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This note describes the algorithms used in the author’s latest implementations of MMA and
GCMMA. The first versions of these methods were published in [1] and [2].

1 Considered optimization problem

Throughout this note, optimization problems of the following form are considered, where the
variables are x = (x1, . . . , xn)T∈ IRn, y = (y1, . . . , ym)T∈ IRm, and z ∈ IR.

minimize f0(x) + a0z +
m∑
i=1

(ciyi + 1
2diy

2
i )

subject to fi(x)− aiz − yi ≤ 0, i = 1, . . . ,m

x ∈ X, y ≥ 0, z ≥ 0.

(1.1)

Here, X = {x ∈ IRn | xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n}, where xmin
j and xmax

j are given
real numbers which satisfy xmin

j < xmax
j for all j, f0, f1, . . . , fm are given, continuously

differentiable, real-valued functions on X, a0, ai, ci and di are given real numbers which
satisfy a0 > 0, ai ≥ 0, ci ≥ 0, di ≥ 0 and ci + di > 0 for all i, and also aici > a0 for all i
with ai > 0.

In (1.1), the “natural” optimization variables are x1, . . . , xn, while y1, . . . , ym and z are
“artificial” optimization variables which should make it easier for the user to formulate and
solve certain subclasses of problems, like least squares problems and minmax problems.

As a first example, assume that the user wants to solve a problem on the following “standard”
form for nonlinear programming.

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,
(1.2)

where f0, f1, . . . , fm are given differentiable functions and X is as above. To make problem
(1.1) (almost) equivalent to this problem (1.2), first let a0 = 1 and ai = 0 for all i > 0. Then
z = 0 in any optimal solution of (1.1). Further, for each i, let di = 1 and ci = “a large
number”, so that the variables yi become “expensive”. Then typically y =0 in any optimal
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solution of (1.1), and the corresponding x is an optimal solution of (1.2). It should be noted
that the problem (1.1) always has feasible solutions, and in fact also at least one optimal
solution. This holds even if the user’s problem (1.2) does not have any feasible solutions, in
which case some yi > 0 in the optimal solution of (1.1).

As a second example, assume that the user wants to solve a “min-max” problem on the form

minimize max
i=1,..,p

{hi(x)}

subject to gi(x) ≤ 0, i = 1, . . . , q
x ∈ X.

(1.3)

where hi and gi are given differentiable functions and X is as above. For each given x ∈ X,
the value of the objective function in problem (1.3) is the largest of the p real numbers
h1(x), . . . , hp(x). This kind of problems appear e.g. when the largest stress in a structure
should be minimized subject to various additional constraints. Problem (1.3) may equiva-
lently be written on the following form with variables x ∈ IRn and z ∈ IR :

minimize z

subject to z ≥ hi(x), i = 1, . . . , p
gi(x) ≤ 0, i = 1, . . . , q
x ∈ X.

(1.4)

To make problem (1.1) (almost) equivalent to this problem (1.4), let m = p+ q, f0(x) = 0,
fi(x) = hi(x) for i = 1, . . . , p, fp+i(x) = gi(x) for i = 1, . . . , q, a0 = a1 = · · · = ap = 1,
ap+1 = · · · = ap+q = 0, d1 = · · · = dm = 1, c1 = · · · = cm = “a large number”.

As a third example, assume that the user wants to solve a constrained least squares problem
on the form

minimize 1
2

p∑
i=1

(hi(x))2

subject to gi(x) ≤ 0, i = 1, . . . , q
x ∈ X.

(1.5)

where hi and gi are given differentiable functions and X is as above. Problem (1.5) may
equivalently be written on the following form with variables x ∈ IRn and y1, . . . , y2p ∈ IR:

minimize 1
2

p∑
i=1

(y2
i + y2

p+i)

subject to yi ≥ hi(x), i = 1, . . . , p
yp+i ≥ −hi(x), i = 1, . . . , p
gi(x) ≤ 0, i = 1, . . . , q
yi ≥ 0 and yp+i ≥ 0, i = 1, . . . , p
x ∈ X.

(1.6)

To make problem (1.1) (almost) equivalent to this problem (1.6), let m = 2p+ q, f0(x) = 0,
fi(x) = hi(x) for i = 1, . . . , p, fp+i(x) = −hi(x) for i = 1, . . . , p, f2p+i(x) = gi(x) for
i = 1, . . . , q, a0 = 1, a1 = · · · = am = 0, d1 = · · · = dm = 1, c1 = · · · = c2p = 0,
c2p+1 = · · · = c2p+q = “a large number”.
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2 Some practical considerations

In many applications, the constraints are on the form gi(x) ≤ gmax
i , where gi(x) stands for

e.g. a certain stress, while gmax
i is the largest permitted value on this stress. This means that

fi(x) = gi(x)− gmax
i (in (1.1) as well as in (1.2)). The user should then preferably scale the

constraints in such a way that 1 ≤ gmax
i ≤ 100 for each i (and not gmax

i = 1010). The objective
function f0(x) should preferably be scaled such that 1 ≤ f0(x) ≤ 100 for reasonable values on
the variables. The variables xj should preferably be scaled such that 0.1 ≤ xmax

j −xmin
j ≤ 100,

for all j.

Concerning the “large numbers” on the coefficients ci (mentioned above), the user should for
numerical reasons try to avoid “extremely large” values on these coefficients (like 1010). It is
better to start with “reasonably large” values and then, if it turns out that not all yi = 0 in
the optimal solution of (1.1), increase the corresponding values of ci by e.g. a factor 100 and
solve the problem again, etc. If the functions and the variables have been scaled according to
above, then “resonably large” values on the parameters ci could be, say, ci = 1000 or 10000.

Finally, concerning the simple bound constraints xmin
j ≤ xj ≤ xmax

j , it may sometimes be
the case that some variables xj do not have any prescribed upper and/or lower bounds. In
that case, it is in practice always possible to choose “artificial” bounds xmin

j and xmax
j such

that every realistic solution x satisfies the corresponding bound constraints. The user should
then preferably avoid choosing xmax

j − xmin
j unnecessarily large. It is better to try some

reasonable bounds and then, if it turns out that some variable xj becomes equal to such an
“artificial” bound in the optimal solution of (1.1), change this bound and solve the problem
again (starting from the recently obtained solution), etc.

3 The ordinary MMA

MMA is a method for solving problems on the form (1.1), using the following approach: In
each iteration, the current iteration point (x(k),y(k), z(k)) is given. Then an approximating
subproblem, in which the functions fi(x) are replaced by certain convex functions f̃ (k)

i (x),
is generated. The choice of these approximating functions is based mainly on gradient infor-
mation at the current iteration point, but also on some parameters u(k)

j and l
(k)
j (“moving

asymptotes”) which are updated in each iteration based on information from previous iter-
ation points. The subproblem is solved, and the unique optimal solution becomes the next
iteration point (x(k+1),y(k+1), z(k+1)). Then a new subproblem is generated, etc. The MMA
subproblem looks as follows:

minimize f̃
(k)
0 (x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to f̃
(k)
i (x)− aiz − yi ≤ 0, i = 1, . . . ,m

x ∈ X(k), y ≥ 0, z ≥ 0,

(3.1)
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where X(k) = {x ∈ X | 0.9 l(k)
j + 0.1x(k)

j ≤ xj ≤ 0.9u(k)
j + 0.1x(k)

j , j = 1, . . . , n}, and where

the approximating functions f̃ (k)
i (x) are chosen as

f̃
(k)
i (x) =

n∑
j=1

(
p

(k)
ij

u
(k)
j − xj

+
q

(k)
ij

xj − l(k)
j

)
+ r

(k)
i , i = 0, 1, . . . ,m. (3.2)

Here,

p
(k)
ij = (u(k)

j − x
(k)
j )2

(
1.001

(
∂fi
∂xj

(x(k))
)+

+ 0.001
(
∂fi
∂xj

(x(k))
)−

+
ρi

xmax
j − xmin

j

)
, (3.3)

q
(k)
ij = (x(k)

j − l
(k)
j )2

(
0.001

(
∂fi
∂xj

(x(k))
)+

+ 1.001
(
∂fi
∂xj

(x(k))
)−

+
ρi

xmax
j − xmin

j

)
, (3.4)

r
(k)
i = fi(x(k))−

n∑
j=1

(
p

(k)
ij

u
(k)
j − x

(k)
j

+
q

(k)
ij

x
(k)
j − l

(k)
j

)
, (3.5)

where
(
∂fi
∂xj

(x(k))
)+

denotes the largest of the two numbers 0 and
∂fi
∂xj

(x(k)),

while
(
∂fi
∂xj

(x(k))
)−

denotes the largest of the two numbers 0 and − ∂fi
∂xj

(x(k)).

The default rules for updating the lower asymptotes l(k)
j and the upper asymptotes u(k)

j are
as follows. The first two iterations, when k = 1 and k = 2,

l
(k)
j = x

(k)
j − 0.5(xmax

j − xmin
j ),

u
(k)
j = x

(k)
j + 0.5(xmax

j − xmin
j ).

(3.6)

In later iterations, when k ≥ 3,

l
(k)
j = x

(k)
j − γ

(k)
j (x(k−1)

j − l(k−1)
j ),

u
(k)
j = x

(k)
j + γ

(k)
j (u(k−1)

j − x(k−1)
j ),

(3.7)

where

γ
(k)
j =


0.7 if (x(k)

j − x
(k−1)
j )(x(k−1)

j − x(k−2)
j ) < 0,

1.2 if (x(k)
j − x

(k−1)
j )(x(k−1)

j − x(k−2)
j ) > 0,

1 if (x(k)
j − x

(k−1)
j )(x(k−1)

j − x(k−2)
j ) = 0,

(3.8)

provided that this leads to values that satisfy

l
(k)
j ≤ x

(k)
j − 0.01(xmax

j − xmin
j ),

l
(k)
j ≥ x

(k)
j − 10(xmax

j − xmin
j ),

u
(k)
j ≥ x

(k)
j + 0.01(xmax

j − xmin
j ),

u
(k)
j ≤ x

(k)
j + 10(xmax

j − xmin
j ).

(3.9)

If any of these bounds is violated, the corresponding l(k)
j or u(k)

j is put to the right hand side
of the violated inequality.
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The default values of the parameters ρi in (3.3) and (3.4) are ρi = 10−5 for all i = 0, 1, . . . ,m.

It follows from the formulas (3.2)–(3.5) that the functions f̃ (k)
i are always first order approxi-

mations of the original functions fi at the current iteration point, i.e.

f̃
(k)
i (x(k)) = fi(x(k)) and

∂f̃
(k)
i

∂xj
(x(k)) =

∂fi
∂xj

(x(k)). (3.10)

Moreover, since all ρi > 0, the approximating functions f̃ (k)
i are strictly convex. This implies

that there is always a unique optimal solution of the MMA subproblem.

4 GCMMA – the globally convergent version of MMA

The globally convergent version of MMA, from now on called GCMMA, for solving problems
of the form (1.1) consists of “outer” and “inner” iterations. The index k is used to denote
the outer iteration number, while the index ν is used to denote the inner iteration number.
Within each outer iteration, there may be zero, one, or several inner iterations. The double
index (k, ν) is used to denote the ν:th inner iteration within the k:th outer iteration.

The first iteration point is obtained by first chosing x(1) ∈ X and then chosing y(1) and z(1)

such that (x(1),y(1), z(1)) becomes a feasible solution of (1.1). This is easy. An outer iteration
of the method, going from the k:th iteration point (x(k),y(k), z(k)) to the (k+ 1):th iteration
point (x(k+1),y(k+1), z(k+1)), can be described as follows:

Given (x(k),y(k), z(k)), an approximating subproblem is generated and solved. In this sub-
problem, the functions fi(x) are replaced by certain convex functions f̃ (k,0)

i (x). The optimal
solution of this subproblem is denoted (x̂(k,0), ŷ(k,0), ẑ(k,0)). If f̃ (k,0)

i (x̂(k,0)) ≥ fi(x̂(k,0)), for all
i = 0, 1, . . . ,m , the next iteration point becomes (x(k+1),y(k+1), z(k+1)) = (x̂(k,0), ŷ(k,0), ẑ(k,0)),
and the outer iteration is completed (without any inner iterations needed). Otherwise, an
inner iteration is made, which means that a new subproblem is generated and solved at
x(k), with new approximating functions f̃ (k,1)

i (x) which are more conservative than f̃
(k,0)
i (x)

for those indices i for which the above inequality was violated. The optimal solution of
this new subproblem is denoted (x̂(k,1), ŷ(k,1), ẑ(k,1)). If f̃ (k,1)

i (x̂(k,1)) ≥ fi(x̂(k,1)), for all i =
0, 1, . . . ,m , the next iteration point becomes (x(k+1),y(k+1), z(k+1)) = (x̂(k,1), ŷ(k,1), ẑ(k,1)),
and the outer iteration is completed (with one inner iterations needed). Otherwise, an-
other inner iteration is made, which means that a new subproblem is generated and solved
at x(k), with new approximating functions f̃

(k,2)
i (x), etc. These inner iterations are re-

peated until f̃ (k,ν)
i (x̂(k,ν)) ≥ fi(x̂(k,ν)) for all i = 0, 1, . . . ,m , which always happens after

a finite (usually small) number of inner iterations. Then the next iteration point becomes
(x(k+1),y(k+1), z(k+1)) = (x̂(k,ν), ŷ(k,ν), ẑ(k,ν)), and the outer iteration is completed (with ν
inner iterations needed).

It should be noted that in each inner iteration, there is no need to recalculate the gradients
∇fi(x(k)), since x(k) has not changed. Gradients of the original functions fi are calculated
only once in each outer iteration. This is an important note since the calculation of gradients
is typically the most time consuming part in structural optimization.
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The GCMMA subproblem looks as follows, for k ∈ {1, 2, 3, . . .} and ν ∈ {0, 1, 2, . . .}:

minimize f̃
(k,ν)
0 (x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to f̃
(k,ν)
i (x)− aiz − yi ≤ 0, i = 1, . . . ,m

x ∈ X(k), y ≥ 0, z ≥ 0,

(4.1)

where X(k) = {x ∈ X | 0.9 l(k)
j + 0.1x(k)

j ≤ xj ≤ 0.9u(k)
j + 0.1x(k)

j , j = 1, . . . , n}, and where

the approximating functions f̃ (k,ν)
i (x) are chosen as

f̃
(k,ν)
i (x) =

n∑
j=1

(
p

(k,ν)
ij

u
(k)
j − xj

+
q

(k,ν)
ij

xj − l(k)
j

)
+ r

(k,ν)
i , i = 0, 1, . . . ,m . (4.2)

Here,

p
(k,ν)
ij = (u(k)

j − x
(k)
j )2

(
1.001

(
∂fi
∂xj

(x(k))
)+

+ 0.001
(
∂fi
∂xj

(x(k))
)−

+
ρ

(k,ν)
i

xmax
j − xmin

j

)
, (4.3)

q
(k,ν)
ij = (x(k)

j − l
(k)
j )2

(
0.001

(
∂fi
∂xj

(x(k))
)+

+ 1.001
(
∂fi
∂xj

(x(k))
)−

+
ρ

(k,ν)
i

xmax
j − xmin

j

)
, (4.4)

r
(k,ν)
i = fi(x(k))−

n∑
j=1

(
p

(k,ν)
ij

u
(k)
j − x

(k)
j

+
q

(k,ν)
ij

x
(k)
j − l

(k)
j

)
. (4.5)

The asymptotes l(k)
j and u

(k)
j are updated as in the original MMA. The formulas (3.6)–(3.9)

still hold. The parameters ρ(k,ν)
i in (4.3) and (4.4) are strictly positive and updated according

to below. Within a given outer iteration k, the only differences between two inner iterations
are the values of some of these parameters. In the beginning of each outer iteration, when
ν = 0, the following default values are used:

ρ
(k,0)
i =

0.1
n

n∑
j=1

∣∣∣∣ ∂fi∂xj
(x(k))

∣∣∣∣(xmax
j − xmin

j ) , for i = 0, 1, ..,m. (4.6)

If any of the right hand sides in (4.6) is < 10−6 then the corresponding ρ(k,0)
i is set to 10−6.

In each new inner iteration, the updating of ρ(k,ν)
i is based on the solution of the most recent

subproblem. Note that f̃ (k,ν)
i (x) may be written on the form:

f̃
(k,ν)
i (x) = h

(k)
i (x) + ρ

(k,ν)
i d(k)(x),

where h(k)
i (x) and d(k)(x) do not depend on ρ

(k,ν)
i . Some calculations give that

d(k)(x) =
n∑
j=1

(u(k)
j − l

(k)
j )(xj − x(k)

j )2

(u(k)
j − xj)(xj − l

(k)
j )(xmax

j − xmin
j )

. (4.7)

6



Now, let

δ
(k,ν)
i =

fi(x̂(k,ν))− f̃ (k,ν)
i (x̂(k,ν))

d(k)(x̂(k,ν))
. (4.8)

Then h(k)
i (x̂(k,ν))+(ρ(k,ν)

i +δ(k,ν)
i )d(k)(x̂(k,ν)) = fi(x̂(k,ν)), which shows that ρ(k,ν)

i +δ(k,ν)
i might

be a natural value of ρ(k,ν+1)
i . In order to get a globally convergent method, this natural value

is modified as follows.

ρ
(k,ν+1)
i = min{ 1.1 (ρ(k,ν)

i + δ
(k,ν)
i ) , 10ρ(k,ν)

i } if δ(k,ν)
i > 0,

ρ
(k,ν+1)
i = ρ

(k,ν)
i if δ(k,ν)

i ≤ 0.
(4.9)

It follows from the formulas (4.2)–(4.5) that the functions f̃ (k,ν)
i are always first order ap-

proximations of the original functions fi at the current iteration point, i.e.

f̃
(k,ν)
i (x(k)) = fi(x(k)) and

∂f̃
(k,ν)
i

∂xj
(x(k)) =

∂fi
∂xj

(x(k)). (4.10)

Since the parameters ρ(k,ν)
i are always strictly positive, the functions f̃ (k,ν)

i are strictly convex.
This implies that there is always a unique optimal solution of the GCMMA subproblem.

There are at least two approaches for solving the subproblems in MMA and in GCMMA, the
“dual approach” and the “primal-dual interior-point approach”.

The dual approach is based on Lagrangean relaxation duality. The dual problem correspond-
ing to the MMA subproblem is a maximization problem with concave objective function and
no other constraints than non-negativity requirements on the (dual) variables. This dual
problem can be solved by a modified Newton method, and then the optimal dual solution
can be translated to a corresponding optimal solution of the primal subproblem. We have
implemented this approach in Fortran.

In the primal-dual interior-point approach, a sequence of relaxed KKT conditions are solved
by Newton’s method. We have implemented this approach in Matlab, since all the required
calculations are most naturally carried out on a matrix and vector level.
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5 A challenging test problem - the snake

Let ` be a given positive integer and let δ be a given “small” positive real number.

For i = 1, . . . , `, let αi =
(3i− 2`)π

6`
, gi(x) =

x2
i + x2

`+i − 1
δ

and hi(x) =
x2`+i − 2xix`+i

δ
.

Then consider the following problem in the variables x = (x1, . . . , x3`)T:

minimize
∑̀
i=1

(xi cosαi + x`+i sinαi − 0.1x2`+i)

subject to
∑̀
i=1

(x2
i + x2

`+i) ≤ `

−2 ≤ gi(x) + gi(x)7 ≤ 2, i = 1, . . . , `

−2 ≤ hi(x) + hi(x)7 ≤ 2, i = 1, . . . , `

−2 ≤ xj ≤ 2, j = 1, . . . , 3`

(5.1)

If δ � 1, the constraints involving gi(x) imply that x2
i +x2

`+i ≈ 1 while the constraints involv-
ing hi(x) imply that x2`+i ≈ 2xix`+i. This means that (xi, x`+i, x2`+i) ≈ (cosϕi, sinϕi, sin 2ϕi)
for some ϕi. The feasible set may therefore be interpreted as the Cartesian product of `
“snakes”, each living in three dimensions and with thickness of the order δ. The ` different
three-dimensional problems are all connected through the first constraint (involving the sum
over i) which is active in the optimal solution. Finally, the power 7 in the terms gi(x)7 and
hi(x)7 implies that the constraint functions increase rapidly outside the feasible set (i.e. out-
side the snakes). Together, all these things make the problem rather difficult to solve if the
following feasible, but far from optimal, starting point x(0) is chosen:

x
(0)
i = cos(αi +

π

12
), x

(0)
`+i = sin(αi +

π

12
), x

(0)
2`+i = sin(2αi +

π

6
), for i = 1, . . . , `.

With δ = 0.1 and ` = 10, the problem has 30 variables xj and 41 nonlinear inequality
constraints. The optimal objective value turns out to be f0(x̂) = −10.02298, while the
objective value for the starting point is f0(x(0)) = +9.55926. The problem is considered
to be solved when a point x(k) which satisfies the following requirements has been found:
−2 ≤ x

(k)
j ≤ 2 for all the 30 variables, fi(x(k)) ≤ 10−5 for all the 41 nonlinear constraints

(written as fi(x) ≤ 0), and f0(x(k)) ≤ f0(x̂) + 10−5 = −10.02297. In the optimal solution, all
the 30 variables are strictly between their upper and lower bounds, and 19 of the 41 nonlinear
constraints are satisfied with equality.

For GCMMA, with the default setting of the parameters described above, it took 39 outer
iterations to solve the problem.

The ordinary MMA, with the default setting of the parameters described above, in some sense
failed. Some iteration points became very much infeasible, and then it took a very long time
to solve the corresponding MMA subproblems. In spite of this, the complete problem was in
fact solved after 48 iteration (but where some iterations took a very long time). Later, after
playing with the parameters, it turned out that if the parameter 0.5 in (3.6) was changed to
0.1, the parameter 1.2 in (3.8) was changed to 1.0, and the parameter 0.7 in (3.8) was changed
to 0.95, then MMA solved the problem in 101 iterations without the numerical difficulties
mentioned above. But such a problem-dependent trial and error is of course not satisfactory!
Therefore, this example illustrates why GCMMA should be used instead of MMA.
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