− 1] to the congruence xx ≡ x
(mod p). The solutions can be interpretated as fixed points of the
map x 7→ xx (mod p), and we study numerically and discuss some
unexpected properties of the dynamical system associated with this
map.

1. Introduction

1.1. Motivation. For a prime p, we consider the properties of the map

ψp : x 7→ xx (mod p)

when it acts on the integers x ∈ [1, p − 1]. By the results Crocker [5]

and Somer [18], there are at least
⌊√

(p− 1)/2
⌋

and at most 3p/4 +

O(p1/2+o(1)), respectively, distinct values of xx (mod p) when 1 ≤ x ≤
p− 1.

We also note that various estimates depending on the multiplicative
order modulo p of a on the number T (p, a) of solutions of the congru-
ence

(1) xx ≡ a (mod p), 1 ≤ x ≤ p− 1,

have been given in [1, 2]. In the most favorable case of a = 1, by [1,
Corollary 5], we have

(2) T (p, 1) ≤ p1/3+o(1)

as p → ∞. Furthermore, by [1, Bound (2)], for any integer a we have
T (p, a) ≤ p11/12+o(1). Moreover, it is also shown in [1, Theorem 8] that
the estimate

#{1 ≤ x, y ≤ p− 1 : xx ≡ yy (mod p)} ≤ p48/25+o(1)

holds as p→∞.
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The map ψp also appears in some cryptographic protocols (see [12,
Sections 11.70 and 11.71]), so it certainly deserves more attention. Sev-
eral conjectures and numerical data concerning this map can be found
in [8].

Here, we address an apparently new problem and study the fixed
points of the map ψp. Let F (p) denote the number of fixed points of
the map ψp. That is,

F (p) = #{1 ≤ x ≤ p− 1 : xx ≡ x (mod p)}.

Obviously x = 1 is always a fixed point, which we call trivial . We
show that for most primes p the map ψp has a nontrivial fixed point
x ∈ [2, p−1]. Thus, we are interested in primes p with F (p) > 1. In the
opposite direction, it has been noted in [1, Theorem 8] that the method
used to prove (2) also applies to the congruence xx−1 ≡ 1 (mod p), and
thus it implies the bound

(3) F (p) ≤ p1/3+o(1)

as p→∞.
We also study the quantity F (p) and other dynamical properties

(such as the period statistics) of the map ψp numerically. In particu-
lar, these numerical results reveal that a näıve point of view of treating
ψp as a “random” function on the set {1, . . . , p−1} is totally wrong. In
particular, the numerical results significantly deviate from those pre-
dicted for truly random maps by the work of Flajolet and Odlyzko [6].
These results indicate that ψp tends to have shorter orbits and more
fixed points than a random map even after removing the trivial fixed
point x = 1. On the other hand, it is highly likely that the bound (3)
is very far from being tight. We give some partial explanation for the
“non-randomness” phenomenon, and introduce the notion of random
endomorphisms in groups, which allows us to give some qualitative
explanation for the numerical results. We consider developing a rig-
orous analysis of the random endomorphisms to be a challenging and
important open topic.

Finally, in Section 5, we study the map x→ xf(x) (mod p) for general
polynomials f(X) ∈ Z[X], and show that such a map can have at most
p6/13+o(1) fixed points, as p→∞.

1.2. Notation. Before we give the precise statement we introduce
some notation.

We define log x as log x = max{lnx, 2} where lnx is the natural
logarithm, Furthermore, for an integer k ≥ 2, we define recursively
logk x = log(logk−1 x).
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Throughout the paper, we use the Landau symbols O and o and the
Vinogradov symbols � and � with their usual meanings. We recall
that A = O(B), A � B and B � A are all equivalent to the fact
that |A| < cB holds with some constant c, while A = o(B) means that
A/B → 0.

We further define the logarithmic integral

li (N) =

∫ N

2

d t

log t
.

We always use p and q for prime numbers. We also use ϕ(k) and
ω(k) to denote the Euler function and the number of distinct prime
divisors of an integer k.

Furthermore, Fp denotes a finite field of p elements, which we con-
sider to be represented by the elements of the set {0, . . . , p− 1}, while
Z/nZ denotes the residue ring modulo an integer n ≥ 1. In particular,
it is convenient to consider the map ψp as acting on Fp.

1.3. Heuristics on primes without nontrivial fix points. Let us
write A for the set of prime numbers p for which ψp does not have a
nontrivial fixed point x ∈ [2, p− 1]:

A = {p prime : F (p) = 1}.
One easily finds that A is not empty. In particular, among the first
1000 primes, there are precisely 72 of them in A. The first few elements
of A are

(4) 3, 5, 7, 11, 53, 59, 83, 107, 179, 227, 269, . . .

Quite likely, the set A is infinite, but we have not been able to prove
this unconditionally. However, we can show this under some standard
conjectures about prime numbers. For example, assume that

(5) p ≡ 3 (mod 8) and p− 1 = 2q,

where q is prime (several elements from the above list (4): 11, 59, 83,
107, 179, 227, are of this form). Consider an integer solution x to
xx−1 ≡ 1 (mod p). Then the multiplicative order of x divides x − 1,
which is an integer less than p− 1. However, this multiplicative order
must also divide p − 1 = 2q. So, the only possibilities are that the
order of x is either 2 or q. If it is 2, then x = 1 (which is excluded)
or x = p − 1, which is not a fixed point as ψp(p − 1) = 1. If it is
q, then q | x − 1, and since x − 1 < 2q, we get that x − 1 = q, so
x = q + 1 = (p+ 1)/2. Thus, we arrive at

1 ≡ xx−1 ≡ ((p+ 1)/2)(p−1)/2 ≡ 2−(p−1)/2 ≡ 2(p−1)/2 (mod p),
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by Fermat’s Little Theorem, which, in particular, implies that 2 is a
quadratic residue modulo p. But this is impossible as p ≡ 3 (mod 8).

Standard conjectures then suggest that A is infinite, and, in fact,
putting

A(N) = A ∩ [1, N ],

the standard heuristic on the density of primes p satisfying (5) makes
us conjecture that the inequality

#A(N) > c0N/(logN)2

holds for all N ≥ 2 with some positive constant c0.
In Section 3, we give some further heuristic arguments suggesting

that the stronger inequality

(6) #A(N) ≥ N

(logN)2
exp ((1/ ln 2 + o(1)) log3N log4N)

holds as N → ∞. In fact, in Section 3.1 we also give a heuristic
argument that the “likelyhood” of ψp having no nontrivial fix points is
of order exp(−γ(p) · τ(p − 1)), where τ(p − 1) denotes the number of
divisors of p− 1 and γ(p) is some explicit but quite irregular function
of p taking values in (0, 1); see (20) for more details. In particular, we
expect that ψp is very likely to have nontrivial fixed points unless the
number of prime factors of p− 1 is very small.

1.4. Main result. We obtain an unconditional result in the opposite
direction of the previous heuristics, in the sense that A is fairly sparse.
In particular, the estimate #A(N) = o(π(N)) holds as N →∞, where,
as usual, for a positive real number x we use π(x) to denote the number
of primes p ≤ x.

Let

(7) ϑ =
1

ζ(2)
− 1

2ζ(2)2
=

6π2 − 18

π4
' 0.4231 . . . ,

where ζ(s) is the Riemann zeta-function.

Theorem 1. We have

#A(N) ≤ π(N)

(log3N)ϑ+o(1)

as N →∞.

Our proof is based on an effective version of the Chebotarev Density
Theorem that is due to Lagarias and Odlyzko [11].
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2. Proof of Theorem 1

2.1. The strategy. Observe that a nontrivial fixed point corresponds
to a solution of the congruence

(8) xx−1 ≡ 1 (mod p), x ∈ {2, 3, . . . , p− 1}.

Thus, we wish to show that for almost all primes p the congruence (8)
has a solution.

Given a prime p such that a “small” prime q divides p− 1, we write
p− 1 = q · a, so a = (p− 1)/q. For an integer x of the form x = 1 + aβ,
with β ∈ {1, . . . , q − 1}, we have

xx−1 ≡ (1 + aβ)aβ ≡ (1− β/q)β(p−1)/q (mod p).

Hence, we obtain a valid solution if 1 − β/q ≡ (q − β)/q (mod p) is
a q-th power modulo p for some 0 < β < q. In other words, with
n = q − β, we find that

x = 1 + aβ = 1 +
1

q
(p− 1)(q − n) ∈ [2, p− 1]

is a solution to (8) provided that n/q is a q-th power modulo p. Thus,
it suffices to show that there exists a q-th power modulo p of the form
n/q with n ∈ [1, q − 1].

Note that the chance of a random element in the finite field of p
elements Fp being a q-th power equals 1/q. So, heuristically, assuming
that the set of q-th powers has sufficiently random behavior, we can
expect that the probability of this not happening is (1 − 1/q)q−1 =
1/e+ o(1) as q →∞.

The strategy we adopt is thus to consider primes p ≡ 1 (mod q) for
“many”, say k, “small” (but not “too small”) primes q; the “proba-
bility” that all such q fail to provide a valid solution x to the original
congruence is expected to be about e−k, provided that we can show
that almost all primes p have such a property. We do this though not
in a direct way. In particular, for the “individual” probability of q to
fail we only obtain an upper bound of 1 − ϑ = 0.576 . . . rather than
1/e = 0.367 . . ..

2.2. The Chebotarev Density Theorem. We let L be a finite Ga-
lois extension of Q with Galois group G of degree d = [L : Q] and
discriminant ∆. Let C be a union of conjugacy classes of G. We define

πC(N,L/Q) = #{p ≤ N : p unramified in L/Q, σp ∈ C},

where σp is the Artin symbol of p in the extension L/Q (see [7]).
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A combination of a version of the Chebotarev Density Theorem due
to Lagarias and Odlyzko [11] with a bound of Stark [19] for a possible
Siegel zero, yields the following result (see also [14, Lemma 6]).

Lemma 2. There are absolute constants A1, A2 > 0 such that if

(9) logN ≥ 10d(log |∆|)2

then ∣∣∣∣πC(N,L/Q)− #C
#G

li (N)

∣∣∣∣
� #C

#G
li
(
Nβ
)

+ |C|N exp

(
−A1

√
logN

d

)(10)

with some β satisfying the inequality

β < 1− A2

max{|∆|1/d, log |∆|}
,

where |C| is the number of conjugacy classes in C.

2.3. Some preliminaries on Kummer extensions. Let q be prime.
We note that

{p ≤ N : p ≡ 1 (mod q), n/q is a q-th power modulo p}

is, apart from the O(log(qn)) ramified primes all dividing qn, equal to
the set of primes p ≤ N such that p splits completely in the Kummer
extension Kq,n = Lq( q

√
n/q), where Lq = Q(ζq) is the cyclotomic ex-

tension generated by the primitive q-th root of unity ζq = e2πi/q. Note
further that the condition that p splits completely in Lq is equivalent
to p ≡ 1 (mod q).

The ideas behind our argument can be outlined as follows. Note
that choosing a prime ideal P | p in the ring of integers of Lq es-
sentially amounts to choosing a nontrivial q-th root of unity in Fp.
Moreover, having made such a choice, the action of the Artin map
σP,n ∈ Gal(Kq,n/Lq) (note that this Galois group is abelian) allows us,
via Kummer theory, to associate with an integer n a canonical element
in Z/qZ; furthermore, this allows us to make “compatible” choices of
elements in Z/qZ associated with different integers n.

To fix the ideas, let g be a nontrivial q-th root modulo p. By Kummer
theory, we can then find “compatible” integers x0, x1, x2, . . . , xq−1 mod-
ulo q such that gx0 ∈ q ·(F×p )q, and gxn ∈ n ·(F×p )q for n = 1, 2, . . . , q−1
(where (F×p )q is set of q-th powers in F×p and λ · (F×p )q denotes the
element-wise multiplication).
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Note that knowledge of xk for all prime k < q, determines xn modulo
q for n composite. Moreover, the condition that n/q is not a q-th power
for all n ∈ [1, q−1] is equivalent to xn 6≡ x0 (mod q) for 1 ≤ n ≤ q−1.

2.4. A system of linear forms modulo q. Motivated by the argu-
ments of Section 2.3, we study a system of certain linear equations
modulo q. Let d = π(q − 1), and given an integer n ∈ [1, q − 1], define
a linear form Ln : Fdq → Fq by

Ln(v) =
d∑
i=1

αi,nvi,

where v = (v1, . . . , vd) and the coefficients {αi,n} are read from the
prime factorization

n =
d∏
i=1

p
αi,n

i .

Given x0 ∈ Fq, we study

Nq = #{v ∈ Fdq : Ln(v) 6= x0 for all n ∈ {1, 2, . . . , q − 1}}.
For q large, it seems reasonable to expect that Nq should be of size

qd/e since, for v a fixed nonzero vector, the “probability” that Ln(v) 6=
x0 for all n if the forms are randomly chosen, equals (1−1/q)q−1 ' 1/e.
Equivalently, if we define

c(q) = Nq/q
d,

we expect that c(q) = 1/e+ o(1) as q →∞.
While we are not able to prove that c(q) approaches 1/e as q be-

comes large, we prove a weaker upper bound which is sufficient for our
purposes.

Lemma 3. As q tends to infinity, we have

c(q) ≤ 1− ϑ+ o(1),

where ϑ is given by (7).

Proof. For n > 1, the linear form Ln is nontrivial and the equation
Ln(v) = x0 has at least one solution; hence exactly qd−1 solutions.
Further, given two square-free integers 2 ≤ m < n < q, we note that
the corresponding linear forms Ln and Lm are independent. Thus,
there are exactly qd−2 solutions v to

Ln(v) = Lm(v) = x0.

Let M denote the number of square-free positive integers up to q. Thus,
we have M = (1/ζ(2) + o(1))q as q →∞.
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To obtain an upper bound, we discard the condition that Ln(v) 6= x0
for squarefull n. Then, removing those v for which Ln(v) = x0 for some
square-free n, and adding back in v’s for which Ln(v) = Lm(v) = x0 for
pairs of distinct square-free m,n (in essence, truncating the inclusion–
exclusion principle at the third step), we find that

Nq ≤ qd −Mqd−1 +

(
M

2

)
qd−2 = qd(1− 1/ζ(2) + 1/(2ζ(2)2) + o(1))

as q →∞, and the result follows. �

2.5. Independence of field extensions. For a prime q | Q we con-
sider the algebraic number field

Kq = Q(ζq,
q
√

2,
q
√

3,
q
√

5, . . . , q
√
q);

that is, we adjoin the q-th roots of the unity and the q-th roots of the
primes p ≤ q to Q.

Assume that Q is a product of k distinct primes q1, . . . , qk. We define

KQ = Kq1 ◦Kq2 ◦ . . . ◦Kqk

to be the composite field obtained from the fields Kq as q ranges over
the prime divisors of Q.

Lemma 4. Assume that Q is an odd integer. Then the field extensions
Lq( q
√
`)/Lq are linearly disjoint as (q, `) ranges over pairs of primes

such that ` ≤ q and q | Q.

Proof. We break the argument in two steps.
First we show that if q is fixed, then Lq( q

√
`)/Lq are linearly disjoint

once ` ranges over primes ` ≤ q. If this is not so, then there exist s ≥ 2
primes `1, . . . , `s such that Lq ( K where

K = Lq( q
√
`1, . . . ,

q
√
`s−1) ∩ Lq( q

√
`s).

Observe that K/Q is normal as an intersection of normal extensions.
We show that K = Lq( q

√
`s). Indeed, if this is not so, then, by Ga-

lois theory, the group Gal(Lq( q
√
`s)/K) is a proper nontrivial normal

subgroup of Gal(Lq( q
√
`s)/Lq), but this last group has order q, a prime

number. This shows that K = Lq( q
√
`s). So,

(11) Lq( q
√
`s) ⊆ Lq( q

√
`1, . . . ,

q
√
`s−1).

The discriminant of the field on the left is divisible only by the primes
q and `s, while the discriminant of the field on the right is divisible
by the primes q and `1, . . . , `s−1. We get an immediate contradiction
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unless `s = q. So, it remains to treat the case `s = q. If s = 2, then we
get

Lq( q
√
q) ⊆ Lq( q

√
`1).

Since both extensions above have the same degree q(q − 1) over Q, it
follows that the above containment is in fact an equality. This is false
because `1 ramifies in the field on the right but not in the field on the
left.

Assume now that s ≥ 3 is minimal such that containment (11) holds
for some prime q = `s and some primes `1 < · · · < `s−1 < q. Further,
by the minimality of s, q

√
q cannot belong to any field of the type

Q(ζq,
q
√
`i1 , . . . ,

q
√
`it) for some proper subset {i1, . . . , it} of {1, . . . , s−

1}. Thus, we get a relation of the type

q
√
q = R0 +R1

q
√
`s−1 + · · ·+Rq−1(

q
√
`s−1)

q−1,

where Ri = Si(ζq,
q
√
`1, . . . ,

q
√
`s−2) for some

Si(X0, X1, . . . , Xs−2) ∈ Q[X1, . . . , Xs−2]

and at least one of R1, . . . , Rq−1 is nonzero. Hence, q
√
`s−1 is an alge-

braic number of degree at most q − 1 over the normal field

Q(ζq, q
√
q, q
√
`1, . . . ,

q
√
`s−2).

Since Q(`
1/q
s ) is in fact of prime degree q over Q, we get that

q
√
`s−1 ∈ Q(ζq, q

√
q, q
√
`1, . . . ,

q
√
`s−2),

giving

Q( q
√
`s−1) ⊆ Q(ζq, q

√
q, q
√
`1, . . . ,

q
√
`s−2).

However, this last field inclusion is false because the discriminant of the
field on the left is divisible by the prime `s−1, while the discriminant
of the field on the right is divisible only by primes `1, . . . , `s−2 and q.

We next show that the fields Kq are linearly disjoint as q varies over
the prime factors of Q. Again assume that this is not so and conclude
that there exist s ≥ 2 prime factors of Q denoted q1 < · · · < qs such
that

Q ⊂ K = Kq1 · · ·Kqs−1 ∩Kqs .

Observe that all prime factors dividing the order of the Galois group
of Kqs/Q divide qs(qs − 1), while the Galois group of Kq1 · · ·Kqs−1 has
order divisible only by primes dividing q1(q1 − 1) · · · qs−1(qs−1 − 1).
Thus, the order of the Galois group Gal(K/Q), as a factor group of
Gal(Kqs/Q), can be divisible only by primes dividing qs − 1.
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The subgroup Gal(Kqs/K) is normal, so by the above observation
on possible prime divisors of its order, must contain the qs-Sylow sub-
group of Gal(Kqs/Q), which is isomorphic to (Z/qsZ)π(qs). However,
the Galois group Gal(Kqs/Q) is isomorphic to a semidirect product of
Z/(qs − 1)Z with (Z/qs)π(qs), where the first cyclic group acts diago-
nally as the group of automorphisms of Z/qsZ. It is not hard to see
that in the Galois group Gal(Kqs/Q), the qs-Sylow subgroup is maxi-
mal normal. This shows, via Galois correspondence between subgroups
and subfields, that Gal(Kqs/K) is the qs-Sylow subgroup, so K = Lqs
is the cyclotomic field.

In particular, K contains qs-th roots of unity and hence the discrim-
inant of K is divisible by qs — a contradiction since the discriminant
of Kq1 · · ·Kqs−1 is divisible only by primes up to qs−1.

Altogether, this shows that the field extensions Lq( q
√
`)/Lq are indeed

linearly disjoint as (q, `) ranges over pairs of primes such that ` ≤ q,
thereby concluding the proof. �

2.6. Estimating the degree and discriminant of KQ. We keep
the notations from Section 2.5. Put dQ and ∆Q for the degree and
discriminant of KQ, respectively.

Lemma 5. The bounds

(i) dQ ≤ exp(q2k);
(ii) ∆Q ≤ exp(exp(2q2k))

hold for large enough k.

Proof. It is clear that KQ is the compositum of

(12) n = (π(q1) + 1) + (π(q2) + 1) + · · ·+ (π(qk) + 1) <
q2k

log qk

fields Ki,j = Q(r
1/qj
i ), where ri ∈ {1} ∪ {p ≤ qj} and j = 1, . . . , k,

each of degree at most qk. The inequality (12) above holds for large k.
Thus, (i) follows. For (ii), observe that the discriminant of each of Ki,j

is at most q2qkk . Label these fields in some way as K1, . . . ,Kn and let
Lj = K1 ◦ K2 ◦ · · · ◦ Kj for j = 1, . . . , n. Note that Lj+1 = Lj ◦ Kj+1,
therefore

∆Lj+1
≤ ∆

[Kj+1:Q]
Lj

·∆[Lj :Q]
Kj+1

.

Since [Kj+1 : Q] ≤ qk, [Lj : Q] ≤ qjk and ∆Kj
≤ q2qkk , we conclude

that if we put λj for some constant such that ∆Lj
≤ q

λjq
j
k

k , then the
inequalities

λ1 ≤ 2 and λj+1 ≤ λj + 2
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hold for j = 1, . . . , n− 1. Hence, λj ≤ 2j for j = 1, . . . , n. With j = n,
we obtain

∆Q ≤ q
2nqnk
k < q

2q
q2k+2

k
k < exp(exp(2q2k))

for all large k, thus proving (ii). �

2.7. Some technical estimates. For a square-free integer S, we de-
fine

c(S) =
∏
q|S

c(q).

For positive integers L and R with Q = LR, define

PL,R(N) = {p ≤ N : gcd(p− 1, Q) = L},
and

P̃L,R(N) = {p ∈ PL,R(N) : n/q 6∈ (F×p )q for all q | L and 0 < n < q}.

Lemma 6. If

(13) 6q2k < log2N,

then for square-free relatively prime integers L and R we have

(14) #P̃L,R(N)� π(N) · c(L)

ϕ(L)
·
∏
q|R

(
q − 2

q − 1

)
.

Proof. This follows from the Chebotarev density theorem. More pre-

cisely, a prime p counted by #P̃L,R(N) has the following property:
p ≡ 1 (mod q) for each prime q | L and for all 1 ≤ n < q, n/q is not a
q-th power in F×p . So we now concentrate on the counting function, say
denoted by TL,R(N), for such primes, for which in fact one can easily
derive an asymptotic formula from the Chebotarev density theorem.

Indeed, in terms of the image of the Frobenius map, the relative size
of the corresponding conjugacy classes in Gal(Kq/Q), is given by c(q)
(see Section 2.4). Since by Lemma 4 the field extensions Kqi are linearly
disjoint for i = 1, . . . , k, the relative size inside Gal(KL/Q) is given by
c(L). This takes care of the main term in the asymptotic formula for
TL,R(N).

For the error term, we appeal to Lemmas 2 and 5. More precisely,
by Lemma 5, we have

10dQ(log ∆Q)2 < 10 exp(5q2k)) < logN

for large k by the assumption (13), so the inequality (9) holds. As for
error terms, we have

dQ ≤ exp(q2k) < (logN)1/6
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so the second error term in (10) is negligible with respect to the main
term. Finally, we note that the first error term in (10) is at most
comparable with the main term and it could be incorporated into it
given that (14) is only an upper bound estimate. �

We now set

(15) Qt =
∏

t<q≤et
q.

Thus, Q has k = π(et) − π(t) prime factors labeled q1, . . . , qk. The
inequality (13) is satisfied for this choice of Q provided that N is large
and

(16) t =
1

3
log3N.

We get the following result.

Lemma 7. If N is large and (16) holds, then

#P1,Qt(N)� π(N) log4N

log3N
.

Proof. By the Brun sieve [20, Theorem 3, Section I.4.2], and on recall-
ing Mertens formula [20, Section I.1.5], we have

#{p ≤ N : gcd(p− 1, Qt) = 1} � π(N)
∏
q|Qt

(
q − 2

q − 1

)
� π(N) log t

t
,

and the result now follows from (16). �

2.8. Concluding the proof. We assume that Qt is given by (15)
where t is given by (16). In particular, the conditions of Lemmas 6
and 7 are satisfied.

By Lemma 6, we have

(17)
∑

LR=Qt,L>1

#P̃L,R(N)� π(N)
∑

LR=Qt,L>1

c(L)

ϕ(L)
·
∏
q|R

(
q − 2

q − 1

)
.
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Furthermore,∑
LR=Qt
L>1

c(L)

ϕ(L)
·
∏
q|R

(
q − 2

q − 1

)
=
∏
q|Qt

(
q − 2

q − 1

) ∑
LR=Qt
L>1

c(L)

ϕ(L)
·
∏
q|L

q − 1

q − 2

=
∏
q|Qt

(
q − 2

q − 1

) ∑
LR=Qt
L>1

c(L) ·
∏
q|L

1

q − 2

≤
∏
q|Qt

(
q − 2

q − 1

)∑
L|Qt

∏
q|L

(
c(q)

q − 2

)

=
∏
q|Qt

(
q − 2

q − 1

)∏
q|Qt

(
1 +

c(q)

q − 2

)
=
∏
q|Qt

(
1− 1− c(q)

q − 1

)
.

Thus, recalling (17), we obtain∑
LR=Qt,L>1

#P̃L,R(N)� π(N)
∏
q|Qt

(
1− 1− c(q)

q − 1

)
.

Using Lemma 3 and then the Mertens formula again, we obtain

∏
q|Qt

(
1− 1− c(q)

q − 1

)
� exp

−∑
q|Qt

1− c(q)
q


� exp

−(ϑ+ o(1))
∑
q|Qt

1

q


= exp (−(ϑ+ o(1)) log t) =

1

(log3N)ϑ+o(1)
,

and so ∑
LR=Qt,L>1

#P̃L,R(N) ≤ π(N)

(log3N)ϑ+o(1)

as N →∞. With Lemma 7, we finally get that

#A(N)� #P1,Qt(N) +
∑

LR=Qt,L>1

#P̃L,R(N)

� π(N)

(
log4N

log3N
+

1

(log3N)ϑ+o(1)

)
,

as N →∞, which finishes the proof.
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3. Further Remarks on #A(N)

3.1. Heuristic arguments. Recall that x = 1 is always a trivial fixed
point, and note that x = p − 1 is never a fixed point. Hence, we
only consider x whose multiplicative order is greater than two, and the
exponent x− 1 ranging over integers in the interval [1, p− 3].

If d | p− 1 and x is a primitive d-th root of unity and we make the
assumption that the exponent x−1 is “independent” of x, the “chance”
that xx−1 ≡ 1 (mod p) equals the chance that d | x − 1; this occurs
with probability

(18)
b(p− 3)/dc

p− 3
=

(p− 1)/d− 1

p− 3
= 1/d+O(1/p).

Letting x range over the set of ϕ(d) primitive d-th roots of unity, the
probability that xx−1 6≡ 1 (mod p) for all of them, assuming indepen-

dence, equals
(

1− b(p−3)/dc
p−3

)φ(d)
. Moreover, with the further assump-

tion of independence when d ranges over divisors of p−1, this suggests
that

#A(N) = (1 + o(1))H(N)

as N →∞, where

(19) H(N) =
∑
p<N

∏
d|p−1

2<d<p−1

(
1− b(p− 3)/dc

p− 3

)ϕ(d)
.

For p fixed (but large) we similarly find that the heuristic probability
of the map ψp having no (nontrivial) fixed points, using that

(
1−

(
1

d
+O(p−1)

))ϕ(d)
= exp

(
ϕ(d) ln

(
1−

(
1

d
+O(p−1)

)))
.
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is given by exp(−∆p), where

∆p = −
∑
d|p−1

2<d<p−1

ϕ(d) ln

(
1−

(
1

d
+O(p−1)

))

=
∑
d|p−1

2<d<p−1

ϕ(d)

(
1

d
+

1

2d2
+O(p−1 + d−3)

)

=
∑
d|p−1

ϕ(d)

(
1

d
+

1

2d2
+O(p−1 + d−3)

)
+O(1)

= τ(p− 1) ·
∏

qe‖p−1

(
1− e

(1 + e)q

)
+O

∑
d|p−1

1/d

 ,

(20)

where, as usual, qe‖n means that qe | n but qe+1 - n.
Hence, ψp is exceeding likely to have a nontrivial fixed point unless

p− 1 has rather few prime factors. Restricting to p such that p− 1 is
square-free, and, motivated by the results of Sathe [16] and Selberg [17],
assuming that for any fixed ε > 0 and k ≤ (2− ε) log2N , we have

#{p ≤ N : ω(p− 1) = k} ∼ N(log2N)k−1

(k − 1)! log2N

we expect that the number of p ≤ x such that ψp has no nontrivial
fixed point modulo p is, for any integer k > 0, is

H(N)�
∑
p≤N

exp(−∆p) ≥
∑

1≤k≤(2−ε) log2N

N(log2N)k−1 exp(−2k+o(k))

(k − 1)! log2N
.

Using the trivial estimate 1 ≤ (k− 1)! ≤ kk we see that (k− 1)! can
be absorbed in 2k+o(k) in the exponent. Furthermore, for any positive
integer k ≤ (2− ε) log2N we have

H(N)�
N exp

(
k log3N − 2k+o(k)

)
(logN)2 log2N

.

Thus, taking

k =

⌊(
1

ln 2
− η
)

log4N

⌋
,

for an arbitrary η > 0 gives the bound

H(N) ≥ N

(logN)2
exp ((1/ ln 2− η + o(1)) log3N log4N)
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(note that using other admissible values of k does not significantly
improve this bound; just one optimally chosen value suffices). Since
η > 0 is arbitrary, we obtain the expected lower bound (6).

In fact we believe that the lower bound (6) is close to the actual
order of magnitude of both #A(N) and H(N).

The above argument, in particular (18), also suggests that the ex-
pected value of the total number of nontrivial fixed points over all
primes p ≤ N is ∑

p≤N

F (p) = (1 + o(1))K(N)

where

(21) K(N) =
∑
p≤N

∑
d|p−1
d>2

ϕ(d)

d
=

N∑
d=3

ϕ(d)

d

∑
p≤N

p≡1 (mod d)

1.

Using the approximation∑
p≤N

p≡1 (mod d)

1 = (1 + o(1))
N

ϕ(d) logN
,

it seems reasonable to expect that

K(N) = (1 + o(1))N.

3.2. Numerical results. In Table 1 we compare the observed data
for all primes p ≤ N for N = 100000 · k, 1 ≤ k ≤ 10, that have no
nontrivial fixed point with the heuristically predicted value H(N) given
by (19).

N Observed Predicted Relative error
100000 567 585.6 -0.0318
200000 1007 1020.6 -0.0134
300000 1358 1421.4 -0.0446
400000 1715 1790.1 -0.0419
500000 2068 2151.8 -0.0389
600000 2404 2490.0 -0.0345
700000 2725 2826.7 -0.0360
800000 3053 3151.0 -0.0311
900000 3350 3479.5 -0.0372

1000000 3632 3796.2 -0.0433
Table 1. Number of primes p ≤ N with no nontrivial
fixed point
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In Table 2 we present data for the total number of fixed points for
all primes p ≤ N for N = 50000 · k, 1 ≤ k ≤ 9, that have no nontrivial
fixed point, and compare it with with the heuristically predicted value
given by (21).

N Observed Predicted Relative error
500000 465413 410686.1 0.1333

1000000 936280 831872.7 0.1255
1500000 1408964 1256499.5 0.1213
2000000 1883411 1683081.9 0.1190
2500000 2357781 2110954.9 0.1169
3000000 2832933 2539862.9 0.1154
3500000 3306597 2968852.5 0.1138
4000000 3780495 3398836.9 0.1123
4500000 4256757 3829903.3 0.1115

Table 2. Total number of observed nontrivial fixed
points for p ≤ N vs. random model prediction.

When comparing predicted and observed values we note that there
seems to be a consistent negative bias in Table 1 and a consistent
positive bias in Table 2. As of now, we have no satisfactory explanation
of this phenomenon.

4. Remarks on the Dynamics of the Map ψp

4.1. Orbit length model. Given a finite set X, a map η : X →
X, and a starting point x0, define xn+1 = η(xn) for n ∈ Z+. Let
Oη,x0(X) = {x0, x1, . . .} denote the forward orbit of x0 under η. Clearly,
we have the trivial inequality #Oη,x0(X) ≤ #X, but if η is a random
map (that is, for each x ∈ X, we define its image η(x) by uniformly se-
lecting a random element of X), a simple ‘birthday paradox’ argument
shows that #Oη,x0(X) is very likely to be of size roughly (#X)1/2; in
particular, as #X →∞, #Oη,x0(X) ≤ (#X)1/2+o(1) holds with proba-
bility one.

Thus, if we näıvely model ψp as a random map, then, as p → ∞,
and selecting a random starting point x0, the orbit size #Oψp,x0(Fp) is
expected to be roughly of size

√
p, see [6]. However, numerics indicate

that #Oψp,x0(Fp) often is much smaller than
√
p. In fact, in what

follows, we give numerical evidence, and an heuristic model, that the
probability density distribution of log #Oψp,x0(Fp)/ log p has support in
[0, 1/2].
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In fact, it is easy to see that the orbit Oψp,x0(Fp) are shorter than
expected from a random map as once a certain element x ∈ Oψp,x0(Fp)
lies in a multiplicative subgroup of F∗p, then so does ψp(x), and the
remaining part of the orbit never leaves this subgroup. So, the behavior
of orbits of ψp, originating at a point x0 ∈ F∗p is ruled by two (apparently
independent) factors:

• random map-like behavior inside of a subgroup of F∗p which
eventually leads to a cycle formed by the ‘birthday paradox’
(see [6] for an exhaustive treatise of the structure of random
maps);
• reducing the size of the multiplicative subgroup where the iter-

ations of ψp get locked in as they progress along the trajectory.

For example, if the initial point x0 is not a primitive root of Fp,
this immediately puts all elements of the corresponding trajectory in a
nontrivial multiplicative subgroup of F∗p.

Hence, we believe that the main reason for such small orbit lengths
is that a correct model for ψp is that of a random automorphism on
Cp−1, the cyclic group of cardinality p − 1. Since ψp maps F×p into
itself, and, as groups F×p ' Cp−1, we may translate the dynamics x0 →
x1 → · · · on F×p to dynamics y0 → y1 → · · · on Cp−1. Under the
assumption that the discrete log map (which identifies F×p with Cp−1)
behaves randomly, the image of ψp as a map of Cp−1 be viewed as
“random” map ϕ : Cp−1 → Cp−1 given by

ϕ(y) ≡ αyy (mod p− 1),

where αy ∈ Z/(p − 1)Z is selected randomly. In particular, once an
iterate yn “lands” in a subgroup H ⊂ Cp−1, it never “leaves”; and this
makes much shorter orbit lengths likely.

For example, for primes p such that p − 1 = s · t, where s is the
p1/3-smooth part of p − 1, and s � p1/3, we find that it is very likely
that the s-part of the orbit gets annihilated after at most p1/3+ε steps
(write Cp−1 ' Cs×Ct and say that the s-part of yn is annihilated if the
image of yn in Cs×Ct is of the form (0, ∗).) In fact, if a prime q divides
p − 1, it is easy to see that the probability of the q-part not being
annihilated after k steps is given by (1− 1/q)k, which, if q/k = o(1), is
o(1) as q →∞.

This leads to the following natural question. Let Ψd,p be the endo-
morphisms of F∗p, (indexed by the divisors d ∈ [1, p− 1]) and generated

by the map x 7→ xd, x ∈ F∗p.

Question 8. Let x0 ∈ F∗p be chosen uniformly at random and let
Ψd1,p, . . . ,ΨdL,p be a sequence of L random endomorphisms such that
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for every j = 1, . . . , L and d | p− 1 we have

Pr[(p− 1, dj) = d] =
ϕ((p− 1)/d)

p− 1
,

What is the expected size of the smallest subgroup of F∗p that contains
the element ΨdL,p (. . . (ΨdL,p(x0)) . . .)?

Certainly, a version of Question 8 can be asked for any finite sub-
group.

4.2. Orbit length statistics. If η behaves sufficiently randomly, then
#Oη,x0(Fp) ≤ p1/2+o(1) is very likely to hold. In fact, it is known

that for η random, (#Oη,x0(Fp))
2 /(2p) converges in distribution to

a mean one exponential as p → ∞. In particular, the support of
log #Oη,x0(Fp)/ log p is essentially concentrated around 1/2.

See Figure 1 for an illustration of this well-known phenomenon,
which also forms the basis of the so-called Pollard’s rho-factorisation
algorithm, see [4, Section 5.2.1].

Figure 1. Histogram plot of log #Oη,x0(Fp)/ log p with
η(x) = x2 + 1 for p ≤ 1000000 (left) and p ≤ 5000000
(right). Red curves indicate normal distributions with
mean and variance fitted to the data.

However, the orbit sizes of ψp behaves very differently.
We remark that if p = 2q + 1 where q is a Sophie Germain prime,

then the second effect is negligible. Since the standard heuristic sug-
gests a (relative) abundance of Sophie Germain primes, “on average”
over primes p, the second effect is essentially invisible. However for a
“typical” prime the situation is quite different. In other words, under
the standard heuristic expectation of abundance of Sophie Germain
prime, the average value of the trajectory length is of order p1/2 (pos-
sibly with some logarithmic factors), while the typical value is much
smaller.
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Furthermore, let P (k) denote the largest prime divisor of an inte-
ger k ≥ 1. If α ∈ (0, 1) and p runs through a sequence of primes
with p − 1 = q · s where q = P (p − 1) = pα+o(1) and s is pα/2-smooth
(which conjecturely holds for a positive proportion of the primes for
any α ∈ (0, 1)), we expect that a random endomorphism has the orbit
of size at most pα/2+o(1). In turn, this suggests that the probability den-
sity function of log #Oψp,x0(Fp)/ log p is supported in the full interval
[0, 1/2]; see Figure 2 for an illustration of this phenomenon.

Figure 2. Histogram plots of log #Oψp,x0(Fp)/ log p,
p ≤ 1000000 (left) and p ≤ 5000000 (right). Red curves
indicate normal distributions with mean and variance fit-
ted to the data.

To further show the difference in orbit statitics, it is also interest-
ing to compare statisticics when normalized by dividing by

√
p, see

Figure 3.

Figure 3. Histogram plots of #Oη,x0(Fp)/
√
p with

η(x) = x2 + 1 (left) and #Oψp,x0(Fp)/
√
p (right) for p ≤

5000000.
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5. Comments and Extensions

As we have mentioned in Section 2.4, it is natural to expect that the
following holds:

Conjecture 9. Let x0 ∈ Fq. Then

#{v ∈ Fdq : Ln(v) 6= x0 for 1 ≤ n ≤ q}
qd

= e−1 + o(1),

as q →∞, where d = π(q − 1).

In particular, Conjecture 9 implies that ϑ ' 0.4231 . . . in the bound
of Theorem 1 can be replaced with 1− 1/e ' 0.6321 . . ..

Clearly the map ψp, as any map over Fp can be interpolated by
polynomial, that is, for some unique polynomials Fp(X) ∈ Fp[X] of
degree at most p− 1 we have ψp(x) = Fp(x) for x ∈ Fp. It is natural to
use Dp = degFp as a measure of “non-polynomiality” of the map ψp.
In particular, we expect that Dp is close to its largest possible value
p− 1. Although we have not been able to establish this we show that

(22) Dp ≥
(√

2−
√

3 + o(1)

)
p1/2 = 0.5176 . . . p1/2.

We remark that the xx is a quadratic non-residue modulo p if and
only if both x is odd and a quadratic non-residue. Using the Pólya–
Vinogradov bound of sums of quadratic characters, it is trivial to show
that there are p/4 + O(p1/2 log p) such values of x = 0, 1 . . . , p − 1.
Hence, for the sum of the Legendre symbols with Fp we have∑

x∈Fp

(
Fp(x)

p

)
= p/2 +O(p1/2 log p).

On the other hand, the results of Korobov [10] and Mit’kin [13] (which
we use in a simplified form) imply that∣∣∣∣∣∣

∑
x∈Fp

(
Fp(x)

p

)∣∣∣∣∣∣ ≤ Dp

√
p−D2

p/4 +O(Dp)

(provided that, say, p ≥ D2
p/2 + 5), which now implies (22).

For a prime p and a polynomial f(X) ∈ Z[X] we denote by Tf (p)
the number of solutions to the congruence

(23) xf(x) ≡ 1 (mod p), 1 ≤ x ≤ p− 1.

We note that the number of fixed points of x → xf(x) is given by
Tf−1(p).
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Theorem 10. If f is squarefree, we have

Tf (p) ≤ p6/13+o(1)

as p→∞.

Proof. Let us fix d | p− 1 and denote by Xd the set of solutions to (23)
with

gcd(f(x), p− 1) = d.

Clearly any element x ∈ Xd belongs to the multiplicative group Gd ⊆ F∗p
of index d in the multiplicative group F∗p of a finite field Fp of p elements.
Therefore,

(24) #Xd ≤ d.

Since f(X) is squarefree, by the Nagell–Ore theorem (see [9] for its
strongest known form) for each d there is a set Kd ⊆ {0, . . . , d− 1} of
cardinality #Kd = do(1) and such that every x ∈ Xd satisfies

(25) x ≡ k (mod d)

for some k ∈ Kd. Let us fix k ∈ Kd and denote by Xd,k the set of x ∈ Xd
satisfying (25). Obviously,

(26) #Xd,k ≤ (p− 1)/d.

Thus, in particular, from (24) and (26), we see that #Xd,k ≤
√
p− 1.

However, we now obtain a better bound.
We remark that the difference set

Ud,k = {x1 − x2 : x1, x2 ∈ Xd,k} ⊆ Fp
is of cardinality at most

(27) #Ud,k ≤ 2(p− 1)/d

as it is contained in the reductions modulo p of integers y ≡ 0 (mod d)
from the interval y ∈ [−(p− 1), p− 1]. Similarly, for

Vd,k = {x1 + x2 − x3 − x4 : x1, x2, x3, x4 ∈ Xd,k} ⊆ Fp,

we have

(28) #Vd,k ≤ 4(p− 1)/d.

Furthermore, the product set

Wd,k = {x1x2 : x1, x2 ∈ Xd,k} ⊆ Fp
is of cardinality at most

(29) #Wd,k ≤ d
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as it is contained in Gd. Finally, as in [3, Section 1], we note that the
Cauchy inequality implies that

Ed,k = #{(x1, x2, x3, x4) ∈ X 4
d,k : x1x2 = x3x4}

satisfies

(30) Ed,k ≥
(#Xd,k)4

#Wd,k

.

By the result of Bourgain and Garaev [3, Theorem 1.1] we have

E4
d,k ≤

(
#Ud,k +

(#Xd,k)3

p

)
(#Xd,k)5 (#Ud,k)4 #Vd,kpo(1),

which together with (30) implies

(31) (#Xd,k)11 ≤
(

#Ud,k +
(#Xd,k)3

p

)
(#Ud,k)4 #Vd,k (#Wd,k)

4 po(1)

as p → ∞. Substituting the bounds (27), (28) and (29) in (31), we
derive

(#Xd,k)11 ≤
(
pd−1 +

(#Xd,k)3

p

)
p5+o(1)d−1.

Thus,

(32) #Xd,k ≤ max
{
p6/11d−2/11, p1/2d−1/8

}
po(1).

Using (24) for d < p6/13 and (24) for d ≥ p6/13, we obtain

#Xd,k ≤ p6/13+o(1),

as p→∞), which concludes the proof. �

Remark 11. We note that as long as d is square free, we have #Kd =
do(1) with no assumption of f being square free. Hence, we find that the
upper bound on Tf (p) holds without any assumption on f(x) provided
that p−1 is square free. In fact, it is enough to assume that the square
full part of p− 1 is of size po(1).

Remark 12. It is quite possible that using the results and arguments
of Rudnev [15] one can improve the bound of Theorem 10.
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