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Problem

Given a configuration of | positive and nega-
tive point charges in R™ estimate from above
the maximal possible number of (isolated)
points of equilibrium of this configuration.

2-dimensional case after C. F. Gaul

In R2 ~ C the potential of a unit point placed
at the origin equals In|r|. Therefore, the po-
tential of a system of [ charges placed at
z1,.-.,2; With the values (1,...,(; equals

[
N(z) = ) ¢Injz—z| =1n (I_|§:1|z — zZ|C@) :
=1

Theorem, [Ga]. Points of equilibrium for the
potential MN(z) coincide with the zeros of the
rational function

Lo

P(z)= ) 6 —~

i=1% "~

They are all saddlepoints and their total num-
ber is at most [ — 1.



In dimensions 3 or larger

Consider a configuration of [ = u 4+ v fixed
point charges in R", n > 3 consisting of u
positive charges with the values (1,...,Cu,

and v negative charges with the values Cu+17 .

They create an electrostatic field whose po-
tential equals

. _ G 97
V(z) = ;=2 +...+ ;=2 (1)

where r; is the distance between the :-th
charge and the point z = (z1,... ,zn) € R?
which we assume different from the locations
of the charges. Below we consider the prob-
lem of finding effective upper bounds on
the number of critical points of V(z), i.e. the
number of points of equilibrium of the elec-
trostatic force. In what follows we mostly as-

sume that considered configurations of charges

have only nondegenerate critical points. This
guarantees that the number of critical points
is finite. Such configurations of charges and

, G-



potentials will be called nondegenerate. Sur-
prisingly little is known about this whole topic
and the references are very scarce.

In the case of R3 one of the few known re-
sults obtained by direct application of Morse
theory to V(z) is as follows, see [MC], The-
orem 32.1.

Theorem. Assume that the total charge Y!_ C;
in (1) is negative (resp. positive). Let mq be
the number of the critical points of index 1
of V, and mo be the number of the critical
points of index 2 of V. Then mo > u (resp.
mo > pu—1) and m1 > v —1 (resp. my1 > v).
Additionally, mqi —mo =v — u — 1.

Note that the potential V(x) has no (local)
maxima or minima due to its harmonicity.

Remark. The remaining (more difficult) case
g Ci+Z§:M+1 {; = 0 was treated by Kiang.



Remark. The above theorem has a general-
ization to any R", n > 3 with mq being the
number of the critical points of index 1 and
mo being the number of the critical points of
index n — 1.

Definition. Configurations of charges with all
nondegenerate critical points and m1 +mo =
uw—+ v —1 are called minimal, see [MC], p.
292.

Remark. Minimal configurations occur if one,
for example, places all charges of the same
sign on a straight line. On the other hand, it
IS easy to construct generic nonminimal con-
figurations of charges, see [MC].

Remark. The major difficulty of this problem
is that the lower bound on the number of
critical points of V,, given by Morse theory is
known to be not exact. Therefore, since we
are interested in an effective upper bound,



the Morse theory arguments do not provide
an answer.

The question about the maximum (if it ex-
ists) of the number of points of equilibrium
of a nondegenerate configuration of charges
in R3 was posed in [MC], p. 293. In fact,
J. C. Maxwell in [Max], section 113 made an
explicit claim answering exactly this question.

Conjecture, [Max]. The total number of
points of equilibrium (all assumed nondegen-
erate) of any configuration with [ charges in
R3 never exceeds (I — 1)2.

Remark. In particular, there should be at
most 4 points of equilibrium for any con-
figuration of 3 point charges according to
Maxwell, see Figure 1. NOT PROVED!

Before formulating our results and conjec-
tures let us first generalize the set-up. In the
notation of Theorem 1 consider the family of



potentials depending on a parameter a« > 0O
and given by

Va@ =L 4. + 5L (2)
P1 P
where p; = r?, i = 1,...,l. (The choice

of p;'s instead of r;'s is motivated by con-
venience of algebraic manipulations.)

Notation. Denote by Nj(n,a) the maximal
number of the critical points of the poten-
tial (2) where the maximum is taken over all
nondegenerate configurations with [ variable
point charges, i.e. over all possible values
and locations of [ point charges forming a
nondegenerate configuration.

Our first result is the following uniform (i.e.
independent on n and «) upper bound.

Theorem. a) For any a > 0 and any positive
integer n one has

Ny(n, o) < 4302, (3)



b) For | = 3 one has a significantly improved
upper bound

N3(n,a) < 12.

Remark. Note that the right-hand side of
the formula (3) gives even for [ = 3 the
horrible upper bound 139,314,069,504. On
the other hand, computer experiments sug-
gest that Maxwell was right and that for any
three charges there are at most 4 (and not
12) critical points of the potential (2), see
Figure 1.

Configurations with two and with four critical
points.



Remark. Figure shows the level curves of
the restrictions of the potential of three pos-
itive charges to the plane they span in two
essentially different cases (conjecturally, the
only ones). The graph on the left has 3 sad-
dles and 1 local minimum and the graph on
the right has just 2 saddle points.

Voronoi diagrams and the main conjecture.

Theorem below determines the number of
critical points of the function V, for large « in
terms of the combinatorial properties of the
configuration of the charges. To describe it
we need to introduce several notions.

Notation. By a (classical) WVoronoi dia-
gram of a configuration of pairwise distinct
points (called sites) in the Euclidean space
R™ we understand the partition of R™ into
convex cells according to the distance to the
nearest site.



A Voronoi cell S of the Voronoi diagram
consists of all points having exactly the same
set of nearest sites. The set of all nearest
sites of a given Voronoi cell S is denoted by
NS(S). One can see that each Voronoi cell
IS a interior of a convex polyhedron, probably

*The first known application of Voronoi diagrams can

be traced back to Aristotle’'s De Caelo where Aris-
totle asked how a dog faced with the choice of two
equally tempting meals could rationally choose be-
tween the two. These ideas were l|later developed
by the known French philosopher and physicist Jean
Buridan (1300-1356) who sowed the seeds of reli-
gious scepticism in Europe. Buridan allowed that
the will could delay the choice in order to more fully
assess the possible outcomes of the choice. Later
writers satirized this view in terms of an ass who,
confronted by two equally desirable and accessible
bales of hay, must necessarily starve while pondering
a decision. Apparently the Roman Catholic Church
found unrecoverable errors in Buridan's arguments
since about hundred and twenty years after his death
a posthumous campaign by Okhamists succeeded in
having Buridan’s writings placed on the Index Libro-
rum Prohibitorum (List of Forbidden Books) from
1474-1481.



of positive codimension. This is a slight gen-
eralization of traditional terminology, which
considers the Voronoi cells of the highest di-
mension only.

A Voronoi cell of the Voronoi diagram of a
configuration of sites is called effective if it
intersects the convex hull of NS(S).

If we have an additional affine subspace L C
R™ we call a Voronoi cell S of the Voronoi
diagram of a configuration of charges in R"
effective with respect to L if S intersects
the convex hull of the orthogonal projection
of NS(S) onto L.

A configuration of points is called generic if
any Voronoi cell S of its Voronoi diagram of
any codimension k has exactly k£ + 1 nearest
cites and does not intersect the boundary of
the convex hull of NS(S).

A subspace L intersects a Voronoi diagram
generically if it intersects all its Voronoi



cells transversally, any VVoronoi cell S of codi-
mension k intersecting L has exactly £+ 1
nearest sites, and S does not intersect the
boundary of the convex hull of the orthogo-
nal projection of NS(S) onto L.

The combinatorial complexity (resp. ef-

fective combinatorial complexity) of a given
configuration of points is the total number of

cells (resp. effective cells) of all dimensions

in its Voronoi diagram.

Example. VVoronoi diagram of three non-collinear
points A, B,C on the plane consists of seven
Voronoi cells:

1. three two-dimensional cells S4, Sg, S with
NS(S) consisting of one point,

2. three one-dimensional cells Sap,Sac, SBc
with N'S(S) consisting of two points. For



example, S4p is a part of a perpendicular
bisector of the segment [A, B].

3. one zero-dimensional cell S 4o with NS(S)
consisting of all three points. This is a
point equidistant from all three points.

There are two types of generic configura-
tions. First type is of an acute triangle AABC
and then all Voronoi cells are effective. Sec-
ond type is of an obtuse triangle AABC, and
then (for the obtuse angle A) the Voronoi
cells Spc and Syppco are not effective.

The case of the equilateral triangle AABC'is
non-generic: the cell S4po, though effective,
lies on the boundary of the triangle.

The following result motivates our main con-
jecture below.



T heorem.

a) For any generic configuration of point
charges of the same sign there exists ag >
O such that for any a > «ag the criti-
cal points of the potential Vu(z) are in
one-to-one correspondence with effective
cells of positive codimension in the Voronoi
diagram of the considered configuration.
The Morse index of each critical point
coincides with the dimension of the cor-
responding Voronoi cell.

b) Suppose that an affine subspace L inter-
sects generically the Voronoi diagram of
a given configuration of point charges of
the same sign.

Then there exists ag > 0 (depending on
the configuration and L) such that for
any a > aqg the critical points of the re-
striction of the potential Vo(x) to L are



in one-to-one correspondence with effec-
tive w.r.t. L cells of positive codimen-
sion in the Voronoi diagram of the con-
sidered configuration. The Morse index
of each critical point coincides with the
dimension of the intersection of the cor-
responding Voronoi cell with L.

Finally, our computer experiments in one-
and two-dimensional cases led us to the fol-
lowing optimistic

Conjecture.

a) For any generic configuration of point
charges of the same sign and any a > 3
one has

ap <, (4)

where al, is the number of the critical
points of index j of the potential Vy(x)
and #7 is the number of all effective Voronoi



cells of dimension 5 in the Voronoi dia-
gram of the considered configuration.

b) For any affine subspace L generically in-
tersecting the VVoronoi diagram of a given
configuration of point charges of the same
sign one has

a’.ZX,L S ]jj ’ (5)

where a*géL is the number of the critical
points of index j of the potential Vu(x)
restricted to L and jj% is the number of
all Voronoi cells with dim(SNL) = j ef-
fective w.r.t L in the Voronoi diagram of
the considered configuration.

We will refer to the inequality (4) resp. (5) as
Maxwell resp. relative Maxwell inequality.

Remark. Theorem and Conjecture were
inspired by two observations. On one hand,



one can compute the limit of a properly nor-
malized potential Vo (x) when a — co. Namely,
one can easily show that
1
im Vo a(x) = Voo(Z) = min p;(x).

a—r00 i=1,....1

This limiting function is only piecewise smooth.
However, one can still define critical points
of Voo(x) and their Morse indices. Moreover,
it turns out that for generic configurations
every critical point of Vo(Z) lies on a sep-
arate effective cell of the Voronoi diagram
whose dimension equals the Morse index of
that critical point. Theorem above claims
that for sufficiently large o the situation is the
same, except that the critical point does not
lie exactly on the corresponding Voronoi cell
(in fact, it lies on O(a—1) distance from this
Voronoi cell. On the other hand, computer
experiments show that the largest number of
critical points (if one fixes the positions and
values of charges) occurs when a — oo.

Even the special case of the conjecture when
L is one-dimensional is of interest and still



open. Its slightly stronger version supported
by extensive numerical evidence can be re-
formulated as follows. Conjecture. Consider
an I-tuple of points (z1,y1),..., (z;,y;) in R2.
Then for any values of charges (¢{1,...,(;) the
function V}(x) in (one real) variable z given
by

l Gi

Val®) = 2 (a2 1 200

has at most (2] — 1) real critical points, as-
suming a > 3.

(6)

Remark. In the simplest possible case a =1
conjecture is equivalent to showing that real
polynomials of degree (41 — 3) of a certain
form have at most (2l — 1) real zeros.

Complexity of Voronoi diagram and
Maxwell's conjecture

In the classical planar case one can show that
the total number of cells of positive codimen-
sion of the VVoronoi diagram of any [ sites on



the plane is at most 5/ — 11 and this bound
IS exact.

Since (I — 1)2 is larger than the conjectural
exact upper bound 51—11 for all l > 5 and co-
incides with 5/ — 11 for | = 3,4, we conclude
that Conjecture implies a stronger form of
Maxwell's conjecture for any [ positive charges
on the plane and any a > 3.

For n > 2 the worst-case complexity (I, n) of
the classical Voronoi diagram of an [-tuple of
points in R" is ©(["/2+1]) . Namely, there ex-
ist positive constants A < B such that Ailn/2+1] <
r(l,n) < BIln/2+1l Moreover, the Upper
Bound Conjecture of the convex polytopes
theory proved by McMullen implies that the
number of Voronoi cells of dimension k of
a Voronoi diagram of [ charges in R"™ does
not exceed the number of (n—k)-dimensional
faces in the (n 4+ 1)-dimensional cyclic poly-
tope with [ vertices. This bound is exact, i.e.
is achieved for some configurations.



In R3 this means that the number of 0-dimensional
Voronoi cells of the Voronoi diagram of [
points is at most @ the number of 1-
dimensional Voronoi cells is at most (Il —

3), and the number of 2-dimensional Voronoi
cells is at most @

We were unable to find a similar result about
the number of effective cells of Voronoi dia-
gram. However, already for a regular tetra-
hedron the number of effective cells is 11,
which is greater than the Maxwell’'s bound 9.
Thus a stronger version of Maxwell's conjec-
ture in R3 fails: the number of critical points
of V, could be bigger than (I —1)? for a suf-
ficiently large.

However Maxwell's original conjecture mirac-
ulously agrees with the Maxwell inequalities
(4) and we obtain the following conditional
statement.

Theorem. Conjecture implies the validity
of the original Maxwell's conjecture for any



configuration of positive charges in R3 in the
standard 3-dimensional Newton potential, i.e.
1

Remarks and problems

Remark 1. Main objects of consideration in
this paper have a strong resemblance with
the main objects in tropical algebraic geom-
etry. Namely, the potential V,(Z) resembles
an actual algebraic hypersurface while V()
resembles its tropical limit. Also, Voronoi di-
agrams are piecewise linear objects as well as
tropical curves. It is a pure coincidence?

Remark 2. What happens in the case of
charges of different signs? Note that in a
Voronoi cell of highest dimension correspond-
ing to a negative charge the potential of this
charge outweighs potentials of all other charges
for large «, and |Va|~1/¢ converges uniformly
on compact subsets of this cell to Voo(Z).
Therefore it seems that the function defined



on the union of Voronoi cells of highest di-
mension as

Voo (Z) = sign G-pi(z), if pi(x) = mjin pj(x)

IS responsible for the critical points of V, as

a — OQ.

Remark 3. Theorem is similar to the results
of Varchenko and Orlik-Terao on the number
of critical points for the product of powers
of real linear forms and the number of open
components in the complement to the corre-
sponding arrangement of affine hyperplanes.
Is there an appropriate result?

Remark 4. Conjecturally the number of criti-
cal points of Vy(x) is bounded from above by
the number of effective VVoronoi cells in the
corresponding Voronoi diagram. The num-
ber of all Voronoi cells in Voronoi diagrams
in R™ with [ sites has a nice upper bound.
What is the upper bound for the number of



effective VVoronoi cells? Is it the same as for
all VVoronoi cells?

Remark 5. Many statements in the paper are
valid if one substitutes the potential »r—% of
a unit charge located at the origin by more
or less any concave function ¥(r) of the ra-
dius in R"™. To what extent the above results
and conjecture can be generalized for ¥ (r)-
potentials?

Remark 6. The initial hope in settling Con-
jecture was related to the fact that in our
numerical experiments for a fixed configura-
tion of charges the number of critical points
of Vo (x) was a nondecreasing function of «.
Unfortunately this monotonicity turned out
to be wrong in the most general formulation:
the number of critical points of a restriction
of a potential to a line is not a monotonic
function of «a.



Example.

The potential Vo(z) = [(z 4+ 30)2 + 25]> +
[((z 4+ 20)? 4 49]7 %4 [(z + 2)% + 144]7*> +
[(z — 20)2 + 49]~ 2 + [(x — 30)2 + 25]~ % has
three critical points for « = 0.1, seven critical
points for a = 0.2, again three critical points
for o« = 0.3, and again seven critical points as
a = 1.64, and nine critical points for a > 1.7.

Existence of such an example for the poten-
tial itself (and not of its restriction) is un-
known.



James C. Maxwell on points of equilibrium

In his monumental Treatise [Max[ Maxwell
has foreseen the development of several math-
ematical disciplines. In the passage which we
have the pleasure to present to the readers
his arguments are that of Morse theory de-
veloped at least 50 years later. He uses the
notions of periphractic number, or, degree
of periphraxy which is the rank of H, of a
domain in R3 defined as the number of in-
terior surfaces bounding the domain and the
notion of cyclomatic number, or, degree of
cyclosis which is the rank H; of a domain
in R3 defined as the number of cycles in a
curve obtained by a homotopy retraction of
the domain (none of these notions rigorously
existed then). (For definitions of these no-
tions see [Max], section 18.) Then he actu-
ally proves Theorem 1 usually attributed to
M. Morse. Finally in Section [113] he makes
the following claim.



" To determine the number of the points and
lines of equilibrium, let us consider the sur-
face or surfaces for which the potential is
equal to C, a given quantity. Let us call the
regions in which the potential is less than C
the negative regions, and those in which it is
greater than C the positive regions. Let V)
be the lowest and V7 the highest potential ex-
isting in the electric field. If we make C =V}
the negative region will include only one point
or conductor of the lowest potential, and this
IS necessarily charged negatively. The posi-
tive region consists of the rest of the space,
and since it surrounds the negative region it
IS periphractic.

If we now increase the value of C, the nega-
tive region will expand, and new negative re-
gions will be formed round negatively charged
bodies. For every negative region thus formed
the surrounding positive region acquires one
degree of periphraxy.



As the different negative regions expand, two
or more of them may meet at a point or a
line. If n+ 1 negative regions meet, the posi-
tive region loses n degrees of periphraxy, and
the point or the line in which they meet is a
point or line of equilibrium of the nth degree.

When C' becomes equal to V7 the positive re-
gion is reduced to the point or the conductor
of highest potential, and has therefore lost
all its periphraxy. Hence, if each point or line
of equilibrium counts for one, two, or n, ac-
cording to its degree, the number so made
up by the points or lines now considered will
be less by one than the number of negatively
charged bodies.

There are other points or lines of equilibrium
which occur where the positive regions be-
come separated from each other, and the
negative region acquires periphraxy. The num-
ber of these, reckoned according to their de-
grees, is less by one than the number of pos-
itively charged bodies.



If we call a point or line of equilibrium pos-
itive when it is the meeting place of two or
more positive regions, and negative when the
regions which unite there are negative, then,
if there are p bodies positively and n bodies
negatively charged, the sum of the degrees
of the positive points and lines of equilibrium
will be p — 1, and that of the negative ones
n— 1. The surface which surrounds the elec-
trical system at an infinite distance from it
IS to be reckoned as a body whose charge is
equal and opposite to the sum of the charges
of the system.

But, besides this definite number of points
and lines of equilibrium arising from the junc-
tion of different regions, there may be oth-
ers, of which we can only affirm that their
number must be even. For if, as any one
of the negative regions expands, it becomes
a cyclic region, and it may acquire, by re-
peatedly meeting itself, any number of de-
grees of cyclosis, each of which corresponds



to the point or line of equilibrium at which
the cyclosis was established. As the nega-
tive region continues to expand till it fills all
space, it loses every degree of cyclosis it has
acquired, a becomes at last acyclic. Hence
there is a set of points or lines of equilibrium
at which cyclosis is lost, and these are equal
in number of degrees to those at which it is
acquired.

If the form of the charged bodies or conduc-
tors is arbitrary, we can only assert that the
number of these additional points or lines is
even, but if they are charged points or spheri-
cal conductors, the number arising in this way
cannot exceed (n — 1)(n — 2) where n is the
number of bodies*.

*{I have not been able to find any place
where this result is proved.}.

We finish the paper by mentioning that the
last remark was added by J. J. Thomson in



1891 while proofreading the third (and the
last) edition of Maxwell’'s book. Adding the
above numbers of obligatory and additional
critical points one arrives at the conjecture
which was the starting point of our project.



