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Abstract

Formal analysis of security protocols is becoming increasingly relevant. In
formal analysis, a model is created of a protocol or system, and propositions
about the security of the model are written. A program is then used to ver-
ify that the propositions hold, or find examples of where they do not. This
report uses formal methods to analyse the authentication aspect of a proto-
col that allows private individuals, enterprises, and systems to securely and
asynchronously share sensitive data. Unpublished, early drafts of the proto-
col were studied and algorithms described in it were verified with the help of
the formal verification tool Tamarin Prover. The analysis revealed two replay
attacks. Improvements to the protocol were suggested based on this analysis.
In later versions of the protocol, the improvements have been implemented by
the protocol developers.

Keywords: formal verification, Tamarin Prover, formal analysis, informa-
tion security, authentication



Sammanfattning

Det blir alltmer relevant med formell analys av sidkerhetsprotokoll. I formell
analys sd skapas en modell av ett protokoll eller ett system, och pastdenden
om modellens sédkerhet skrivs. Ett program anvéinds sedan for att verifiera att
pastdendena giller, eller for att hitta exempel dér de inte géller.

Den hir rapporten avinder formella metoder for att analysera autentise-
ringsaspekten av ett protokoll som tillater privatpersoner, foretag och system
att asynkront dela kinslig information pa ett sékert sitt.

Opublicerade och tidiga utkast av protokollet studerades och de algoritmer
som beskrivs i protokollet verifierades med hjilp av Tamarin Prover. Analy-
sen avslojade tva aterspelningsattacker. Forbattringar till protokollet foreslogs
baserat pd denna analys. I senare versioner har protokollutvecklarna imple-
menterat forslagen.

Nyckelord: formell verifiering, Tamarin Prover, formell analys, informa-
tionssikerhet, autentisering
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Chapter 1

Introduction

Secure Data Sharing (SDS) [1] is a communication protocol that enables pri-
vate persons, enterprises and systems to securely share sensitive data in an
asynchronous and distributed manner. It is being developed by a Stockholm
based startup company. Targets users include both private individuals and en-
terprises. The security of such a protocol is vital, and the goal of the protocol
is to guarantee confidentiality, integrity, authenticity and authorization. This
report aims to verify that the protocol ensures authenticity of messages. That
is, that it is not possible to masquerade as another user within the system. The
limitation to focus on authenticity is due to time constraints.

It is becoming more and more relevant to use formal verification meth-
ods to verify the proposed security properties of a protocol. This is because
as systems grow more powerful, communication protocols are becoming in-
creasingly complex. The more complex a system gets, the harder it is to reason
about its security and reliability. During conventional development one may
formulate a set of requirements for the system, though it is seldom proven that
these requirements are in fact fulfilled. If a system is to be truly reliable its
key requirements should be verified using formal methods.

A formally analysed system may also be a competitive advantage for the
company. It may give confidence to potential customers and partners who
request security. In addition, a potential exploit in the company’s systems
may cause a consumer backlash or the termination of partnership agreements.
Formal analysis can avoid this by identifying potential security issues before
they are ever deployed.

Our work is focused on authenticity, which is a key aspect of the SDS pro-
tocol and one of the major information security aspects in general. A message
is authentic if it is authored by the apparent sender, and authentication is the
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process of ensuring authenticity. Authentication is critical to security because
an attacker could otherwise pretend to be another user, and for instance gain
unauthorized access to data.

In this report we use formal analysis to examine the protocol’s security
guarantees. To perform the analysis we first identify key concerns described
in the protocol. The system and its algorithms are then modelled using the
model checking tool Tamarin Prover, which is specifically built with security
protocols in mind. The identified key concerns are translated into lemmas—
propositions about the algorithm and system. Tamarin Prover is then used to
verify that the propositions hold, or provide counter examples.

Chapter 2 begins by exploring how formal analysis can be used to verify
the correctness of a computer system, and its limitations. The chapter also
contains a motivation of why Tamarin Prover was used for the analysis of the
studied protocol. Lastly, there is an introduction to information security and
relevant terminology. The SDS protocol is introduced in chapter 3. There is
a high level introduction to how it works and its motivation. The security re-
quirements of the protocol are also explained. Methodology is explained in
chapter 4. Assumptions made during the modelling of the protocol are listed
and explained. The result of our work is explained in chapter 5. Each modelled
part of the protocol and associated lemmas are described. Potential improve-
ments to the protocol are suggested based on the analysis of the lemmas. The
report concludes with chapter 6, which contains reflections on model checking
and suggestions for future work.

1.1 Research question

Does the authentication in the Secure Data Sharing protocol satisfy its in-
tended security goals? We analyse authentication in communications between
a device and its home server. Other security requirements, such as availability
and authorization are not analysed.
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Background

This chapter provides a review of relevant information for understanding the
rest of this document. Concepts and terminology introduced here will be used
later on.

2.1 Verification

In order to verify a computer system, three different parts are needed.
* A framework for modelling the system.
* A specification language to describe the properties to be verified.

* A verification method that can confirm whether or not the modeled sys-
tem satisfies the proposed properties.

Approaches to verification can be proof-based or model-based. This report
deals with model-based verification techniques. A model-based approach can
be described as establishing whether a model satisfies a specification. Model-
checking is based on temporal logic. A fundamental idea in temporal logic,
and therefore model checking, is that certain properties can be true or false at
different points in time, depending on the state of the model [2].

Formal analysis relies on the analyser coming up with appropriate lem-
mas. This report makes no claims to prove the existence or non-existence of
all potential security vulnerabilities in the security protocol, and instead tries
to identify critical sections and propositions to verify. Assumptions are made
about a system and how it works; thus changed or incorrect assumptions in-
validate the model and the lemmas written for it.
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The following subsections provide a brief description of some notable ver-
ification tools.

TLA+

TLA+ was created for concurrent and distributed systems [3]. Such systems
are difficult to verify with the use of runtime tests as differences in timings
and hardware make them non-deterministic. A concurrent system can show
different characteristics and yield a different result from time to time, even if
the input to the system is the same. TLA+ is based on temporal logic, and the
execution of a system is represented as a sequence of discrete changes in state
(3, 4].

The hosting provider Amazon Web Services use TLA+ to aid in the de-
sign of their systems, described in [5]. The use of formal methods has helped
AWS find logic bugs, summarized in a table in the paper. However, they have
not managed to find design bugs causing availability problems, for instance
sustained retry requests when a server is too slow.

ProVerif

ProVerif is a model checking tool created to formally verify cryptographic
protocols. It uses a Dolev-Yao adversary [6], a state machine with control
of all messages sent over the network [7]. Such a network is represented by
state machines that exchange messages. Messages are elements of an algebraic
system. ProVerif is taught at the Parisian Master of Research in Computer
Science [8]. ProScript [9] is a domain specific programming language for
writing cryptographic protocol code that can automatically be translated into
a ProVerif model.

ProVerif has been used to analyse the security of the 5G authentication
protocol [10], the Signal Protocol used in the popular messaging app [9] and
the SPPEAR architecture for participatory sensing systems [11].

Tamarin Prover

Tamarin Prover is a formal verification tool for security protocols developed by
researchers at ETH Ziirich. It is heavily inspired by ProVerif, and is similarly
used for analysis of cryptographic protocols. It also models a network of the
Dolev-Yao model [12]. The creators of Tamarin emphasize its ability to easily
deal with security properties based on the state of the protocol, in contrast to
ProVerif [13].
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Tamarin Prover has, like ProVerif, been used to analyse several security
protocols. For instance, the 5G authentication protocol [14] and TLS 1.3 [15].
The report on analysis of TLS 1.3 cite Tamarin’s support of the Diffie-Hellman
protocol, its inherent support of non-monotonic state, its visualizations and
graphical user interface as reasons for choosing it over similar tools [15].

Since Tamarin is specifically designed to work with security protocols and
has clear visualizations, it was chosen over similar tools for our analysis of the
SDS protocol.

Alloy

Alloy is, in contrast to for example TLA+ or Tamarin Prover, a modelling lan-
guage based on relational logic. Itis primarily static (as in, there is no notion of
time), and shares similarities with UML and Object Oriented Programming in
how it models the world [see 16, File System Lesson I]. Alloy specifications
can be verified by Alloy Analyzer, a tool that translates these specifications
into a boolean expression. The expression can then be analyzed by a SAT
solver in an attempt to find instances that satisfy the expression. Alloy was
developed as a general-purpose specification language for software engineer-
ing and data modelling. It has been used in many fields, including scheduling,
cryptography, and instant messaging [17].

2.2 Introduction to Tamarin Prover

In Tamarin Prover, the system is modeled as a set of states. At any given
point, the state of the system can be described as a multiset of facts. In order
to transition between states, a rewrite system, consisting of rules, is defined.
A rule consists of three sequences of facts - a sequence describing what facts
must hold in order to invoke the rule, a sequence describing the labels of the
transition—action facts—and one sequence describing which facts hold after
the invocation of the rule. Any of these sequences may be empty [12].

Once a model has been set up, lemmas are written. Lemmas define the
security properties to verify and evaluate traces of action facts of an execution
[12]. The set of traces can be limited with the use of restrictions.

Tamarin can in most cases automatically compute whether a given model
satisfies its specification. In other cases, it may be necessary to manually guide
the computation. This is because the automatic prover is not guarateed to
terminate for all lemmas. For a complete explained Tamarin example, refer to
appendix A.
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2.3 Information security principles

This section provides a brief review of the basic principles of information secu-
rity. The terminology described here is used in our specification of the security
goals of the SDS protocol.

First, we introduce the CIA triad: confidentiality, integrity and availability.
These form the most fundamental principles. We then continue to explain
additional concepts such as authenticity and authorization.

Confidentiality

Confidentiality refers to the ability to protect data from being read by unautho-
rized users [18]. Confidentiality can, for example, be lost if a device is stolen,
giving an adversary access to the system. Sending sensitive data unencrypted
might also lead to unauthorized users gaining access to it.

A breach of confidentiality is called an interception attack. Interception
attacks can be difficult to detect as an end user. From the legitimate user’s
point of view, everything may seem to be in order [18].

Integrity

Integrity is about the consistency and soundness of the sensitive data [18].
Unauthorized changes, deletions or additions to data should not be possible.
The integrity of data can be compromised by an adversary, but it can also
be compromised by authorized users making incorrect changes to the data, a
corrupt file system, or hardware failure.

Modification attacks tamper with data and are usually considered attacks
on integrity [18]. If the data being tampered with is an important configuration
file, it may lead to loss of availability or confidentiality.

Availability

Availability refers to the ability to access data when it’s needed [18]. Hardware
failure or denial of service attacks by an adversary are common situations in
which availability is harmed.

Interruption attacks are usually attacks on availability. A denial of service
attack is primarily a way to temporarily prevent legitimate users from access-
ing sensitive resources. However, an interruption attack can potentially lead
to data loss or corruption, in which case it can be classified as an attack on
integrity [18].
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In a fabrication attack, garbage data is generated to either affect the avail-
ability of a system through overloading, or the integrity of data, for example
by filling a database with fabricated information [18].

Authenticity

The principle of authenticity ensures that a message can be properly attributed
to its author. This can be enforced through the use of digital signatures [18].
The process of confirming the authenticity of a message is called authentica-
tion.

Lowe’s hierarchy of authentication formalizes the concept of authenticity
into four levels [19]. These can be used as a framework for analysis of authen-
tication protocols. The following list summarizes the four levels.

1. Aliveness: The apparent author has at some point sent a message. This
level is achieved by signing a constant value.

2. Weak agreement: The apparent author has at some point sent a mes-
sage to the recipient. This level is achieved by signing the identity of the
recipient.

3. Non-injective agreement: The apparent author has at some point sent a
message to the recipient with the apparent content. This level is achieved
by signing the identity of the recipient concatenated with the contents
of the message.

4. Injective agreement: The apparent author has at exactly one point sent
amessage to the recipient with the apparent content. This level is achieved
by including a unique value in the message and signing the identity of
the recipient concatenated with the contents of the message.

Any of these levels can be strengthened by additionally ensuring recent-
ness. This means that the recipient can verify that the signature was made
recently [19]. Itis achieved by including a time stamp in the signature. Recent
aliveness is for instance a stronger version of the first level of authentication.

A major attack against authenticity is the replay attack. This is when an
authentic message is resent out of its original context by an attacker [20]. For
instance, if a protocol only ensures weak agreement, an attacker may masquer-
ade as another user by replaying their message, while modifying its content.
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Authorization

Authorization is the process of controlling users’ access to resources. It differs
from authentication in that authentication is about verifying identity, while
authorization is about enforcing a policy [21].

Proper authorization relies on correct authentication and integrity of mes-
sages. As such, an attack on those aspects may be leveraged to bypass autho-
rization.

2.4 Digital signatures

Digital signatures can be used to ensure integrity, authenticity and non-repudiation.
The following section is a primer on how digital signatures work, based on
[22].

Digital signatures rely on asymmetric cryptography where each party has
an associated private and public key. A message encrypted with the private
key can be decrypted using the public key, and vice versa. To sign a message,
the sender generates a hash of the message, and then use their private key
to encrypt the hash. This result is called the signature. Any recipient can
then verify the signature of the message by decrypting the signature with the
sender’s public key and then compare it with the hash value of the received
message.



Chapter 3

Protocol specification

This chapter provides a description of the SDS protocol. The latest version
is specified in a publicly available document [1]. During this degree project
work, the protocol was still in development. Where relevant, we describe parts
of the protocol both at the time of our analysis, and at the time of publishing
this report.

The purpose of the protocol is to provide a way for users, or groups of users,
to share data while maintaining confidentiality and integrity. Users have fine-
grained access control to their data, allowing it to be shared in a secure way. A
copy of the data is stored on a server in order for clients to be able to participate
asynchronously. In the most secure mode, direct access to a server does not
enable viewing or editing the data on it. In other words, only the client devices
need to be trusted in order for the data to remain secure.

The protocol can function in two separate modes, end-to-end or basic.
Only stateful devices (such as a smartphone application) can use the end-to-
end mode. In the mode, data is sent over secure channels and stored encrypted
on the server. Therefore, the mode provides the full security guarantees of the
protocol. The basic mode supports both stateful and stateless devices (such
as a web browser). Data is still sent through secure channels, but it is stored
unencrypted on the server. Shortly before publishing this report, basic mode
was removed from the protocol.

In parallel to SDS, the startup company is developing an application for
exchanging contact information and other data, which is built upon the SDS
protocol. This product is a smartphone application where participants verify
each other’s identity by physical connection. This is implemented by one of
the parties scanning a QR code on the other’s screen. A nonce included in the
QR code is used to initiate a key exchange. The end-to-end mode of SDS then
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provides secure transmission, and storage of the data on the company’s servers
for synchronization purposes.

3.1 System model

The main entities participating in the system are called devices and home
servers. End-users use a device to view and edit data in the system. Each user
may control multiple devices. A device may also be referred to as a client.
Devices may for instance be smartphones or web browsers.

Home servers provide storage and synchronization in the system. A home
server may be controlled by an end-user, by the company, or by a third party.
In the end-to-end mode, the controlling entity cannot view or edit data stored
on the server.

Devices communicate with home servers through a bidirectional channel
secured using TLS. The home server has a certificate. Home servers may
additionally communicate with each other using TLS as well. TLS stands for
Transport Layer Security and is a communication protocol providing confi-
dentiality and integrity of data transfer [23].

3.2 Data model

This section provides a simplified high level overview of the protocol’s data
model. A complete description is provided by the specification [1]. Relevant
details are presented together with the analysis in chapter 5.

In SDS, data is organized into objects. Objects contain an arbitrary number
of data blobs called fields. Each object is represented by a stream of events.
The messages sent over the network in the protocol contain lists of events. This
model allows participants to exchange only parts of objects, and only the new
events need to be transmitted. There are several types of events for describing
different types of changes to an object.

* Owner event: Change the object’s owner. The owner has full access
rights to the object.

 Patch event: Update the data in a field of the object.

* Delete event: Remove the object.
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* Access event: Grant users additional rights to the object. This can be on
the level of read, write or admin and either for one single field or for all
fields.

* Reset event: Remove access rights to a field.

The access rights to an object is defined by the owner, access and reset
events. Together these allow the users to specify an ACL (access control list).
As an example, an object may represent a user’s profile. Each field would
contain an element of the profile, for instance a picture or their home address.
To share their home address with another user, the profile owner would add an
access event granting them read rights to the field containing the home address.

3.3 Security requirements

The trusted computing base of the system is the user’s device. The system
must maintain confidentiality, integrity, authenticity and authorization. These
principles must hold even in the case of an untrusted home server.

There is no requirement of recent authenticity as clients may participate
asynchronously and thus receive messages long after they were sent. Anonymity
and pseudonymity are not goals for the system.

If the system is not secure, the confidentiality and integrity of sensitive
user data could be compromised.



Chapter 4
Methods

In the first part of the study, an overview of relevant literature was conducted.
We investigated popular tools for formal analysis, and the theory of informa-
tion security. The results of the literature study formed the basis for chapter 2,
and informed the continued work and the design of the analysis methodology.
The principles presented in section 2.3 were used to formulate the security
requirements of the protocol.

In the second part of the study, we read unpublished draft versions of the
SDS protocol. They contained detailed descriptions of algorithms and data
structures used in the system. For example, an algorithm can describe how
user authentication is carried out.

The system was then modeled in Tamarin Prover with the use of rules.
Sanity checks—Ilemmas that confirm that the expected behavior is possible
within a model—were written. These checks gave confidence that the model
was correct, and helped give feedback when something was incorrect.

We identified authenticity requirements of protocol messages from their
descriptions in the specification. These properties were expressed in Tamarin
Prover using lemmas. Tamarin was then used to analyse the model to prove
that the lemmas hold, or find counter examples.

In cases where the authentication was insufficient, we discussed potential
changes to the protocol to provide stronger authenticity. Our suggestions were
then communicated to the company.

4.1 Modelling assumptions

This section presents some general choices and assumptions made during the
modelling process.

12
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* The specification allows for both email and phone numbers to be used.
We choose to use email terminology in the model, since they are effec-
tively interchangeable at this level of abstraction. Email addresses were
assumed to be public, since we cannot assume an adversary would not
be able to find or guess this from other channels.

* The model of the adversary is a Dolev-Yao adversary with complete con-
trol over the communication channel between a device and its home
server. The adversary can read messages, inject new messages, and
modify or delete messages. That is, when analysing the end-to-end
mode we assume that the HTTPS channel between client and server is
insecure. For instance the server itself may be controlled by an untrusted

party.

* We assume clients ignore malformed messages. This includes among
other things invalid signatures and unauthorized access changes.

* In the protocol, there may be multiple devices per user participating
concurrently. We limit the scope of our model by only considering the
case where a user has a single device.



Chapter 5

Results

Version 0.03 and parts of version 0.04 of the SDS protocol were analysed. A
model was created with Tamarin Prover and lemmas were written to specify
and verify the security properties of the modeled protocol'.

In our Tamarin model, persistent facts allow users to access each other’s
public keys. Built-in functionality is used to generate signatures and validate
them. Their correctness during the execution of an algorithm is enforced with
the use of restrictions. Restrictions are also used to keep the set of possible
executions relevant. For example, a restriction is used to ensure that Tamarin
Prover does not consider scenarios where an user fails to authorize, yet is given
access to the system. In the protocol, a user who is known to be unauthorized
would not be granted access to the system, and therefore it is not relevant for
the analyzer to consider such scenarios.

The analysis identified two replay attacks and verified that the basic mode
fulfills its security requirements.

After receiving preliminary drafts of this thesis, the company modified the
protocol to implement our proposed improvements. In this chapter we describe
our analysis and any resulting changes to the protocol. Each part and its model
are described briefly. For a detailed description of the current version of the
protocol refer to the specification [1].

5.1 Owner event

A data object, or just object, consists of fields with data. An object can be
shared between users, and different users can have different access levels to

'The complete code is available at https://github.com/samhedin/formal_
analysis_of_communication_model

14
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the object. Each object has one single owner, and ownership of an object can
be transferred with the use of an owner event.

Owner events are authenticated using a digital signature. In the analysed
version of the protocol, 0.03, the signature was computed over the concatena-
tion of the user ids of the previous owner and the new owner, and the object
id.

Three Tamarin rules are used to model the owner event. The creation of
an object is modeled by the rule create_object. When an object is cre-
ated the owner event signature is sent using the Out fact and the ownership is
recorded using the fact LocalOwner. Therule receive_owner takesina
signature and records the stated object owner in a LocalOwner fact. Finally,
the change_owner rule allows the owner of an already existing object to be
changed.

Several restrictions are used to remove degenerate edge cases from the
model. For instance the create_once restriction is used to make sure that
an object can be created only once, and the change_to_new_owner re-
striction ensures that the new owner is not the same as the old owner in the
chage_owner rule.

Lemmas

* private_key_secret: Ensure the confidentiality of the private key
used for signing the event. This proves that the adversary cannot obtain
the signing key and break authenticity that way.

* local_owner_is_authentic: Show thatthe origin of owner events
is authentic. In this case, we proved that the signature provides non-
injective agreement.

Non-injective agreement means that the apparent owner at some point
actually was the owner, however the signature is not unique per event.
Because the signature may be reused, it is possible to fake ownership if
one was previously the owner of the object through a replay attack.

For example, Alice is the original owner and transfers ownership to Bob.
If ownership later is transferred back to Alice, Bob can take ownership of
the object once more by copying the signature from the first ownership

transfer. An example of a replay attack such as this can be seen in Figure
5.1.

A way to remedy this is to make signatures unique for each event. For
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instance, an incrementing serial number could be added to each signa-
ture.

Result The signing key cannot be obtained by an attacker. The owner event
provided a weaker form of authentication in the studied version of the proto-
col. In version 0.06 of the protocol, an incrementing number was added to the
signature to enforce ordering of owner events and provide stronger authentic-
ity, based on our suggestion. Reset events had a similar issue, which was also
resolved in the same manner.

5.2 Access event

An access event modifies access rights to an entire object or for specific fields
in that object. The event contains values which describe if access rights should
be edited for the entire object, or only for specific fields. It contains informa-
tion about which users should be given what rights.

Access events are authenticated using a digital signature. In version 0.03
the signature was computed over the concatenation of the affected label, the
user id of the user making the change, the device number, a counter value, and
the list of users and what access level they are granted.

The model for access events builds upon the model for owner events. Dif-
ferent access levels are not modeled since they do not affect the authenticity
of the messages.

Three additional Tamarin rules model the access event. Granting access to
an object is modeled by the send_access_event rule. It can be executed
by a user who already has access to the object, who sends the signature using
an Out fact. The receive_access_event rule is then used to receive
and verify the event and signature. The LocalAccess fact is used to record
the access level of each user. The rule owner_to_access acts as a bridge
between the access and owner models, it transforms a LocalOwner fact into
a LocalAccess fact so the owner is considered to have access as well.

Lemmas

* can_receive: This is a sanity check lemma. It verifies that a user
with the correct access rights can grant another user similar access rights.
For example, the owner of an object should be able to assign a user as
an administrator of that object.
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The lemma was not originally intended to test any security properties.
However, the trace it generated made us realise that the access event
does not provide full agreement. In the generated trace, two objects
were created, but the access event signature from one object was copied
from the other object. Since the signature did not include the object
identifier, it could be used in a replay attack to modify access rights for
another object. An example of a similar replay attack can be seen in
Figure 5.1.

This is an authenticity problem because the signature may be reused
in the wrong context. A consequence of weak authentication may be
harmed integrity of access right metadata, as a user could incorrectly
be given authorization to read, modify, or even delete an object which it
should not have access to. This can be remedied by making the signature
in the access event include the object identifier.

Result Because we discovered an issue with authentication during the mod-
eling phase, we did not design lemmas to prove authenticity of access events.
In version 0.06 of the protocol, the object identifier was added to the signature,
based on our suggestion. Thus the identified vulnerability no longer exists.

Bob Alice Home Server

grantAccess(Alice_sign, Bob, object, ...)

revokeAccess(Alice_sign, Bob, object, ...)

grantAccess(Alice_sign, Bob, object, ...) (Replay attack)

Figure 5.1: The diagram shows an example of a possible exploit which exists
when signatures can be re-used between events. Alice wishes to grant some
level of access of an object to Bob. Alice does this by creating and signing
the event grantAccessEvent with Alice_sign. Shortly thereafter, Alice revokes
the previously granted access with revokeAccess. Later, Bob copies Alice’s
signature and uses it to grant himself illegitimate access to the object.
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5.3 Registration and authentication in basic
mode

In the basic mode, users can register and authenticate with both stateless and
stateful devices. Public key cryptography is not used, instead a user’s identity
is their email address or phone number. For the sake of brevity we will assume
that email is used. The purpose of the following procedure is to verify that API
requests to the home server originate from the claimed user. In this case, with
lower security requirements, the email channel and HTTPS channel between
server and client are assumed to be secure.

Registration and authentication starts with the email address being sent to
the home server. The home server responds by sending a verification link to
the specified email address. The link expires within 10 minutes. When the
user clicks the link, the server can match the URL to the user id, and thus
conclude the request to be authentic. In that case, the server returns a session
key which is used to authenticate further requests.

Note that the security requirements for basic mode differ from the end-to-
end mode. In the basic mode, the home server is assumed to be honest.

rule create_user:
[ClickOnLink (1ink),
ServerSentEmail (Semail, link),
Fr (~sessionKey), Fr (~userid)]

——[SessionKey (~userid, ~sessionKey),
NewUser ('t’')]—->
[Session (~userid, ~sessionKey),

!User (~userid, $email) ]

Figure 5.2: Rule to create a new session key, once a user has clicked a verifi-
cation email.

Seven Tamarin rules are used in the model. There is a direct correspon-
dence between therules fresh _verification_ code,click_on_link,
verify_user and create_user and the steps described in the specifi-
cation. The additional rules read_email and write_email were used to
test what would happen if the adversary could read or write to the email inbox.
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Therule reveal user_email givesthe adversary knowledge of the email
address for a given user id.

Lemmas

* can_not_compromise_session_key: The lemma states that if
the adversary can not obtain the session key. This assumes that the ad-
versary does not have access to the email inbox until after the session is
established. Since the session key is used as a form of authentication in
subsequent operations of the protocol, this ensures that authenticity is
upheld.

Result Under the assumption that the user’s email is secure during the pro-
cedure, an attacker cannot gain access to the session key. Thus, authenticity is
upheld. This level of security is similar to services with email password reset.



Chapter 6

Conclusion

In this chapter, we answer our research question and present some of our gen-
eral learnings from the project, as well as future work.

Our analysis of the end-to-end mode revealed two replay attacks on the au-
thentication of an unpublished draft version of the SDS protocol. We can thus
conclude that the authentication in the analysed version did not completely sat-
isfy its intended security goals. The identified issues have since been resolved
based on our suggestions.

Our analysis of the basic mode proved the security of the authentication
process, assuming that the user’s email is not compromised at the time of au-
thentication. We can thus conclude that it satisfies its intended security goals.

Since we were able to identify real vulnerabilities in the SDS protocol,
we believe that the presented methodology is a viable way to analyse security
protocols in general. However, as the model grew larger, the automatic anal-
ysis of lemmas would often fail to terminate. This was partly remedied with
the use of restrictions and by dividing the model into separate files, all anal-
ysed independently, but it is not clear that these methods are always viable.
An experienced user of Tamarin Prover might be able to restrict and guide
the analysis even further, but a beginner might find themselves at a loss for
solutions for an analysis that refuses to terminate.

In some cases, the automated verification may not even be the greatest
value of the methodology. Modeling a protocol in Tamarin Prover requires
great attention to its details, and we could sometimes identify issues during
modeling, before even running the analysis tool.

During the analysis work, we also learned the importance of a clear un-
derstanding of the security requirements of the studied protocol. Without the
terminology and framework of concepts such as the CIA triad and Lowe’s hi-
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erarchy it is hard to do a relevant analysis. Such analysis would be easier if
all protocol specifications included detailed statements of intended security
guarantees, but that is probably unlikely in practice due to the amount of work
required.

6.1 Future work

Our work lead to several changes in later versions of the protocol. To ensure
the new authentication is correct, another analysis like the one we performed
may be carried out on the current protocol version.

For a more complete picture of the security of the SDS protocol, additional
security aspects should be analysed. The protocol is, apart from authenticity,
also intended to provide confidentiality, integrity and authorization. These can
all be analysed using the same method as in this report.

For a more thorough analysis, the protocol may wish to receive a Common
Criteria Certification. With common criteria, a system is evaluated against a
standardized document with security requirements. Evaluating a system with
the use of standard security requirements makes it easier for potential users to
compare a system with its competitors. [24].

Another direction is to see if this type of analysis can be made easier. For
instance, if it is possible to implement the SDS protocol using ProScript [9]
or other types of verification tools. Such a model could be used to verify our
results or expand the scope by analysing other security aspects of the protocol.
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Appendix A

Tamarin example

This appendix will provide an example of Tamarin usage. It is meant to serve
as a quick introduction for readers who are not familiar with the tool. We use
the Diffie-Hellman key exchange protocol to illustrate the basics, because it is
fairly simple.

First, we establish a model of the protocol using rules. Each rule has a
name, and then a specification of the rewriting rule. The first bracketed list is
the prerequisites, followed by optional action facts, followed by the resulting
facts.

rule Gen_secret:
[ Fr(~n) ]
—-—[ Secret(~n) ]->
[ Nonce(~n) ]

rule Firstl:
[ Nonce(~n), Fr(~tid) ]
—_>
[ Out(’g’*~n), First_waiting(~tid, ~n) ]

In the example, we use the rule Gen_secret to specify that a nonce is gen-
erated from a fresh random value. We also label the value as secret. This will
later be used in the proof. The rule Firstl defines the first part of the protocol.
The first actor generates a nonce n and sends g™ out to the network. The value
g is a public constant, which is denoted by surrounding it with apostrophes.
We also use the fact First_waiting to remember in the state that the first actor
is waiting for a response, and tie this fact to the unique thread id tid.

rule Second:
[ Nonce(~m), In(fp) ]
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——[ SharedKey (fp”~m), Role(’s’) ]->
[ Out(’g’"~m) ]

rule First2:
[ First_waiting(~tid, ~n), In(sp) |
——[ SharedKey (sp”~n), Role(’f’) ]->
[]

In the next step of the protocol, the second actor receives the message from
the first actor and generates its own nonce. At this stage the second actor can
calculate the shared key, which is stored as an action fact. Then the value g
is sent back to the first actor. Now the first actor receives the message and
calculates the same shared key.

With the model specified, we now proceed to specify the properties we
want to prove. It is good practice to begin with a sanity check to make sure
that the protocol as specified is executable. Here we say that there is a trace
where both actors end up with a shared key. Ex is the existential qualifier and
#i and #j are temporal variables, where @i means "at time #i".

lemma can_end_up_with_same_key:
exists —trace
"Ex k #i #j.
Role(’s’) @i & SharedKey(k) @i &
Role(’f’) @j & SharedKey (k) @j"

Next, we specify what the adversary cannot know. The lemma secrecy says
that any value marked with the Secret action fact is not known by the adversary.
The action fact K(n) denotes that the adversary knows n. In our case, we have
said that the nonce is a secret.

For the shared key we have used another approach. Here we say that when-
ever there is a shared key, it is unknown by the adversary.

lemma secrecy:
"All n #i.
Secret(n) @ #i ==>
not(Ex #j. K(n) @ #j)"

lemma key_secret:
"All k #i #j.
SharedKey (k) @i & Role(’f’) @i &
SharedKey (k) @j & Role(’s’) @] ==>
not (Ex #r. K(k) @r)"
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This theory is now complete. It can be verified using the tamarin-prover
executable.
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