

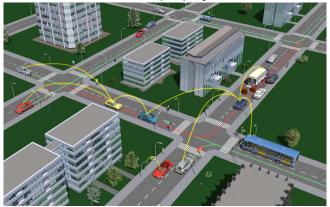

# Secure and Privacy Preserving Vehicular Communication Systems: Identity and Credential Management Infrastructure

Mohammad Khodaei Networked Systems Security Group (NSS)

November 1, 2016






### **Outline**

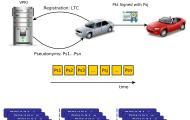
# Secure Vehicular Communication (VC) Systems

Problem Statement
System Model
Security and Privacy Analysis
Performance Evaluation
Summary of Contributions and Future Steps



# **Vehicular Communication (VC) Systems**




**Figure:** Photo Courtesy of the Car2Car Communication Consortium (C2C-CC)



# Security and Privacy for VC Systems<sup>1</sup>

# **Basic Requirements**

- Message authentication & integrity
- Message non-repudiation
- Access control
- Entity authentication
- Accountability
- Privacy protection





### Vehicular Public-Key Infrastructure (VPKI)

- Pseudonymous authentication
- Trusted Third Party (TTP):
  - Certification Authority (CA)
  - Issues credentials & binds users to their pseudonyms



# Security and Privacy for VC Systems (cont'd)

### Beacon packet

- Generate signature with SK₁
- 2. Append certificate
- Send packet

Header: *H*Payload: *m*Sig(*SK*<sub>1</sub>, *H*, *m*)

 $Cert(PK_1)$ 

- Validate certificate (if not previously done so)
- 2. Validate signature
- 3. Validate geo-stamp in the header
- 4. Accept/Reject packet





- Sign packets with the private key, corresponding to the current valid pseudonym
- Verify packets with the valid pseudonym
- Cryptographic operations in a Hardware Security Module (HSM)



### State-of-the-art

### Standardization and harmonization efforts

- ▶ IEEE 1609.2 [1], ETSI [2] and C2C-CC [3]
- VC related specifications for security and privacy-preserving architectures

# **Projects**

SEVECOM, EVITA, PRECIOSA, OVERSEE, DRIVE-C2X, Safety Pilot, PRESERVE, CAMP-VSC3

# **Proposals**

V-Token [4], CoPRA [5], SCMS [6], SEROSA [7], PUCA [8]



### **Outline**

Secure Vehicular Communication (VC) Systems

# **Problem Statement**

Security and Privacy Analysis
Performance Evaluation

**Summary of Contributions and Future Steps** 



# Problem Statement and Motivation The design of a VPKI

- Resilience
- Stronger adversarial model (than fully-trustworthy entities)
  - User privacy protection against "honest-but-curious" entities
  - User privacy enhancement and service unlinkability (inference of service provider or time)
- Pseudonym acquistion policies
  - How should each vehicle interact with the VPKI, e.g., how frequently and for how long?
  - Should each vehicle itself determine the pseudonym lifetime?
- Operation across multiple domains, thus a scalable design
- Efficiency and robustness



# Security and Privacy Requirements for the VPKI Protocols

- Authentication, communication integrity and confidentiality
- Authorization and access control
- Non-repudiation, accountability and eviction (revocation)
- Privacy
  - Anonymity (conditional)
  - Unlinkability
- Thwarting Sybil-based misbehavior
- Availability



### **Adversarial Model**

### **External adversaries**

#### Internal adversaries

# Stronger adversarial model

Protection against honest-but-curious VPKI entities

- Correct execution of protocols but motivated to profile users
- Concealing pseudonym provider identity and acquisition time, and reducing pseudonyms linkability (inference based on time)

Multiple VPKI entities could collude



### **Outline**

Secure Vehicular Communication (VC) Systems Problem Statement

# **System Model**

Security and Privacy Analysis
Performance Evaluation
Summary of Contributions and Future Steps



# **Secure VC System**

- Root Certification Authority (RCA)
- Long Term CA (LTCA)
- Pseudonym CA (PCA)
- Resolution Authority (RA)
- Lightweight Directory Access Protocol (LDAP)
- ► Roadside Unit (RSU)
- Trust established with RCA, or through cross certification

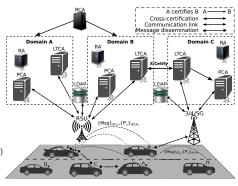



Figure: VPKI Overview



# **System Model**

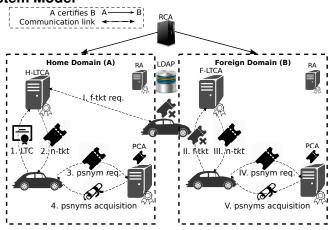
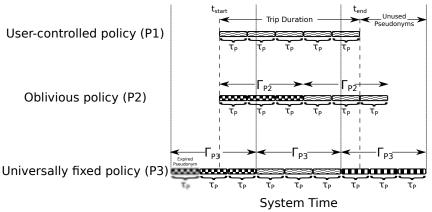
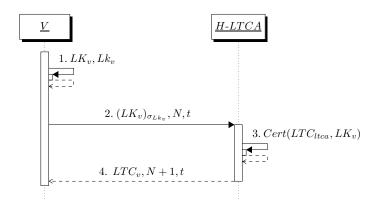
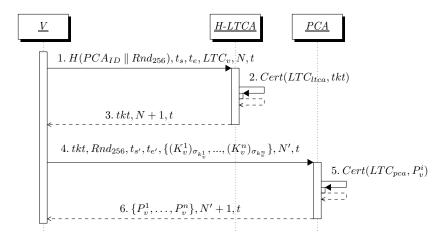




Figure: VPKI Architecture



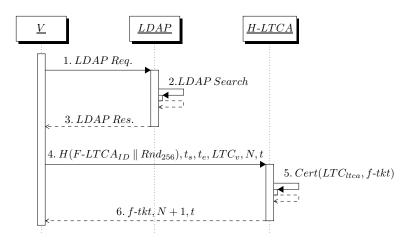

# **Pseudonym Acquisition Policies**





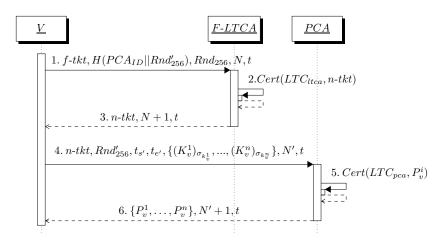

# Vehicle Registration and Long Term Certificate (LTC) Update





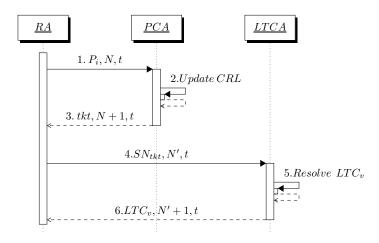

# **Ticket and Pseudonym Acquisition**






# **Roaming User: Foreign Ticket Authentication**






# Native Ticket and Pseudonym Acquisition in the Foreign Domain





# **Pseudonym Revocation and Resolution**



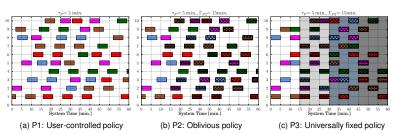


## **Outline**

Secure Vehicular Communication (VC) Systems
Problem Statement
System Model

**Security and Privacy Analysis** 

Performance Evaluation
Summary of Contributions and Future Steps




# **Security and Privacy Analysis**

- Communication integrity, confidentiality, and non-repudiation
  - Certificates, TLS and digital signatures
- Authentication, authorization and access control
  - LTCA is the policy decision and enforcement point
  - PCA grants the service
  - Security association discovery through LDAP
- Concealing PCAs, F-LTCA, actual pseudonym acquisition period
  - Sending H(PCA<sub>id</sub> || Rnd<sub>256</sub>), t<sub>s</sub>, t<sub>e</sub>, LTC<sub>v</sub> to the H-LTCA
  - ▶ PCA verifies if  $[t'_s, t'_e] \subseteq [t_s, t_e]$
- Thwarting Sybil-based misbehavior
  - LTCA never issues valid tickets with overlapping lifetime (for a given domain)
  - A ticket is bound to a specific PCA
  - PCA keeps records of ticket usage



# Linkability based on Timing Information of Credentials



- Non-overlapping pseudonym lifetimes from eavesdroppers' perspective
- P1 & P2: Distinct lifetimes per vehicle make linkability easier (requests/pseudonyms could act as user 'fingerprints')
- ▶ P3: Uniform pseudonym lifetime results in no distinction



## **Outline**

Secure Vehicular Communication (VC) Systems
Problem Statement
System Model
Security and Privacy Analysis

**Performance Evaluation** 

**Summary of Contributions and Future Steps** 



# **Experimental Setup (#1)**

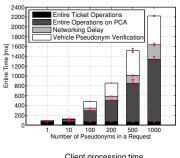
#### VPKI testbed

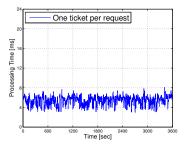
- Implementation in C++
- OpenSSL: Transport Layer Security (TLS) and Elliptic Curve Digital Signature Algorithm (ECDSA)-256 according to the standard [1]

### Network connectivity

- Varies depending on the actual OBU-VPKI connectivity
- Reliable connectivity to the VPKI (e.g., RSU, Cellular, opportunistic WiFi)

### **Table:** Servers and Clients Specifications


|                     | LTCA   | PCA    | RA     | Clients |
|---------------------|--------|--------|--------|---------|
| VM Number           | 2      | 5      | 1      | 25      |
| Dual-core CPU (Ghz) | 2.0    | 2.0    | 2.0    | 2.0     |
| BogoMips            | 4000   | 4000   | 4000   | 4000    |
| Memory              | 2GB    | 2GB    | 1GB    | 1GB     |
| Database            | MySQL  | MySQL  | MySQL  | MySQL   |
| Web Server          | Apache | Apache | Apache | -       |
| Load Balancer       | Apache | Apache | -      | -       |
| Emulated Threads    | -      | · -    | -      | 400     |
|                     | •      |        |        |         |


### Use cases

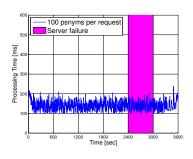
- Pseudonym provision
- Performing a DDoS attack

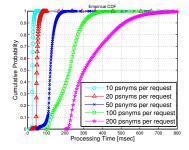


### **Client and LTCA Performance Evaluation**






Client processing time


LTCA performance

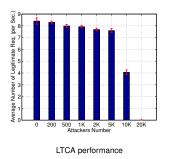
- Delay to obtain pseudonyms
- LTCA response time to issue a ticket

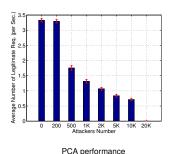


#### **PCA Performance Evaluation**






Issuing 100 pseudonyms per request


PCA performance under different configuration

- PCA response time, including a crash failure
- Efficient provision for pseudonyms, with different configurations
- ▶ Obtaining 200 pseudonyms:  $F_x$ (t=500)=0.9 or Pr{t≤500}=0.9



### The VPKI Servers under a DDoS Attack





- ▶ 10K legitimate vehicles, requesting 100 pseudonyms every 10 minutes
- ▶ Up to 20K attackers, sending requests every 10 seconds
- An LTCA is more resistant to DDoS than a PCA



# Experimental Setup (#2)

### Table: Mobility Traces Information

|                                       | TAPASCologne | LuST        |
|---------------------------------------|--------------|-------------|
| Number of vehicles                    | 75,576       | 138,259     |
| Number of trips                       | 75,576       | 287,939     |
| Duration of snapshot (hour)           | 24           | 24          |
| Available duration of snapshot (hour) | 2 (6-8 AM)   | 24          |
| Average trip duration (sec.)          | 590.49       | 692.81      |
| Total trip duration (sec.)            | 44,655,579   | 102,766,924 |

#### Main metric

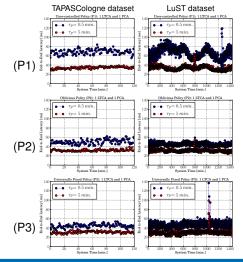
 End-to-end pseudonym acquisition latency from the initialization of ticket acquisition protocol till successful completion of pseudonym acquisition protocol

### **Table:** Servers & Clients Specifications

|                     | LTCA  | PCA   | Client |
|---------------------|-------|-------|--------|
| Number of entities  | 1     | 1     | 1      |
| Dual-core CPU (Ghz) | 2.0   | 2.0   | 2.0    |
| BogoMips            | 4000  | 4000  | 4000   |
| Memory              | 2GB   | 2GB   | 1GB    |
| Database            | MySQL | MySQL | MySQL  |

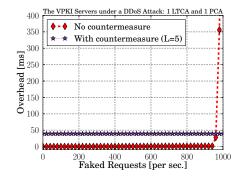
N.B. PRESERVE Nexcom boxes specs: dual-core 1.66 GHz, 2GB Memory




# End-to-end Latency for P1, P2, and P3

### Choice of parameters:

- Frequency of interaction and volume of workload to a PCA
- $\Gamma$  =5 min.,  $\tau_P$ =0.5 min., 5 min.


### LuST dataset ( $\tau_P = 0.5 \text{ min}$ ):

- P1:  $F_X(t = 167 ms) = 0.99$
- P2:  $F_X(t = 80 \text{ ms}) = 0.99$
- P3:  $F_X(t = 74 \text{ ms}) = 0.99$





### The VPKI Servers under a DDoS Attack



**Figure:** Overhead to obtain pseudonyms, LuST dataset with P1 ( $\tau_P = 5 \text{ min.}$ )



### **Outline**

Secure Vehicular Communication (VC) Systems
Problem Statement
System Model
Security and Privacy Analysis
Performance Evaluation

**Summary of Contributions and Future Steps** 



# **Summary of Contributions**

- 1. Facilitating multi-domain operation
- 2. Offering increased user privacy protection
  - Honest-but-curious system entities
  - Eliminating pseudonym linking based on timing information
- Eradication of Sybil-based misbehavior
- Proposing multiple generally applicable pseudonym acquisition policies
- 5. Detailed analysis of security and privacy protocols
- Extensive experimental evaluation
  - ► Efficiency, scalability, and robustness
  - Achieving significant performance improvement
  - Modest VMs can serve sizable areas or domain



# **Future Steps**

### **VPKI** enhancements

- Evaluation of the level of privacy, i.e., unlinkability, based on the timing information of the pseudonyms for each policy
- Evaluation of actual networking latency, e.g., OBU-RSU
- Rigorous analysis of the security and privacy protocols

### Efficient distribution of revocation information

How to disseminate pseudonyms validity information without interfering with vehicles operations?



# **Original Work**

- N. Alexiou, M. Laganà, S. Gisdakis, M. Khodaei, and P. Papadimitratos, "VeSPA: Vehicular Security and Privacy-preserving Architecture," in ACM HotWiSec, Budapest, Hungary, Apr. 2013.
- M. Khodaei, H. Jin, and P. Papadimitratos, "Towards Deploying a Scalable & Robust Vehicular Identity and Credential Management Infrastructure," in IEEE VNC, Paderborn, Germany, Dec. 2014.
- M. Khodaei and P. Papadimitratos, "The Key to Intelligent Transportation: Identity and Credential Management in Vehicular Communication Systems," IEEE VT Magazine, vol. 10, no. 4, pp. 63-69, Dec. 2015.
- M. Khodaei and P. Papadimitratos, "Evaluating On-demand Pseudonym Acquisition Policies in Vehicular Communication Systems," in ACM MobiHoc, Workshop on Internet of Vehicles and Vehicles of Internet (IoV-VoI), Paderborn, Germany, July 2016.
- M. Khodaei, H. Jin, and P. Papadimitratos, "SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems," Submitted to the IEEE Transactions on Intelligent Transportation Systems.



# Bibliography I

- "IEEE Standard for Wireless Access in Vehicular Environments Security Services for Applications and Management Messages," IEEE Std 1609.2-2016 (Revision of IEEE Std 1609.2-2013), Mar. 2016.
- [2] T. ETSI, "ETSI TS 103 097 v1. 1.1-Intelligent Transport Systems (ITS); Security; Security Header and Certificate Formats, Standard, TC ITS," Apr. 2013.
- [3] Car-to-Car Communication Consortium (C2C-CC), June 2013. [Online]. Available: http://www.car-2-car.org/
- [4] F. Schaub, F. Kargl, Z. Ma, and M. Weber, "V-tokens for Conditional Pseudonymity in VANETs," in IEEE WCNC, NJ, USA, Apr. 2010.
- [5] N. Bißmeyer, J. Petit, and K. M. Bayarou, "CoPRA: Conditional Pseudonym Resolution Algorithm in VANETs," in IEEE WONS, Banff, Canada, pp. 9–16, Mar. 2013.



# Bibliography II

- [6] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, "A Security Credential Management System for V2V Communications," in *IEEE VNC*, Boston, MA, pp. 1–8, Dec. 2013.
- [7] S. Gisdakis, M. Laganà, T. Giannetsos, and P. Papadimitratos, "SEROSA: SERvice Oriented Security Architecture for Vehicular Communications," in *IEEE VNC*, Boston, MA, USA, Dec. 2013.
- [8] D. Förster, H. Löhr, and F. Kargl, "PUCA: A Pseudonym Scheme with User-Controlled Anonymity for Vehicular Ad-Hoc Networks (VANET)," in IEEE VNC, Paderborn, Germany, Dec. 2014.
- [9] M. Khodaei, "Secure Vehicular Communication Systems: Design and Implementation of a Vehicular PKI (VPKI)," Master's thesis, Lab of Communication Networks (LCN), KTH University, Oct. 2012.
- [10] N. Alexiou, M. Laganà, S. Gisdakis, M. Khodaei, and P. Papadimitratos, "VeSPA: Vehicular Security and Privacy-preserving Architecture," in *Proceedings of the 2nd ACM workshop on Hot topics on wireless network security and privacy*, Budapest, Hungary, pp. 19–24, Apr. 2013.



# **Bibliography III**

- [11] M. Khodaei, H. Jin, and P. Papadimitratos, "Towards Deploying a Scalable & Robust Vehicular Identity and Credential Management Infrastructure," in *IEEE Vehicular Networking Conference (VNC)*, Paderborn, Germany, pp. 33–40, Dec. 2014.
- [12] M. Khodaei and P. Papadimitratos, "The Key to Intelligent Transportation: Identity and Credential Management in Vehicular Communication Systems," *IEEE VT Magazine*, vol. 10, no. 4, pp. 63–69, Dec. 2015.
- [13] —, "Evaluating On-demand Pseudonym Acquisition Policies in Vehicular Communication Systems," in Proceedings of the First International Workshop on Internet of Vehicles and Vehicles of Internet, Paderborn, Germany, pp. 7–12, July 2016.
- [14] "Preparing Secure Vehicle-to-X Communication Systems PRESERVE." [Online]. Available: http://www.preserve-project.eu/



# Secure and Privacy Preserving Vehicular Communication Systems: Identity and Credential Management Infrastructure

Licentiate Defense

Mohammad Khodaei Networked Systems Security Group (NSS) www.ee.kth.se/nss