
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2021

A Cloud-native Vehicular
Public Key Infrastructure
Towards a Highly-available and Dynamically-
scalable VPKIaaS

HAMID NOROOZI

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

A Cloud-native Vehicular
Public Key Infrastructure

Towards a Highly-available and
Dynamically-scalable VPKIaaS

HAMID NOROOZI

Master’s Programme in Computer Science
Date: May 20, 2021
Supervisor: Mohammad Khodaei
Examiner: Panos Papadimitratos
School of Electrical Engineering and Computer Science
Swedish title: En cloud-native public key infrastruktur för fordon:
För ett VPKI med hög tillgänglihhet och dynamisk skalbarhet

iii

Abstract
Efforts towards standardization of Vehicular Communication Systems (VCSs)
have been conclusive on the use ofVehicular Public-Key Infrastructure (VPKI)
for the establishment of trust among network participants. Employing VPKI
in Vehicular Communication (VC) guarantees the integrity and authenticity of
Cooperative Awareness Messages (CAMs) and Decentralized Environmental
Notification Messages (DENMs). It also offers a level of privacy for vehi-
cles as VPKI provides them with a set of non-linkable short-lived certificates,
called pseudonyms, which are used to sign outgoing messages by vehicles
while they communicate with other vehicles referred to as Vehicle-to-Vehicle
(V2V) or RoadsideUnits (RSUs) referred to asVehicle-to-Infrastructure (V2I).

Each vehicle uses a pseudonym for its lifetime and by switching to a not-
previously-used pseudonym, it continues to communicate without risking its
privacy. There have been two approaches suggested by the literature on how
to provide vehicles with pseudonyms. One is the so-called pre-loading mode,
suggesting to pre-load vehicles with all pseudonyms they need, which in-
creases the cost of revocation in case they are compromised. The other one
is the on-demand mode, suggesting a real-time offering of pseudonyms by
VPKI at vehicles request e.g., on starting each trip. Choosing the on-demand
approach imposes a considerable burden of availability and resilience onVPKI
services.

In this work, we are confronting the problems regarding a large-scale de-
ployment of an on-demandVPKI that is resilient, highly available, and dynam-
ically scalable. In order to achieve that, by leveraging state-of-the-art tools
and design paradigms, we have enhanced a VPKI system to ensure that it is
capable of meeting enterprise-grade Service Level Agreement (SLA) in terms
of availability, and it can also be cost-efficient as services can dynamically
scale-out in the presence of high load, or possibly scale-in when facing less
demand. That has been made possible by re-architecting and refactoring an
existing VPKI into a cloud-native solution deployed as microservices.

Towards having a reliable architecture based on distributed microservices,
one of the key challenges to deal with is Sybil-based misbehavior. By ex-
ploiting Sybil-based attacks in VPKI, malicious vehicles can gain influential
advantage in the system, e.g., one can affect the traffic to serve its own will.
Therefore, preventing the occurrence of Sybil attacks is paramount. On the
other hand, traditional approaches to stop them, often come with a perfor-
mance penalty as they verify requests against a relational database which is
a bottleneck of the operations. We propose a solution to address Sybil-based

iv

attacks, utilizing Redis, an in-memory data store, without compromising the
system efficiency and performance considerably.

Running our VPKI services on Google Cloud Platform (GCP) shows that
a large-scale deployment of VPKI as a Service (VPKIaaS) can be done effi-
ciently. Conducting various stress tests against the services indicates that the
VPKIaaS is capable of serving real world traffic. We have tested VPKIaaS
under synthetically generated normal traffic flow and flash crowd scenarios.
It has been shown that VPKIaaS managed to issue 100 pseudonyms per re-
quest, submitted by 1000 vehicles where vehicles kept asking for a new set
of pseudonyms every 1 to 5 seconds. Each vehicle has been served in less
than 77 milliseconds. We also demonstrate that, under a flash crowd situa-
tion, with 50000 vehicles, VPKIaaS dynamically scales out, and takes ≈192

milliseconds to serve 100 pseudonyms per request submitted by vehicles.
Keywords: Security, Privacy, Vehicular PKI, VPKI, Identity and Creden-

tial Management, Vehicular Communications, VANETs, Availability, Scal-
ability, Resilient, Efficiency, Microservice, Container Orchestration, Cloud,
Pseudonym Transition, Pseudonym Unlinkability.

v

Sammanfattning
Ansträngningar för standardisering av Vehicular Communication Systems har
varit avgörande för användandet av Vehicular Public-Key Infrastructure (VP-
KI) för att etablera förtroende mellan nätverksdeltagare. Användande av VP-
KI i Vehicular Communication (VC) garanterar integritet och autenticitet av
meddelanden. Det erbjuder ett lager av säkerhet för fordon då VPKI ger dem
en mängd av icke länkbara certifikat, kallade pseudonym, som används medan
de kommunicerar med andra fordon, kallat Vehicle-to-Vehicle (V2V) eller Ro-
adside Units (RSUs) kallat Vehicle-to-Infrastructure (V2I).

Varje fordon använder ett pseudonym under en begränsad tid och genom
att byta till ett icke tidigare använt pseudonym kan det fortsätta kommuni-
cera utan att riskera sin integritet. I litteratur har två metoder föreslagits för
hur man ska ladda fordon med pseudonym de behöver. Den ena metoden det
så kallade offline-läget, som proponerar att man för-laddar fordonen med alla
pseudonym som det behöver vilket ökar kostnaden för revokering i fall de blir
komprometterat. Den andra metoden föreslår ett on-demand tillvägagångssätt
som erbjuder pseudonym via VPKI på fordonets begäran vid början av varje
färd. Valet av på begäran metoden sätter en stor börda på tillgänglighet och
motståndskraft av VPKI tjänster.

I det här arbetet, möter vi problemmed storskaliga driftsättningar av en på-
begäran VPKI som är motståndskraftig,har hög tillgänglighet och dynamiskt
skalbarhet i syfte att uppnå dessa attribut genom att nyttja toppmoderna verk-
tyg och designparadigmer. Vi har förbättrat ett VPKI system för att säkerställa
att det är kapabelt att möta SLA:er av företagsklass gällande tillgänglighet och
att det även kan vara kostnadseffektivt eftersom tjänster dynamiskt kan skala
ut vid högre last eller skala ner vid lägre last. Detta har möjliggjorts genom
att arkitekta om en existerande VPKI till en cloud-native lösning driftsatt som
mikrotjänster.

En av nyckelutmaningarna till att ha en pålitlig arkitektur baserad på dis-
tribuerade mikrotjänster är sybil-baserad missuppförande. Genom att utnyttja
Sybil baserade attacker på VPKI, kan illvilliga fordon påverka trafik att tjäna
dess egna syften. Därför är det av största vikt att förhindra Sybil attacker. Å
andra sidan så dras traditionella metoder att stoppa dem med prestandakost-
nader. Vi föreslår en lösning för att adressera Sybilbaserade attacker genom
att nyttja Redis, en in-memory data-store utan att märkbart kompromissa på
systemets effektivitet och prestanda.

Att köra våra VPKI tjänster på Google Cloud Platform (GCP) och genom-
föra diverse stresstester mot dessa har visat att storskaliga driftsättningar av

vi

VPKI as a Service (VPKIaaS) kan göras effektivt samtidigt som riktigt trafik
hanteras. Vi har testat VPKIaaS under syntetisk genererat normalt trafikflö-
de samt flow och flash mängd scenarier. Det har visat sig att VPKIaaS klarar
att utfärda 100 pseudonym per förfråga utsänt av 1000 fordon (där fordonen
bad om en ny uppsättning pseudonym varje 1 till 5 sekunder), och varje for-
don fått svar inom 77 millisekunder. Vi demonstrerar även att under en flash-
crowd situation, där antalet fordon höjs till 50000 med en kläckningsgrad på
100. VPKIaaS dynamiskt skalar ut och tar≈192 millisekunder att betjäna 100
pseudonymer per förfrågan gjord av fordon.

Nyckelord: Säkerhet, personlig integritet, identitet- och behörighetsupp-
gifter, tillgänglighet, skalbarhet, motståndskraftig, effektivitet, moln, pseudo-
nymitet, anonymitet, ospårbarhet.

vii

Acknowledgments
To begin with, I would like to express my great appreciation to my supervisor,
Mohammad Khodaei, for his patient guidance, useful critiques and enthusias-
tic encouragement throughout this and earlier research works. Thank you for
your supervision and helping me develop my research skills. It has been an
interesting journey and very fruitful for me.

I would like to express my deep gratitude to Prof. Panos Papadimitratos
for letting me be part of the Networked Systems Security (NSS) group and
giving me the opportunity to be involved in programs and events such as Cy-
berSecurity and Privacy (CySeP) summer school. It has been truly an honor to
work with him and learning from his valuable constructive suggestions. Thank
you for giving me the chance to have such an amazing experience.

I would also like to thank my dear friend, Mateusz Mojsiejuk, for helping
me with the translation and proofreading of the Swedish abstract.

Last but not least, I am thankful to my caring partner, Parisa, my lovely
parents, Iraj andMansoureh andmy brother, Taha for all of their unconditional
support throughout my career.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Research Question . 4
1.3 Contributions . 5
1.4 Definitions and Key Concepts 5

2 Related Work 9

3 System Model 13
3.1 Overview and Assumptions 13
3.2 Adversarial Model . 15
3.3 Requirements . 16
3.4 Security Protocols . 16

3.4.1 Pseudonym Acquisition Process 17
3.4.2 Pseudonym Issuance Validation Process 18

4 VPKI Services Overview 20
4.1 VPKI as a Service . 20
4.2 Implementation . 21

4.2.1 Microservices Architecture 21
4.2.2 Load Generator . 22
4.2.3 Deployment . 22
4.2.4 Secret Management 25

4.3 Sybil Attacks against VPKIaaS 26
4.4 Sybil Attack Prevention . 28

4.4.1 Ticket Acquisition from LTCA 28
4.4.2 Pseudonym Acquisition from PCA 29

viii

CONTENTS ix

5 Qualitative Analysis 31
5.1 Security and Privacy Analysis 31

5.1.1 Trust in Cloud Provider 31
5.1.2 Sybil Attacks . 32
5.1.3 DDoS Attacks . 32
5.1.4 System Entities Failure 33

6 Quantitative Analysis 34
6.1 Prerequisite Setup . 34
6.2 Experiment Scenarios . 36
6.3 Large-scale Pseudonym Acquisition 38
6.4 Flash Crowd Situation . 38
6.5 Dynamic Scalability & High Availability 40

7 Conclusions and Future Work 42
7.1 Conclusions . 42
7.2 Future Work . 42

Bibliography 44

List of Figures

3.1 A VPKI Overview for Multi-domain VC Systems 14

4.1 A High-level Overview of VPKIaaS Architecture 21
4.2 VPKIaaS Sybil attack prevention using Redis and MySQL . . 27

6.1 (a) CDF of end-to-end latency to issue a ticket. (b) CDF of
end-to-end processing delay to issue pseudonyms. 38

6.2 VPKIaaS system in a flash crowd load situation. (a) CPU uti-
lization and the number of requests per second. (b) CDF of
processing latency to issue tickets and pseudonyms. 39

6.3 VPKIaaS system with flash crowd load pattern. (a) Average
end-to-end latency to obtain pseudonyms. (b) CumulativeDis-
tribution Function (CDF) of end-to-end latency, observed by
clients. 40

6.4 Each vehicle requests 500 pseudonyms (CPU utilization ob-
served by HPA). (a) Number of active vehicles and CPU uti-
lization. (b) Dynamic scalability of VPKIaaS system 41

x

List of Tables

3.1 Notation used in the protocols 17

6.1 Experiment Parameters . 37

xi

Listings

4.1 LTCA Deployment resource 22
4.2 LTCA Service resource . 23
4.3 LTCA Ingress resource . 24
4.4 LTCA Horizontal Pod Autoscaler (HPA) resource 24

xii

Chapter 1

Introduction

1.1 Background
Within the recent years, the automotive industry has been pushing hard to
leverage technological advancement to facilitate emerging of smarter vehi-
cles [1, 2, 3, 4]. Such advancements in distributed systems have been playing
a fundamental role in paving the way towards smart vehicles. The standard-
ization bodies [5, 6, 7, 8, 9] have been trying to come up with homogenizing
conventions [10] in order to better exploit the power of distributed systems and
provide a foundation for the industry to build upon.

In Vehicular Communication Systems (VCSs), vehicles are supposed to
communicate with each other, to which we refer as Vehicle-to-Vehicle (V2V)
communication. There are also fixed entities on the road, called Roadside
Units (RSUs), which are part of the underlying infrastructure. The communi-
cation between vehicles and RSUs is referred to as Vehicle-to-Infrastructure
(V2I). These communications happen in the form of vehicles sending out
beacon messages of types Cooperative Awareness Messages (CAMs) and De-
centralized Environmental Notification Messages (DENMs) frequently. By
aggregating such information, one can improve human safety to a great extent
through building various applications. One example can be a collision avoid-
ance application so that drivers would be notified if a vehicle is close to hit an
obstacle. Optimizing traffic to support better mobility for vehicles under nor-
mal circumstances and/or emergency situations can also be a great application
of VCSs.

In order to deploy VCS, one needs to evaluate its security and user pri-
vacy. In fact, we need to ensure the communication integrity, message non-
repudiation and accountability. At the same time, the system should protect

1

2 CHAPTER 1. INTRODUCTION

users’ privacy [11, 12, 13, 14]. In order to achieve that, there is a consensus to-
wards deploying a Vehicular Public-Key Infrastructure (VPKI), e.g., [15, 16],
which leverages the Public Key Cryptography (PKC). Vehicles are registered
in the system and provided a set of pseudonyms, which are short-lived and
anonymized certificates. Vehicles use those pseudonyms to broadcast their
messages, i.e., each vehicle signs a message with a private key and receiv-
ing vehicles would verify it with the public key of that pseudonym. Since the
pseudonyms are conditionally anonymized (as VPKI typically offers the abil-
ity to revoke anonymity/psuedonymity and thus, unlinkability is achieved),
user’s privacy is protected.

One of the main differences between the VPKI and existing Public-Key
Infrastructures (PKIs) for the Internet is the number of credentials that it has
to issue. In case of the Vehicular Communication (VC) system, the VPKI is
required to issue pseudonyms 5 orders of magnitude more than the number of
certificates that existing PKIs issue currently [15, 17]. It is worth mention-
ing that if we consider the Intelligent Transport System (ITS) ecosystem with
pedestrians and cyclists, Location Based Services (LBSs) [7, 18, 19, 20, 21,
22, 23], and vehicular social networks [24], this number grows even further.
Thus, we need to design a VPKI system so that it is capable of issuing creden-
tials for such a system satisfying the requirements for having a large number
of users.

In VCSs, it is envisioned that vehicles could interact and get pseudonyms
for a large period of time. For example, it is proposed to provide vehicles with
their needed pseudonyms for 25 years [25]. However, if one needs to deploy
such a system and issue pseudonyms for such a long period of time, then the
system becomes computationally costly and inefficient in terms of pseudonym
utilization [16]. When it comes to the certificate revocation and distribution
of Certificate Revocation Lists (CRLs) [26, 27, 28], it is shown that the dis-
tribution of a very large CRL among all users becomes inefficient as a large
portion of the CRL is not needed for all the vehicles in the system [28, 29].
In fact, it would be waste of bandwidth for the CRL distribution, if not effec-
tively distributed. The alternative solution here is to issue certificates for the
vehicles in an on-demand manner: vehicles ask to get pseudonyms when they
need them, e.g., once and twice per day. This requires having a VPKI system
that can handle issuing certificates in an on-demand way. Also, as it is shown
in the literature, the VPKI system could be under a Denial of Service (DoS)
attack [30, 16]. In this situation, the VPKI becomes completely unresponsive,
i.e., vehicles cannot renew their pseudonyms. The other scenario is a flash
crowd [31] situation in which there is a surge in pseudonym acquisition re-

CHAPTER 1. INTRODUCTION 3

quests during rush hours. In such a situation, the VPKI system could become
unreachable, or its performance drastically decreases. In short, we need to en-
sure that the VPKI system scales according to the rate of receiving requests
and is capable of serving vehicles efficiently.

Unavailability of VPKI leads to degradation of road safety as well as user
privacy. For example, an adversary could perform a Distributed DoS (DDoS)
attack on the VPKI, e.g., [30, 16], in order to prevent other vehicles from
getting the latest version of the CRL, or validating the revocation status of
pseudonyms through Online Certificate Status Protocol (OCSP) [32]. Note
that it is insecure to sign CAMs and DENMs with the private key, which cor-
responds to a pseudonym that is already expired. Alternatively, in case of
running out of pseudonyms, a vehicle can use the private key corresponding
to its Long Term Certificate (LTC); but this would harm user privacy as the
LTC discloses the actual identity of the user.

As a solution when a vehicle does not have a pseudonym and cannot refill
its pseudonym pool, one can use alternative anonymous credentials schemes,
e.g., [33, 34, 35, 36]. In such schemes, a vehicle is registered with a Group
Manager (GM) and has a group private key while it shares a group public key
with all other vehicles. A message is signed by a distinct group signing key;
any recipient would verify the message with group public key. In case of hav-
ing no pseudonyms, each vehicle generates a pair of public and private key for
itself and signs it with its group signing key, e.g., [33, 34, 35]. However, as dis-
cussed in [36], one can look at the pseudonyms issuer identities and filter out
pseudonyms, signed with a different issuer identity, in this case the group sign-
ing key. Even though one can improve the user privacy by leveraging a scheme
like [36] by asking vehicles to randomly changing between using their actual
pseudonyms (issued by the VPKI) and the ones generated by themselves, it
still degrades the performance of the safety-related applications. As described
in [36], by leveraging anonymous authentication scheme for the majority of
vehicles, it would result in 30% extra cryptography computation overhead in
order to validate CAMs and DENMs. All in all, it is paramount to ensure that
the VPKI system is highly-available, scalable, and resilient to attacks so that
it could efficiently issue pseudonyms to the vehicles in an on-demand man-
ner [37, 38].

Another important aspect of the VPKI system is that we need to mitigate
Sybil [39] attacks; this happens when a vehicle has multiple valid pseudonyms
at the same time. The result of such a misbehavior is that the adversary with
many pseudonyms would inject multiple erroneous messages, e.g., hazard no-
tifications, as if they were originated from multiple vehicles; alternatively, the

4 CHAPTER 1. INTRODUCTION

adversary could affect protocols which are based on voting, by disseminating
authenticated false information. This is mitigated in SECMACE [16]: each
vehicle is registered with one Long Term CA (LTCA) and it cannot receive
more than one pseudonym from its desired pseudonym provider (Pseudonym
CA (PCA)). Also, there are timing policies that prevents a vehicle from obtain-
ing multiple pseudonyms with aligning the pseudonym lifetimes. However,
when one deploys such a system, e.g., [40, 41], using microservices where
services can scale horizontally to cope with the load, a malicious client could
repeatedly fetch pseudonyms; this happens because each request can poten-
tially be routed to different replicas of a microservice. As a result of this, the
malicious user could receive multiple simultaneously valid pseudonyms. One
can implement a centralized database, shared by all replicas and make sure
about the atomicity of all transactions. But the disadvantage of such a strategy
is that it drastically diminish the efficiency and performance of the VPKI sys-
tem. Thus, the timely pseudonyms provisioning for large-scale mobile systems
is at stake.

1.2 Research Question
To the best of our knowledge, realization of the VPKI in a large-scale deploy-
ment received limited attention. Challenges such as high availability, dynamic
scalability and elasticity in a production-ready environment are not cleared.
Addressing such problems often touches design patterns of the software and
affecting its architecture at system level in a way that major refactoring [42]
might be necessary. While refactoring a software, one should re-evaluate the
processes and protocols based on which the software has been designed to
make sure architectural modifications are not affecting the soundness of pro-
tocols or exposing the software to new threats.

Prevention of Sybil attacks is usually one of the challenges to confront in
designing horizontally scalable systems. Minimizing the performance penalty
while mitigating Sybil attacks is a question to answer in this work. Another
problem to address in deployment of a large-scale VPKI is how to keep secrets
safe during and after deployment and to ensure only designated microservices
can access them. An investigation of secret management systems available in
public cloud providers and their integration with services running on Kuber-
netes is done as part of this work.

Towards that direction, it is worth to explore and pave the path towards
a highly available and dynamically scalable VPKI system leveraging modern
tools and public cloud infrastructure and services. In order to facilitate the

CHAPTER 1. INTRODUCTION 5

deployment of a cloud-native VPKI as a Service (VPKIaaS), a great deal of
automation in terms of continuous integration and continuous deployment are
needed. In addition to that, the experiments that we run within the study, can
bring some value in answering questions regarding capacity planning and bud-
geting needs when it comes to large-scale deployment of the VPKI system.

1.3 Contributions
In this thesis1, a state-of-the-art VPKI system has been re-factored and re-
architected into microservices and migrated to Google Cloud Platform (GCP)
in order to achieve high-availability and dynamic scalability. Tooling have
been developed around the system to smooth the way for building container-
ized applications and the infrastructure to run them on GCP. Also, Kubernetes
resource definitions are created using a declarative language in order to facil-
itate deployment of microservices on Google Kubernetes Engine (GKE).

We designed a hybrid solution based on an in-memory key-value data store
(Redis [44]) and a relational database (MySQL) to prevent Sybil attacks on
VPKI [16] while keeping its performance intact. Following best practices, we
configured microservices to scale in and out dynamically according to the load
of requests on them. In order to evaluate the performance of VPKIaaS, a VPKI
client was simulated and integrated with the load generation tool, Locust [45],
so that we could run various stress tests leveraging synthetic load generation.

1.4 Definitions and Key Concepts
In this section, we describe the relevant terminologies of technology stacks or
protocols that are used within the writing.

• Managed Service: A service offered by a Managed Service Provider
(MSP) via ongoing monitoring, maintenance and support for customers,
accompanied by a Service Level Agreement (SLA). Managed services
often provide support for scalability and customers are charged using a
pay-as-you-go scheme.

• Container: A unit of packaged software along with its dependencies
running as an isolated process. Containers are lightweight bundles of an

1Within the context of this thesis project, we published a demo/poster [40], and a
poster [43] at the ACM Wisec 2018. Also, the result of this thesis was presented at ACM
Wisec 2019 [17].

6 CHAPTER 1. INTRODUCTION

operating system’s user land which has become a new way of building
and shipping software [46]. While running, they share the Linux kernel
of their host.

• Docker: A software facilitating build, shipment and running contain-
ers. The features in Linux kernel has made creation and execution of
containers possible, and Docker has made it easier to use those features
by providing a daemon for container run-time management and tools to
facilitate creation of container images and interact with them [47].

• Kubernetes: An open-source container orchestration platform offering
services like scheduling, networking, monitoring and life-cycle man-
agement of containers [48]. It provides automation and tooling for de-
ployment and scaling of containerized application. Kubernetes needs a
container engine like Docker and it can be itself installed as a set of con-
tainers on multiple hosts forming a cluster. A Kubernetes cluster con-
sists of a set of hosts taking part in the control plane, meaning that they
responsible for management of Kubernetes components itself. It also
consists of a set of machines referred to as nodes, which are responsible
for running workload of the containerized applications.

• GKE: A managed Kubernetes cluster offered by GCP. Since installa-
tion, maintenance and life-cycle management of a Kubernetes cluster
might be a tedious task, cloud providers often provide a Kubernetes As
A Service solution, where they offload their users by taking care of the
Kubernetes control plane. Running workloads on GCP, it make sense
to leverage GKE as it integrates well with other services on GCP like
external load-balancers [49].

• Pod: The smallest unit of execution in Kubernetes which may contain
one or more containers. From the Kubernetes perspective, all contain-
ers in a Pod, are local to each other, so they share network and storage
resources with each other. They are co-scheduled and co-located, mean-
ing that they scale in and out together [50].

• Deployment: A resource object in Kubernetes defining a Pod’s life-
cycle and its attributes. The Kubernetes deployment controller reads the
deployment, and creates or updates its state accordingly. A deployment
definition can contain the desired state of Pods. Deployments can also
be helpful for operations such rollout and rollbacks [51].

CHAPTER 1. INTRODUCTION 7

• Service: An abstract resource in Kubernetes defining a logical set of
Pods, and the way they can be accessed. It can be seen as a logical
load-balancer in front of a subset of Pods [52].

• Ingress: An Application Programming Interface (API) object at Kuber-
netes edge network handling external access to a service in cluster [53].
It can be seen as an external load-balancer that has the capability of ter-
minating Secure Sockets Layer (SSL). Cloud providers use this API to
create their own external load-balancer and route traffic towards Kuber-
netes services through that.

• Kubelet: A primary agent of Kubernetes, running on worker nodes
which is responsible for scheduling Pods on the node and reporting their
state by constantly monitoring them. It also has the responsibility of the
bootstrapping the node by registering it to the Kubernetes API server.
More information about Kubelet can be found at [54].

• Horizontal scalability: The ability of increasing/decreasing capacity
by adding/removing replicas, nodes to/from a system running the same
software. If a software is running on a Pod, adding more Pods with the
software, is called scaling-out and shrinking the number of Pods, is the
act of scaling-in.

• Vertical scalability: The ability of increasing/decreasing capacity by
adding/removing hardware component to/from a system. If a software
is running on a Pod, allocating more resources to that Pod, is the act of
scaling-up and cutting resources from the Pod, is the so called scaling-
down action.

• Microservices architecture: An architectural style for an application
defining it as loosely coupled services that can scale in/out indepen-
dently. According to [55], microservices design helps to grow the num-
ber of teams/people working on a big project by a systematic divide-
and-conquer approach. It also lessens the risk of having bottle-necks,
or making them easier to find and address. In addition to that, mini-
mizing the blast radius in case of failures is achievable by adopting the
microservices style.

• Sybil attack: A type of attack where an adversary exploits a system by
creating more [pseudonymous] identities than it should and uses them
to gain more influential advantage hence undermining the reputation of
the system [39].

8 CHAPTER 1. INTRODUCTION

• Redis: A high performance in-memory key-value data store. Redis uses
memory to store data, hence it is a very fast data store comparing to
solutions where data is kept on disk. It structures data as key value
pair. Comparing it to traditional relational databases, it can be seen as
a single table database which consists of only two columns, where the
first column is the key. GCP offers Redis in a managed-service form,
called Memory-Store.

Chapter 2

Related Work

There has been extensive literature review on security and privacy for VC sys-
tems. There exist multiple research and industrial projects that have been
investigating the security requirements of such systems. These projects fo-
cused on different aspect of the system, e.g., the SeVeCom project [56, 57],
the PRESERVE project [58] and the the Crash Avoidance Metrics Partnership
Vehicle Safety Consortium (CAMP VSC3) project [15]; these projects were
investigating how to implement security and privacy preserving features and
how to bring such a system more closely to the market via Field Operational
Testing (FOT). There are standards specifying the basic requirements for the
entities in the VC systems, like [5, 6, 7, 8, 9].

In Vehicular Ad-hoc Network (VANET), each vehicle is registered to a
VPKI that containsmultiple entities. These entities are responsible for user/ve-
hicle enrollment, issuing them (long-term and short-term) credentials, pro-
viding CRL and OCSP. According to the standardization documents (IEEE
1609.2WG [5] and ETSI [7]), the VPKI should be designed with separation of
duty in order to preserve user privacy. Following that, separation of duty has
been part of the initial design [11, 14, 59] and fully observed in the start-of-
the-art identity and credential management systems, e.g., SECMACE [30, 16]
and SCMS [15, 25], as well as in other architectures for security and privacy
for participatory sensing [60, 61, 62].

In SECMACE [16], on which this work is relying, there is a Root Certi-
fication Authority (CA) which generates certificates for other entities in the
VPKI, and not for the vehicles. In general, there are three main entities (CAs)
that shaped the VPKI systems: the LTCA, the PCA, and the Resolution Au-
thority (RA). The LTCA is responsible for user/vehicle enrollment; in fact, it
generates long-term certificates for the vehicles. The PCA issues short-term

9

10 CHAPTER 2. RELATED WORK

certificates, known as pseudonyms. Note that vehicles disseminate CAMs and
DENMs using pseudonyms as their identities. The last element of the VPKI
is the RA, which is responsible for doing a pseudonym resolution if needed.
This action is only initiated under certain circumstances; for example, in case
of an accident, the police/court could request for that.

Vehicles need to change their pseudonyms frequently. This is in fact for
the purpose of user privacy protection as a vehicle trajectory cannot be tracked
if it keeps changing its pseudonyms. There are several strategies for obtaining
these pseudonyms [38]; one strategy is to fetch many pseudonyms and store
them on the vehicle. Then the vehicle would switch from one to another fre-
quently. Once all of them are used, it would request the VPKI for a refill. As
it is mentioned in [38], such an approach is less efficient in terms of credential
usages. Also, in case of revocation, the number of pseudonyms serial numbers
to be included into the CRL will be considerably high. Another more efficient
way is the on-demand pseudonym acquisition in which a vehicle connects the
VPKI to get pseudonyms whenever needed. Ideally, a vehicle has only one
pseudonym at each time. This is efficient in terms of pseudonym usage and
revocation [38]; however, the downside could be the system requires reliable
connection to the VPKI.

Another remark regarding the two pseudonym policies is that when a ve-
hicle stores multiple overlapping pseudonyms in its storage, it can perform a
Sybil attack [39]. In fact, that vehicle can sign multiple messages (CAMs)
with different pseudonyms. Since the VPKI generates pseudonyms in an un-
linkable fashion, a malicious vehicle can pretend to be multiple vehicles and
the signed messages are interpreted as if they come from a number of different
vehicles. This undermines the security of the system. An example of exploita-
tion is in voting-based applications where a malicious vehicle can gain influ-
ential advantage by participating in the voting more than once. SECMACE
addresses this problem through issuing the pseudonyms with non-overlapping
intervals. As a result of this policy, any vehicle in the system can only have
one pseudonym at any point in time. In the original form of the system [16],
Sybil protection is achieved since there is only one instance of a Virtual Ma-
chine (VM) running a VPKI entity. That means the system can only scale ver-
tically which obviously has its own limitations. However, if one needs to scale
the system out by creating multiple VMs to handle more requests, it becomes
vulnerable to Sybil attack. The solution to the aforementioned problem, is
one of the contribution of this master thesis: by proposing an architecture us-
ing both relational and non-relational databases, we protect the system against
Sybil attacks without sacrificing the performance in serving requests. More

CHAPTER 2. RELATED WORK 11

on this can be read in Chapter 6.
Similar to the Internet, in VANET also a vehicle’s private key could be

compromised or the sensors of a vehicle might start broadcasting wrong in-
formation due to malfunctioning. Therefore, the system should construct a
CRL [28, 63], and distribute it among all the nodes. Alternatively, it can facil-
itate access to check if a certificate is expired through OCSP [30]. It is crucial
for VPKI to decide how to notify nodes that some of the certificates are re-
voked. A state-of-the-art certificate revocation system is proposed in [28, 63]:
vehicles obtain the CRL which correspond to their trip duration, and not the
entire CRL. Such an efficient way of distribution helps the vehicles to obtain
the CRL faster, thus the vulnerability window is smaller (comparing to other
approaches, for example [64, 65, 66]).

In VCSs, vehicles broadcast their CAMs and DENMs without encrypt-
ing them. As a result, one might be able to look at the messages and link
them based on their attributes. Two methods for linking pseudonyms are dis-
cussed in the literature. The first one is syntactic linking [43]: an adversary
can link two CAMs/DENMs by their identifiers, i.e., their pseudonyms. That
means when a vehicle changes its pseudonym, an attacker can link its previous
pseudonym to the new one. The second way of linking is semantic linking: an
attacker looks at the data in the messages, for example, location, velocity, time,
acceleration, and tries to link them. In order to mitigate syntactic and semantic
linking attacks, the literature propose to useMix-zones [67]: Vehicles enter an
encrypted region, for example an intersection, and when they are not observ-
able (i.e., in the encrypted region), they change their pseudonyms. However,
as it is shown recently in [68], an adversary can link the pseudonyms with
quite high probabilities when mix-zones are in place. As a mitigation strat-
egy to make the linking even more difficult than before for an observer in a
mix-zone, [69, 68] propose to distribute chaff CAMs and chaff DENMs for
the vehicles exiting a mix-zone. Even though studies show that introducing
these extra messages would add some communication delay and computation
overhead, they provide a better user privacy. As a result, the syntactic and
semantic linking attacks would be very difficult to exploit.

Beyond the standardization approach, i.e., vehicles leverage pseudonyms
and public key crypto-systems, there are also other proposals, suggesting other
primitives. For example, in the scope of VCS, vehicles could use Group Signa-
tures (GS) [33, 34, 35, 70, 71]. With such approaches, vehicles have a common
group public key and each of them has a unique group signing key. Messages
are signed with the group signing key and they can be verified using the group
public key. With this, the signer of a message remains anonymous; however,

12 CHAPTER 2. RELATED WORK

the group manager can identify the actual identity for a signature. As it is
shown in various research areas, GSs comes with an expensive computation
cost [35, 36]. As a result, using such anonymous credentials in VANET is
questionable due to such computation overhead.

Chapter 3

System Model

3.1 Overview and Assumptions
The VPKI is a system, containing multiple entities as CAs serving vehicles
for different purposes. The top-level CA is Root CA (RCA) who is taking
care of establishment of trust between multiple domains and will be used to
verify the authenticity of lower-level CAs. A domain is defined as a region
where vehicles fall under the same administrative rules and regulations [72].
Vehicles interact with LTCA in order to obtain LTC. The LTC is an X.509
certificate according to the standard [73]. Then, the vehicles that need to
obtain pseudonyms use the LTC in interaction with PCA in order to obtain
pseudonyms. Pseudonyms are having a relatively shorter life time. The shorter
their life time is, the more difficult it will be for attackers to link them, which
translates to higher privacy for the vehicles. But that also means they need to
ask VPKI for pseudonyms more frequently. Also, changing pseudonyms more
often, imposes a communication overhead to the system [11, 12, 38].

Figure 3.1 is an illustration of a secure and privacy preserving VC. Ve-
hicles broadcast CAMs and DENMs all the time. These are the information
that help other vehicle learn about the status of each vehicle and environment.
All these messages are digitally signed and broadcasted. In the Figure, we can
see three different domains and in each domain, we have the corresponding
VPKI entities, i.e., LTCA, PCA, RA. In order to make the system operable,
we have RCA on top of two domains establishing the trust between them. Al-
ternatively, two domains can have certificates cross certified to establish trust.
Each vehicle that broadcasts a CAM, signed with its private key, also attaches
its pseudonym to it. Any vehicle nearby that receives the message has to val-
idate it. Based on the trust establishment, we can be sure that any vehicle

13

14 CHAPTER 3. SYSTEM MODEL

RSU
3/4/5G

PCA

LTCA

PCA

LTCA

RCA

PCA

LTCA

BAA certi es B

Cross-certi cation

Domain A Domain B Domain C

RA
RA

RA

B

X-Cetify

LDAP LDAP

Message dissemination

 {Msg}(Piv),P
i
v

{Msg}(Piv),Pi
v

Figure 3.1: A VPKI Overview for Multi-domain VC Systems
[Taken from [17]]

can validate another vehicle’s pseudonym. After the certificate validation, the
message itself needs to be verified. The vehicle extracts the public key of the
sender from its pseudonym (after being verified) and validates the signature.
A vehicle also needs to make sure that the pseudonym is not revoked. In order
to do that, it can search for it in its CRL, e.g., [28, 63]. If there is a delay in
the CRL distribution, it can also query the PCA who has issued the certificate
and is responsible for its revocation. Beside what is mentioned, a vehicle can
use OCSP [32] to validate a pseudonym. An implementation of OCSP in the
context of VC has shown [30] that it can be efficient and scalable.

For obtaining pseudonyms, there are different policies and approaches dis-
cussed in the literature [38]. Each vehicle would decide the time of obtaining
pseudonyms when it runs out of pseudonym. It can send a single request and
get multiple pseudonyms, or it can send multiple requests and obtaining each
pseudonym in a different request. This is a trade off between linkability and
practicality. For a detailed discussion, one can read [38, 16]. In this project, we
assume that each vehicle can query the VPKI system and obtain pseudonyms
for its desired interval. All the pseudonyms that are issued by the VPKI have

CHAPTER 3. SYSTEM MODEL 15

a lifetime and they are aligned by the VPKI clock. In fact, with this policy
the VPKI aims to issue pseudonyms that cannot be distinguishable by only
their lifetime. This would enhance user privacy. Vehicles also have Hardware
Security Modules (HSMs) to protect their private keys. We also assume that
a misbehavior detection system is in place for the situations that a malicious
entity tries to attack the system. If an incident happens, the RA is responsible
to trace it and figure out who was the malicious node in the system. This will
be carried out in a way that RA needs to interact with the PCA and LTCA.
As a result, if it decides to revoke some certificates, it asks PCA and the PCA
constructs a CRL and distributes it. A state-of-the-art CRL distribution [28]
shows that this can be done efficiently. In addition to what is stated before, we
assume that the cloud providers are honest and they provide services following
their SLA. The cloud providers, in our case GCP, should be trustworthy for
managing the secrets of the VPKIaaS.

3.2 Adversarial Model
The adversarial model in secure vehicular communication systems has been
on fully-trusted security infrastructure entities [11]. But according to the stan-
dard, we need to consider the entities honest-but-curious [16]. An entity is
called honest-but-curious if the entity follows all rules and policies, but also
tries to gather information. Later, it can interpret such information and if pos-
sible, harming user privacy. The VPKI system in [16] is designed with such a
goal.

In this project, a malicious PCA could try to:

• issue many pseudonyms, potentially all valid at the same time, for a
legitimate vehicle

• issue a set of pseudonyms for a non-existing vehicle

• fraudulently accuse another vehiclewhen it comes to resolving a pseudonym

Similarly, a malicious LTCA could try to:

• Issue a fake/invalid ticket

• fraudulently accuse another vehicle during the resolution process

The RA could also try to repeatedly ask the PCA to obtain information of
pseudonyms to link them.

16 CHAPTER 3. SYSTEM MODEL

3.3 Requirements
The security and privacy requirements for a VC system can be found in [11].
In order to see an extensive requirements specifically for VPKI system and
CRL distribution, we refer to [16, 28]. In this project, we aim to prevent Sybil
attack against a VPKI systemwhen being deployed in a scalable manner. How-
ever, we want to make sure that such a solution would not degrade the per-
formance of the system, notably when the VPKI system issues pseudonyms.
Moreover, the deployed VPKI system on the cloud should be highly-available
and dynamically-scalable. The system dynamically scales out or scales in with
respect to the load that pseudonym acquisition requests puts on it. As a result
of this, the VPKI system will handle desired demanding load through system-
atically allocating and deallocating resources.

3.4 Security Protocols
Interactions with VPKI boils down into a couple of protocols designed specif-
ically to facilitate the functionality the system entities are supposed to provide.
In this section, we are going to cover two selected protocols that can shed some
lights on how misbehaving vehicles can exploit the system. Then, in section
4.3, we propose replacement protocols to address the problems. Table 3.1
contains references to the notations used in the protocols.

CHAPTER 3. SYSTEM MODEL 17

Table 3.1: Notation used in the protocols
[Taken from [17]]

(P i
v)pca, P i

v a pseudonym signed by the PCA
(LKv, Lkv) long-term public/private key pairs
(Ki

v, k
i
v) pseudonymous public/private key pairs

Idreq, Idres, Idca request/response/CA unique identifiers
(msg)σv a signed message with the vehicle’s private key
N,Rnd nonce, a random number
tnow, ts, te fresh/current, starting, and ending timestamps
n-tkt, f -tkt native ticket, foreign ticket
H() hash function
Sign(Lk,msg) signing a message with the private key (Lk)
V erify(LK,msg) verifying a message with the public key
τP pseudonym lifetime
Γ interacting interval with the VPKI
IK identifiable key
V vehicle
ζ, χ temporary variables

3.4.1 Pseudonym Acquisition Process
As it is shown in protocol 1, before pseudonym acquisition starts, each vehicle
sends a request to its Home-LTCA (H-LTCA) in order to fetch an anonymous
ticket to be used for its interaction with PCAs. Then it generates a Certificate
Signing Request (CSR) and sends it to the PCA. The communication between
the vehicle and PCA happens in a Server-authenticated Transport Layer Secu-
rity (TLS) fashion so the PCA cannot yield identity of the vehicle. When the
PCA receives the request, it first verifies if the ticket is signed by the H-LTCA,
then it verifies the identity of the pseudonym provider, and then it generates a
random number ot initiate a proof-of-possession protocol to verify the own-
ership of the private keys by vehicle. Calculation of a so-called Identifiable
Key (IK), makes it impossible for compromised and/or malicious PCA to use
a different ticket in resolution process, or to issue pseudonyms without exis-
tence of a valid ticket. The PCA can also correlate a batch of pseudonyms to a
requester implicitly, enabling it to distribute CRL more efficiently. As the last
step, the PCA signs the response and send it back to the vehicle.

18 CHAPTER 3. SYSTEM MODEL

Protocol 1 Issuing Pseudonyms (by the PCA) [Taken from [17]]
1: procedure IssuePsnyms(Req)
2: Req→(Idreq ,Rndn-tkt,tktσltca ,{(K1

v)σk1
v
,· · · ,(Kn

v)σkn
v
},N,tnow)

3: Verify(LTCltca, (tkt)σltca)
4: tktσltca → (SN,H(IdPCA‖Rndtkt), IKtkt, ts, te, Exptkt)

5: H(Idthis-pca‖Rndn-tkt)
?
= H(Idpca‖Rndn-tkt)

6: Rndv ← GenRnd()

7: for i:=1 to n do
8: Begin
9: Verify(Ki

v , (K
i
v)σki

v
)

10: IKP i
v
← H(IKtkt||Ki

v ||tis||tie||Hi(Rndv))

11: if i = 1 then
12: SN i ← H(IKP i

v
||Hi(Rndv))

13: else
14: SN i ← H(SN i−1||Hi(Rndv))

15: end if
16: ζ ← (SN i,Ki

v , IKP i
v
, tis, t

i
e)

17: (P iv)σpca ← Sign(Lkpca, ζ)

18: End
19: return (Idres, {(P 1

v)σpca , . . . , (P
n
v)σpca}, Rndv , N+1, tnow)

20: end procedure

3.4.2 Pseudonym Issuance Validation Process
In case of alerts for suspicious activities, an entity can request RA to validate
the process of pseudonym issuance of the suspicious pseudonym. As shown in
protocol 2, RA starts the validation process by asking the PCAwho had issued
the pseudonym to provide evidence for the issuance. When PCA receives the
request from RA, after verification, it sends back the ticket used in the issuance
procedure. Then, RA verifies the response and validates the ticket using the
public key of the LTCA who issued the ticket. This ensures that not only the
ticket was legit, but also the PCA could not possibly issue pseudonyms for
non-existing vehicles.

CHAPTER 3. SYSTEM MODEL 19

Protocol 2 Pseudonym Issuance Validation Process [Taken from [17]]

Vj : P iv ← (SN i,Ki
v , IKP i

v
, tis, t

i
e) (3.1)

Vj : ζ ← (P iv) (3.2)

Vj : (ζ)σv ← Sign(P jv , ζ) (3.3)
Vj → RA : (Idreq , (ζ)σv , tnow) (3.4)

RA : Verify(Pv , (ζ)σv) (3.5)

RA : ζ ← (P iv) (3.6)
RA : (ζ)σra ← Sign(Lkra, ζ) (3.7)

RA→ PCA : (Idreq , (ζ)σra ,LTCra, N, tnow) (3.8)
PCA : Verify(LTCra, (ζ)σra) (3.9)

PCA : (tkt, RndIK
Pi
v
)← Resolve(P iv) (3.10)

PCA : χ← (SNP i , tktσltca , RndIKPi
v
) (3.11)

PCA : (χ)σpca ← Sign(Lkpca, χ) (3.12)
PCA→ RA : (Idres, (χ)σpca , N+1, tnow) (3.13)

RA : Verify(LTCpca, χ) (3.14)
RA :(SNP i , tktσltca , RndIKPi

v
)←χ (3.15)

RA : Verify(LTCltca, tktσltca) (3.16)

RA :(H(IdPCA‖Rndtkt), IKtkt, tis, tie, Exptkt)←tkt (3.17)

RA : H(IKtkt||Ki
v ||tis||tie||RndIKPi

v
)

?
= IKP i

v
(3.18)

Chapter 4

VPKI Services Overview

4.1 VPKI as a Service
As part of this work, we take an implementation of the VPKI system [16] and
modernize it using state-of-the-art tools and technical stacks available at the
moment. We leverage public cloud providers, e.g., GCP to facilitate the setup.
However, it is worth mentioning the architecture is cloud-agnostic; meaning
that any public, private or hybrid cloud provider can be a potential platform
for offering VPKIaaS. To be able to achieve that, we migrate the workloads of
VPKI intomicroservices running onDocker containers orchestrated byKuber-
netes [48]. We use the managed Kubernetes service, GKE, offered by GCP.
Figure 4.1 shows a high-level abstraction of how the VPKI entities, or the so
called microservices, are being deployed.

We turn each entity of the VPKI into a deployment which defines the traits
of pods running the corresponding workload. In order to do so, we create a
Docker image from each of the VPKI entities, and store them in Google Con-
tainer Registry, a service on top of an storage service dedicated to hold Docker
or other container types images. A pod is the smallest unit of a workload that
contains one or more containers. The pods report their state along with met-
rics to the Kubernetes controller, so that the controller triggers relevant actions
according to the status changes. We define three main deployments for the en-
tities, RA, LTCA and PCA. Each creates a set of pods where each pod is
running a single container. Each pod, publishes its health and load metrics
for the Kubernetes controller. If the controller does not see the health metric
of a pod, or receives an un-healthy status for a pod, it acts by killing the pod
and re-spawning a new one. We also deploy a resource, called Horizontal Pod
Autoscaler (HPA) which sets some requirements and actions to be done when

20

CHAPTER 4. VPKI SERVICES OVERVIEW 21

Kubernetes Master

Kube-apiserver etcd Kube-scheduler

kube-controller-manager

Node Controller Endpoints Controller

Replication Controller

LTCA RC PCA RC RA RC

Images

Container Registry

Kube-proxykubelet Docker

Container Resource Monitoring

Pod

LTCA

Pod

PCA

Pod

RA

Kube-proxykubelet Docker

Container Resource Monitoring

Pod

LTCA

Pod

PCA

Pod

RA

Kube-proxykubelet Docker

Container Resource Monitoring

Pod

LTCA

Pod

PCA

Pod

RA

Figure 4.1: A High-level Overview of VPKIaaS Architecture
[Taken from [17]]

the requirements are met. We define a threshold 60 per-cent CPU usage as the
requirement to act upon, and the action of scaling out/in depending on if the
CPU usage is above or below the threshold. There is an absolute minimum
and maximum number of pods defined in the HPA in order to avoid unde-
sired behavior. In order to handle the ingress requests towards the pods, we
define three application load-balancers in GCP that are connected to ingress-
controllers of the Kubernetes, serving requests to RA, LTCA and PCA.

4.2 Implementation
This section focuses on the implementation details of the work on VPKIaaS
paving the way towards a large-scale deployment.

4.2.1 Microservices Architecture
One of the early things done with the code base was trying to identify sys-
tem entities and re-architect the software into microservices [55] architecture
design. Each type of CA within the system, e.g., PCA, LTCA or RA, is con-
sidered to be a microservice. Code refactoring [42] has been done to make
each microservice scalable horizontally. In order to do that, software patterns
like singletons [74] have been removed, and architecture of the software has
been modified to make it stateless as much as possible. Such modifications

22 CHAPTER 4. VPKI SERVICES OVERVIEW

are playing a fundamental role in scalability of the system.
Using container technologies, we have built base container images, on top

of which microservices can be built. Containers have been used both in com-
pilation of the libraries and also installation and execution of microservices.
Each microservice will be compiled into a single binary along with some con-
figuration files that will be placed into a container being executed usingApache
web server.

We implemented a functionality in each microservice that at any point in
time, they can be queried about their health and load. The health metric will
be used later by the scheduling service, kubelet [54], to make sure the mi-
croservice is healthy. The load metric will be used by the autoscaling service,
HPA [75], to trigger scaling in/out actions according to the logic we feed into
the system regarding scalability.

4.2.2 Load Generator
In order to be able to run experiments against our system, we implemented
an entity representing a vehicle. We integrated our vehicle implementation
with the Locust framework [45] with minor modifications so it can leverage
the power of Locust to put arbitrary load on the system. The load generator
is also considered to be a microservice that is deployed similar to other mi-
croservices of the VPKI system. When we deploy our load generator, using
the web interface of Locust, we can set the parameters of load generation such
as number of vehicles and their hatch rate. This way we can easily conduct
experiments in simulating various scenarios like flash crowd [31] situation.

4.2.3 Deployment

Listing 4.1: LTCA Deployment resource
apiVersion: apps / v1beta2
kind: Deployment
metadata:

name: ltca
namespace: ltca
labels:

app: ltca
role: ltca
tier: frontend

spec:
replicas: 1
selector:

matchLabels:
app: ltca
role: ltca

CHAPTER 4. VPKI SERVICES OVERVIEW 23

tier: frontend
template:

metadata:
labels:

app: ltca
role: ltca
tier: frontend

spec:
containers:
- name: ltca

image: eu. gcr .io/vpki -nss -kth -220115/ vpki:ltca
ports:
- containerPort: 80
resources:

requests:
memory: " 128 Mi"
cpu: " 500 m"

limits:
memory: " 128 Mi"
cpu: " 500 m"

livenessProbe:
exec:

command:
- / opt / vpki / scripts / healthcheck .sh
- ltca

initialDelaySeconds: 60
periodSeconds: 10

Kubernetes [48] is our chosen container orchestration platform used to
run and manage the workload. To facilitate the deployment of our microser-
vices on Kubernetes, we used the declarative method of defining resources in
YAML [76] so we could version control them along with the rest of the soft-
ware code. Each of the VPKI entities have four resources defining them. One
is the Deployment resource which contains the characteristics of the Pods that
are supposed to run the workload of the corresponding microservice. List-
ing 4.1 depicts the deployment resource of the LTCA including information
about 1) memory and processing capacity, 2) the isolated namespace where the
pods are supposed to be running in, 3) the Docker image of the microservice,
and 4) commands that are supposed to be used for health-check monitoring.

Listing 4.2: LTCA Service resource
apiVersion: v1
kind: Service
metadata:

name: ltca
namespace: ltca
labels:

app: ltca
role: ltca
tier: frontend

spec:
selector:

app: ltca
role: ltca

24 CHAPTER 4. VPKI SERVICES OVERVIEW

tier: frontend
ports:
- protocol: TCP

port: 80
targetPort: 80

type: NodePort

The second resource is called Service. It defines an abstract entity in front
of the Pods, routing received requests to healthy Pods. Listing 4.2 is the simple
Service definition we have used for LTCA.

Listing 4.3: LTCA Ingress resource
apiVersion: extensions / v1beta1
kind: Ingress
metadata:

name: ltca
namespace: ltca
labels:

app: ltca
role: ltca
tier: frontend

spec:
tls:
- secretName: ltca - secret
rules:
- host : ltca .vpki -nss - kth .se
- http:

paths:
- path: /*

backend:
serviceName: ltca
servicePort: 80

The Service resource by itself is not enough to handle incoming traffic from
outside of Kubernetes, as it is just an abstraction acting as an internal Load-
balancer. The Ingress resource is used to create an external Load-balancer
and hook it into the Service. Listing 4.3 is the Ingress we defined for LTCA.
Since we are using the managed GKE on GCP, the Ingress resource creates an
external Load-balancer in GCP.

Listing 4.4: LTCA HPA resource
apiVersion: autoscaling /v1
kind: HorizontalPodAutoscaler
metadata:

name: ltca
namespace: ltca

spec:
scaleTargetRef:

apiVersion: apps / v1beta2
kind: Deployment
name: ltca

minReplicas: 1
maxReplicas: 5
targetCPUUtilizationPercentage: 60

CHAPTER 4. VPKI SERVICES OVERVIEW 25

The last resource that the microservice needs, is the HPA which defines
thresholds for scaling in/out actions according the load metric we define. List-
ing 4.4 is the simple HPA defined for LTCA which is using CPU utilization
as the load indicator. Listing 4.4 tells the Autoscaling service to scale out the
LTCA Pods when their average CPU utilization is above 60 percent, or scale
in the Pods when their average CPU utilization is observed to be below 60
percent. It also defines the maximum and minimum number of Pods in order
to avoid resource exhaustion of the Kubernetes cluster.
4.2.4 Secret Management
So far, it is well understood that VPKI entities are supposed to have their own
key-pairs to be able to perform their cryptographic operations. These key-pairs
contain secrets that need to be protected both during the deployment of the
VPKI service, and also during runtime where entities are required to load their
secrets. Obviously, the secrets cannot be baked into the container images of the
VPKI entities, because that turns the image into something to protect. In order
to control the access to secrets needed for the VPKI entities, there are twomain
approaches. One is to use the Key Management Service (KMS) offered by the
cloud provider, in our case GCP. The other is to use the Kubernetes secret
management system. Each has its own pros and cons. The KMS from GCP
offers various cryptographic algorithms and primitives, e.g., AES-256, RSA
and Elliptic Curves. In addition to that, there are HSM services [77] on GCP
that if used along with KMS, it guarantees a protection level in compliance
with Federal Information Processing Standard (FIPS) 140-2 level 3. [78]. The
cloud Identity & Access Management (IAM) service is then used to facilitate
a role based access control to the keys that can encrypt and decrypt a secret.

While using the KMS and IAM services to handle the access management
for secrets of the VPKI entities sounds promising, but it is a dependency to the
specific cloud provider. Also calling Google APIs for every cryptographic ac-
tion would be expensive in terms of latency, which does not fit into the solution
we want to offer. The Kubernetes secret management is a cloud-agnostic so-
lution. It creates volumes containing the secrets, and mounts them beside the
microservices who are supposed to have access the secrets. That happens with
the help of isolation that namespaces provide. besides being cloud-agnostic,
another benefit of such a solution is that, accessing the secrets happens way
faster than the KMS solution, as there is no need to call any API to fetch the se-
crets, instead the Pod needs to read a file from disk to load its secret. However,
the downside would be that it does not offer any protection while deploying
the services. Also no security compliance is guaranteed.

26 CHAPTER 4. VPKI SERVICES OVERVIEW

We suggest to have a hybrid approach combining the two solutions stated
above. We introduce a bootstrapping phase where we generate master keys
in the cloud provider’s KMS for each entity. Then using the KMS keys, we
encrypt the actual keys that VPKI entities are supposed to use. We create Ku-
bernetes secrets by adding the encrypted keys beside each microservice as part
of the deployment. Hence, secrets are protected during deployment. When the
entities want to use their keys, they use the KMS decryption functionality and
decrypt the secret volume that they have access to. The access to the KMS
keys are also protected using the role based access control provided by the
IAM service. Hence, the Pods have their keypairs for use and there is no more
need to call the KMS API to fetch secrets.

4.3 Sybil Attacks against VPKIaaS
Distributed systems often need to address the Sybil attack problem [39]. Run-
ning multiple instances of a workload, increases both performance in terms
of large scale deployment and serving more end-users, but also increases the
risk of Sybil attacks against the system. In a more traditional deployment of
the VPKI, where entities were not horizontally scalable, and the only scala-
bility option was vertical, Sybil attacks were not a concern. However, when
services are horizontally scalable, more than one replica of the same service
would be running at a time. Obviously, there should be measurements imple-
mented both to facilitate the coordination between replicas and to avoid Sybil
attacks.

In the existing implementation of theVPKI, there exists a relational database
system, MySQL, for each entity. LTCA, PCA, and RA store data of their ex-
ecuted operations in the databases. Every time they receive a request, they
send a query to the database to check if the request has not been served before.
As a result of the modernization efforts towards realization of a large-scale
deployment of VPKI, services are horizontally scalable. Therefore, vehicles’
requests will now get distributed among multiple replicas of the same entities
to improve efficiency and performance of the system. However, this can create
a risk of Sybil based misbehavior, in a way that two identical requests from
the same vehicle can end up being served by two different replicas at the same
time, without having a chance of deterring the double spending.

Traditionally, distributed systems first answer to Sybil type problems was
to utilize the locking mechanism in relational database systems and having
synchronous communication between the replicas and the database system.
That of course solves the issue, but it comes with huge performance penalty.

CHAPTER 4. VPKI SERVICES OVERVIEW 27

Figure 4.2: VPKIaaS Sybil attack prevention using Redis and MySQL
[Taken from [17]]

One of the main reasons contributing in the performance degradation is that,
having synchronous connections to the database, means that all replicas need
to wait for one replica to be done with its operation so they can query values
from the table. So, the database operation could be the bottleneck in efficiency
of the system. Most of the relational database systems use disks as their back-
end storage, and disk Input/Output (I/O) operations are expensive, specially
in situations where system entities need to store multiple data records for the
vehicles being served.

In order to mitigate Sybil attacks and also not sacrificing the performance,
we have used a hybrid setup of relational and NoSQL databases. for each sys-
tem entity of LTCA and PCA, there exist an in-memory key-value database,
Cloud Memorystore, that replicas of the system entities have synchronous
communication with. Cloud Memorystore is a managed Redis database ser-
vice hosted by GCP. I/O operations are much faster in Redis, as data structure
is stored in memory rather than disk. In addition to that, since we do not store
all the data related to a vehicle in it, the waiting time for replicas are much
lower. In order to store the rest of data for served vehicles, we use a relational
database in an asynchronous fashion which does not degrade performance.

28 CHAPTER 4. VPKI SERVICES OVERVIEW

This way, replicas of LTCA and PCA can keep serving vehicles and remove
the concern of Sybil attacks with the quick and single-threaded I/O operation
that they do against their corresponding Redis instance. Figure 4.2 shows how
entities communicate with their relational database and Cloud Memorystore.
More details on the implementation is available at section 4.4.

4.4 Sybil Attack Prevention
SinceRedis [44] is single-threaded, every command is guaranteed to be atomic.
Redis also offers Transactions [79] in order to make sure about a sequential
execution of the commands atomically. Leveraging the two, a Sybil attack
prevention protocol has been implemented for LTCA and PCA.

4.4.1 Ticket Acquisition from LTCA
The Redis Key-Value table for LTCA holds the serial number of vehicles as
the keys, and the expiration time of the previously issued tickets as values.
Obviously, the value could be NULL for a vehicle that has not got a ticket
before. As shown in protocol 3, when a request is received by an instance of
LTCA, the value for its serial number is fetched from Redis. If the value is
NULL or if the value is less than or equal to the start-time of the requested
ticket, the request would be considered legitimate, otherwise, it would be re-
jected as a Sybil attack request. Considering the request being legitimate, the
value would be updated by the expiration time of the newly received request
and ticket issuance procedure would be invoked. In case of any failure in the
ticket issuance procedure, the value would be reverted to the old one.

CHAPTER 4. VPKI SERVICES OVERVIEW 29

Protocol 3 Ticket Request Validation (by the LTCA using Redis), taken from
[17]
1: procedure ValidateTicketReq(SN i

LTC , tkt
i
start, tkt

i
exp)

2: (valuei)← RedisQuery(SN i
LTC)

3: if valuei == NULL OR valuei <= tktistart then
4: RedisUpdate(SN i

LTC , tkt
i
exp)

5: Status← IssueT icket(. . .) . Invoking ticket issuance procedure
6: if Status == False then
7: RedisUpdate(SN i

LTC , value
i) . Reverting SN i

LTC to valuei

8: return (False) . Ticket issuance failure
9: else
10: return (True) . Ticket issuance success
11: end if
12: else
13: return (False) . Suspicious to Sybil attacks
14: end if
15: end procedure

4.4.2 Pseudonym Acquisition from PCA
Similar to LTCA, a Key-Value table in Redis is used for PCA, where serial
number of ticket is the key, and a Boolean flag is used as value. As shown in
protocol 4, when a request for pseudonym is received by an instance of PCA,
the value for its ticket serial number would be read from Redis. If the value is
NULL orFalse, it means no pseudonyms has been issued for the ticket before
and the request is legitimate. Otherwise, it is suspicious to be Sybil attack and
would be denied. Considering the request was legitimate, the value would be
set to True and the pseudonym issuance procedure would be invoked. In case
of any failure in pseudonym issuance procedure, the value in Redis would be
reverted to False.

30 CHAPTER 4. VPKI SERVICES OVERVIEW

Protocol 4 Pseudonym Request Validation (by the PCA using Redis), taken
from [17]
1: procedure ValidatePseudonymReq(SN i

tkt)
2: (valuei)← RedisQuery(SN i

tkt)

3: if valuei == NULL OR valuei == False then
4: RedisUpdate(SN i

tkt, T rue)

5: Status← IssuePsnyms(. . .) . Invoking pseudonym issuance
6: if Status == False then
7: RedisUpdate(SN i

tkt, False) . Reverting SN i
tkt to False

8: return (False) . Pseudonym issuance failure
9: else
10: return (True) . Pseudonym issuance success
11: end if
12: else
13: return (False) . Suspicious to Sybil attacks
14: end if
15: end procedure

Chapter 5

Qualitative Analysis

Existing literature [28][16] have already analyzed security and privacy ofVPKI
entities. In this section, we cover the analysis of VPKIaaS focusing on aspects
of a cloud-native deployment of VPKIaaS on a public cloud provider.

5.1 Security and Privacy Analysis

5.1.1 Trust in Cloud Provider
In general, running services in public cloud, can raise certain security and
privacy concerns. Meanwhile, ideas such as Fully Homomorphic Encryp-
tion (FHE) seem to offer a brighter future regarding privacy concerns [80].
However, there is no technical approach that promises a solution against ma-
licious cloud providers compromising availability of deployed services [81].
Therefore, it is fundamental to realize that, trusting the cloud provider is al-
ready assumed to some extent before deployment of services on it. The re-
quirements for establishment of trust can be met by verification of compliance
certifications. So legal frameworks, and complying to regulations, is consid-
ered to be the right approach in trusting cloud providers [82]. We have used
GCP to deploy our VPKIaaS. However, leveraging microservices architecture
and relying on Kubernetes as the platform, means that by introducing minor
modifications, any public cloud provider could be used to host VPKIaaS. In
a more extreme concern about public cloud providers, authorities may even
choose to deploy VPKIaaS on private cloud hosted on-premises. That is feasi-
ble because almost all services offered by public cloud providers, can be hosted
privately using alternatives such as OpenStack [83].

31

32 CHAPTER 5. QUALITATIVE ANALYSIS

5.1.2 Sybil Attacks
A malicious vehicle can try mounting an attack by sending multiple requests
asking for overlapping tickets from LTCA or trying to re-use a ticket to ac-
quire more pseudonyms from PCA. Deploying VPKI entities as microservices
that are capable of scaling horizontally can expose the system to such attacks.
VPKIaaS leverages cloud Memorystore [84], a managed Redis service offered
by GCP to quickly identify Sybil-based misbehavior. Since Redis is operating
in a single threaded fashion, it achieves atomicity by sequentially executing
all received operations. Redis transaction is a series of commands that can be
grouped together being sent to Redis having a guarantee that either all or none
will be executed atomically. Sybil protection is a configuration directive that
can be toggled on and off during the deployment of VPKIaaS. Having it on,
guarantees that Sybil based attacks are denied.

5.1.3 DDoS Attacks
External attackers can launch DDoS attacks against VPKIaaS by sending fake
certificates to LTCA or requesting pseudonyms from PCA using fake tickets.
This can lead to a signature flooding attack [85]. There are various security
mechanisms in VPKIaaS to protect and/or mitigate such attacks. First is the
dynamic scalability of the system, which scales out horizontally in resources
automatically. Having the VPKIaaS deployed on a cloud provider, such as
GCP gives us the power to potentially scale out and utilize as much resources
as the cloud provider has allocated to the project which is considerably high
by itself. In addition to that, since services are actually running on Kuber-
netes, which is the de facto platform for running microservices, VPKIaaS can
be potentially expanded into a multi-cloud deployment. Obviously, aforemen-
tioned solutions are not enough to stop a DDoS attack assuming it is done by a
strong attacker. They only guarantee to scale out resources, meaning that the
attacker wins eventually if it has advantage in resources. However, applying
built-in DDoS protection features on the public facing load-balancers can solve
the problem to a large extent. Cloud Armor is the battle-tested DDoS protec-
tion system on GCP load-balancers, and it is claimed to be the one protecting
Google services such as GMail, YouTube and Google Search [86]. That being
combined with GCPWebApplication Firewall (WAF) which is also extensible
by adding more rules, can provide a solid safety against DDoS attacks. Intro-
ducing a dynamic puzzle-based protection, could be another security measure-
ment on top of what is already mentioned, which is explained as part of the
future work in section 7.2.

CHAPTER 5. QUALITATIVE ANALYSIS 33

5.1.4 System Entities Failure
Software or hardware failure are also considered among the risks against avail-
ability of VPKIaaS. For each entity, we have implemented a health-check
by verifying its operation internally. Each LTCA Pod, while running, exe-
cutes the ticket acquisition procedure on itself periodically, and the result is
only reported as a success in health-check. Similarly, each PCA Pod does a
pseudonym acquisition on itself periodically. These requests are using internal
functions of each service, so such requests cannot be made through the exter-
nal interface of the microservice. The health-check metric is then exposed
to Kubelet, which is responsible for monitoring the liveness and readiness of
Pods, and in case of failing to verify them, it kills the Pod and replaces it by
running a new one. Similarly, there is a health-check for Kubernetes worker
nodes, which makes sure they are running the workloads, and if not, they will
be drained and cordoned by the Kubernetes scheduler. Leveraging the afore-
mentioned techniques, we can make sure to achieve high availability and fault
tolerance.

Chapter 6

Quantitative Analysis

In this chapter, we will cover the steps taken to prepare an experimental envi-
ronment, and go through the results of conducted experiments.

6.1 Prerequisite Setup
We started by refactoring the code base of the VPKI and made it ready to
be deployed as a cloud-native software. After being done with refactoring,
leveraging scripting languages, we created tools to facilitate the compilation,
integration and deployment of the microservices. We also built monitoring
tools to be deployed beside the VPKIaaS, and scripts to be executed on the
deployer machine so we can collect arbitrary metrics while the system is live
and accepting workload.

Compilation

We started by building a Docker image based on Ubuntu and adding necessary
packages needed to test and compile VPKI code, such as FastCGI [87], XML-
RPC [88] and Protocol Buffer [89]. We use this image as our base image for
the build.

We then created scripts iterating over entities of the VPKI system that their
code has been modified since the last time, loading them into a new container
instantiating from our base image, compiling the code andmoving the outcome
to a directory hierarchy on the builder host called packaged-build.

34

CHAPTER 6. QUANTITATIVE ANALYSIS 35

Installation

Similar to the compilation step, we started by creating a slimmer base image,
which has necessary packages to run VPKI entities. We also created con-
figuration templates for each entity and place-holder for their certificates. In
addition to that, steps like generating certificates, or skipping them if they are
already provided through other methods are automated as well. After run-
ning the installation scripts, we will end up having a Docker image ready to
run for each microservice. Then we push all the images to Google Container
Registry (GCR).

Load Generator

The VPKI system, already had an entity to represent as a vehicle; however,
it has been implemented as part of the system to just verify the functionality,
and it could not be used in our load/stress testing experiments . So we had to
rewrite another implementation of the vehicle entity in Python so that we can
hook it into the Locust [45] load generator. Also, since Locust could not work
with XML-RPC out of the box, we had to implement a hook for Locust so that
it can load our Vehicle implementation. For the sake of experiments, we were
only interested in actions of ticket acquisition from LTCA and pseudonym
acquisition from PCA, so the hooks only support the aforementioned actions.
Similar to other VPKI entities, we scripted the process of building the Load
Generator container image and pushing it to GCR.

Kubernetes

As part of the effort for having automation around deployment of the VPKI
system, we have scripted the creation of GKE running 5 VMs (n1-highcpu-
32) each having 32 vCPUs and 28.8GB of memory. Along with that, other
GCP services that are required for our system to be functional such as Cloud
SQL [90] and MemoryStore [84] are created during the bootstrapping phase
VPKI. We then defined VPKI microservices and resources in YAML [76]
which is the declarative method of defining resources in Kubernetes. The iso-
lated namespaces, Deployments, Services, Ingresses are definitions we need
for deployment of the VPKIaaS. In addition to those, we also added similar
definitions for the load generator installation.

36 CHAPTER 6. QUANTITATIVE ANALYSIS

Monitoring

In order to collect various metrics from the VPKI system while having it un-
der load based on different scenarios, we implemented and deployed mon-
itoring mechanisms. One of the most popular tools for monitoring Kuber-
netes clusters and the workload on them, is Prometheus [91], a Time Series
DataBase (TSDB) that can easily run on the cluster itself, fetching metrics us-
ing the Kubernetes API. In order to visualize the metrics on Prometheus, and
have visibility during the experiments, we use Grafana [92]. In order to be
able to query and export data from Prometheus, we used Styx [93] that is ca-
pable of running complicated queries against Prometheus and fetching results
in CSV format. Also, since we needed live data from HPAs as the load was
changing during the experiments, we wrote our own script to monitor HPAs
recording their state every second.

In addition to that, we also needed metrics from the Load Generator, Lo-
cust. At the time of doing our experiments, Locust was offering a web interface
showing the outcome of requests every second. However, it did not have a way
to access to historical data. So, we wrote our own tool that hooks to the Locust
web interface and records the result every second.

6.2 Experiment Scenarios
In order to evaluate the performance of our VPKIaaS, we measured its ef-
ficiency in pseudonym and ticket acquisition processes under different load
testing scenarios and configurations. Leveraging the Locust load generator,
we managed to generate arbitrary volume of synthetic requests and send them
towards the system with various configurations. Also, in order to test how the
system performs in flash crowd scenario, we added a sudden and rather huge
increase in number of pseudonym requests; our results show that the VPKIaaS
can scale dynamically and continue to serve requests without disruption.

Table 6.1 is a reference of the configurations we used in the experiments.
Config-1 is representing a configuration where 1000 vehicles join the system
by the rate of one vehicle per second. After joining, vehicles keep sending
pseudonym requests towards the system and wait for one to five seconds be-
tween each two requests. Multiple experiments have been conducted using
Config-1 where they differ in the number of pseudonyms in each request se-
lected from 100, 200, 300, 400 or 500 pseudonyms. Config-2 shows a flash
crowd [31] situation in which the load generator has two states. First it starts by
defining 100 vehicles joining the system by the pace of one vehicle per second.

CHAPTER 6. QUANTITATIVE ANALYSIS 37

Table 6.1: Experiment Parameters
[Taken from [17]]

Parameters Config-1 Config-2
total number of vehicles 1000 100, 50,000

hatch rate 1 1, 100
interval between requests 1000-5000 ms 1000-5000 ms
pseudonyms per request 100, 200, 300, 400, 500 100, 200, 500
LTCA memory request 128 MiB 128 MiB
LTCA memory limit 256 MiB 256 MiB
LTCA CPU request 500 m 500 m
LTCA CPU limit 1000 m 1000 m

LTCA HPA 1-40; CPU 60% 1-40; CPU 60%
PCA memory request 128 MiB 128 MiB
PCA memory limit 256 MiB 256 MiB
PCA CPU request 700 m 700 m
PCA CPU limit 1000 m 1000 m

PCA HPA 1-120; CPU 60% 1-120; CPU 60%

When all 100 vehicles are in the system actively requesting pseudonyms, and
waiting one to five seconds between their requests, the load generator suddenly
goes to the second state by increasing the total number of vehicles to 50000
and setting the hatch rate to 100, meaning that hundred vehicles join the system
every second. Collecting enough data as an excerpt to show resilience, high
availability and dynamic scalability of VPKIaaS, we change the load genera-
tor settings back to state one. The flash crowd scenario experiment has been
repeated three times, each time changing the number of pseudonyms vehicles
ask in each request chosen from the 100, 200 or 500 pseudonyms.

Considering the assumption of pseudonyms being issuedwith non-overlapping
intervals, having 100 or 500 pseudonyms and using them for a whole day,
makes each pseudonym lifetime ≈14 or ≈3 minutes respectively. Real world
data-sets from Tapas-Cologne [94] and LuST [95] are suggesting that average
trip duration for each vehicle is ten to thirty minutes on daily basis. Also, ac-
cording to a report fromUnited StatesDepartment of Transportation (DoT) [96],
one hour is the average trip duration of a vehicle per day in the US.

38 CHAPTER 6. QUANTITATIVE ANALYSIS

6.3 Large-scale Pseudonym Acquisition
Figure 6.1.a shows a Cumulative Distribution Function (CDF) presentation of
the ticket issuance end-to-end latency in milliseconds where the experiment
was running using Config-1 in table 6.1. As it is shown, the LTCA service has
served 99.9% of ticket requests by vehicles in 24 milliseconds. 6.1.b shows a
CDF for pseudonym issuance end-to-end delay. For that, we repeated the ex-
periment 5 times, each time different number of pseudonyms were requested.
Asking for 100 pseudonyms per request, 99.9% of vehicles are served in less
than 77 milliseconds. Increasing the number of pseudonyms per request, obvi-
ously introduces more latency in the system; e.g., asking for 500 pseudonyms
in each request, 99.9% of vehicles could be served within 388 milliseconds.
Our results confirm that VPKIaaS is capable of handling gradual increase in
load efficiently and vehicles are being served within a reasonable time.

0 1000 2000 3000 4000 5000

End-to-end Processing Delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
ve

P
ro

b
ab

ili
ty

1 ticket per request

5 8 11 14 17 20 23
End-to-end Processing Delay [ms]

0.000

0.250

0.500

0.750

0.999

C
u
m

u
la

ti
ve

P
ro

b
ab

il
it
y

(a) Ticket Issuance

0 1000 2000 3000 4000 5000

End-to-end Processing Delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
ve

P
ro

b
ab

ili
ty

100 pseudonyms per request

200 pseudonyms per request

300 pseudonyms per request

400 pseudonyms per request

500 pseudonyms per request

100 200 300 400
End-to-end Processing Delay [ms]

0.000

0.250

0.500

0.750

0.999

C
u
m

u
la

ti
ve

P
ro

b
ab

il
it
y

(b) Pseudonyms Issuance

Figure 6.1: (a) CDF of end-to-end latency to issue a ticket. (b) CDF of end-
to-end processing delay to issue pseudonyms.

[Taken from [17]]

6.4 Flash Crowd Situation
Figure 6.2 shows how the system perform under flash crowd situation. Config-
2 from table 6.1 has been used for this experiment. We have measured average
CPU utilization by LTCA and PCA Pods (6.2.a top), and number of requests
per second recorded by Locust (6.2.a bottom). As described in 6.2, for the
flash crowd experiment, we change the load generator configuration twice to
take the system to flash crowd mode and bring it back to normal. As shown in

CHAPTER 6. QUANTITATIVE ANALYSIS 39

0

25

50

75

100
A

v
g.

C
P

U
U

ti
li
za

ti
on LTCA

PCA

0 500 1000 1500 2000 2500
System Time [s]

0

100

200

300

400

500

R
eq

u
es

ts
p

er
S

ec
.

Requests per Second

(a)

0 2000 4000 6000 8000 10000

End-to-end Processing Delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
ve

P
ro

b
ab

ili
ty

1 ticket per request

100 pseudonyms per request

200 pseudonyms per request

0 100 200 300

End-to-end Latency [ms]

0.000

0.250

0.500

0.750

0.999

C
u
m

u
la

ti
ve

P
ro

b
ab

il
it
y

(b)

Figure 6.2: VPKIaaS system in a flash crowd load situation. (a) CPU utiliza-
tion and the number of requests per second. (b) CDF of processing latency to
issue tickets and pseudonyms.

[Taken from [17]]

table 6.1, we have configured HPAs [75] for LTCA and PCA setting the CPU
threshold to 60% meaning that when the average CPU utilization on LTCA
or PCA passes 60%, HPA creates an event asking the Kubernetes scheduler
to scale out by adding more replicas to LTCA or PCA. There is a similar
mechanism for scaling in replicas by removing them when their average CPU
utilization reaches below 60% and HPA estimates that by removing replicas,
CPU utilization would not go over 60% again. One can also define minimum
and maximum number of replicas for HPA to avoid unavailability or exhaus-
tion of services. For the sake of our experiment, we have set the minimum
number of Replicas to 1, and the maximum number of replicas for LTCA and
PCA to 40 and 120 respectively.

Figure 6.2.b shows a CDF for end-to-end processing delay for ticket and
pseudonym issuance in flash crowd situation. As illustrated, 99.9% of tick-
ets have been issued within 87 milliseconds. The processing delay to issue
100 pseudonyms per request for 99.9% of requests is 192 milliseconds. Obvi-
ously, comparing the result from 6.2.b and 6.1, one can conclude that, although
the latency both for ticket and pseudonym issuance, has been increased in the
flash crowd scenario, the delays are within reasonable range, showing that the
VPKIaaS can handle sudden stress in load by quickly scaling out services and
continue to serve vehicles without disruption.

Figure 6.3.a shows the delay introduced by different system entities for
acquiring various batches of pseudonyms from 100 to 500 according Config-2
in table 6.1. As shown, the processing delay for issuing 100 pseudonyms is

40 CHAPTER 6. QUANTITATIVE ANALYSIS

100 200 300 400 500

Number of Pseudonyms per Request

0

100

200

300

400

500

E
n
d
-t

o-
E

n
d

L
at

en
cy

[m
s]

Client Side Operations

All PCA Operations

All LTCA Operations

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

End-to-end Latency [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
P

ro
b

ab
ili

ty

100 psnyms per request

200 psnyms per request

300 psnyms per request

400 psnyms per request

500 psnyms per request

(b)

Figure 6.3: VPKIaaS system with flash crowd load pattern. (a) Average end-
to-end latency to obtain pseudonyms. (b) CDF of end-to-end latency, observed
by clients.

[Taken from [17]]

approximately 56 milliseconds which is 36-fold improvement comparing to
2010 milliseconds reported in prior work [41].

Figure 6.3.b is showing the average latency to obtain pseudonyms observed
by vehicles. As illustrated, all vehicles received their batch of 100 pseudonyms
within 4900 milliseconds. It should also be noted that this experiment is simu-
lating a flash crowd scenario in which not only 100 new vehicles are joining the
system every second, but also they keep requesting new batches of pseudonyms
every 1 to 5 seconds. This means that after having all 50000 vehicles joined
the system, VPKIaaS have been issuing 50000 to 250000 pseudonyms every 5

seconds. In other words, after an hour at least≈36 million vehicles are served.

6.5 Dynamic Scalability & High Availability
In this experiment, we used Config-2 in table 6.1 with 500 pseudonyms per
request to show the dynamic scalability and high availability of the VPKIaaS.
Figure 6.4.a derived from monitoring system resources on the Kubernetes
cluster, shows average CPU utilization by system entities (LTCA & PCA)
matched with the number of requests arrived. As illustrated, increasing the
number of requests, has resulted in seeing spikes at CPU utilization, but there
is a fall right after each spike even though the load has been increasing with
the same hatch rate. That is due to the scaling-out action. When HPA sees
Pods passing the 60% threshold mentioned in section 6.4, it reacts by sending

CHAPTER 6. QUANTITATIVE ANALYSIS 41

0 500 1000 1500 2000

System Time [s]

0

25

50

75

100

125

150
C

P
U

U
ti

liz
at

io
n

&
R

P
S

Average LTCA CPU utilization

Average PCA CPU utilization

Pseudonyms request pre sec.

(a)

0 500 1000 1500 2000

System Time [s]

0

25

50

75

100

125

150

O
b
se

rv
ed

C
P

U
U

ti
liz

at
io

n

1

2 4

1

2

4 8 16 32
64

80

32
LTCA Pods

PCA Pods

(b)

Figure 6.4: Each vehicle requests 500 pseudonyms (CPU utilization observed
by HPA). (a) Number of active vehicles and CPU utilization. (b) Dynamic
scalability of VPKIaaS system

[Taken from [17]]

a message to the Kubernetes scheduler asking to increase the number of Pods
to be able to cope with the load. When new Pods start running, they join others
by accepting traffic from the load-balancer, hence the load is shared and the
spike falls below the threshold.

Figure 6.4.b shows the CPU utilization of system entities (LTCA & PCA)
monitored by HPA along with the number of running Pods serving requests
at each time. We see both LTCA and PCA start by running one Pod,which
is their defined desired number. As HPA confirms existing Pods cannot deal
with the load, more Pods join the system. Obviously, LTCA is handling less
load comparing to PCA, so it can be seen that PCA is running by 80 Pods at
t = 1500 and LTCA is running by 4 Pods. Decreasing the number of Pods
at t = 1800 when we are stopping the experiment by switching off the load
generator, shows VPKIaaS can scale in dynamically to have just enough Pods
to make sure the system is functional.

Chapter 7

Conclusions and Future Work

7.1 Conclusions
In this master thesis, we tackle the challenges of high-availability and dynamic
scalability of the VPKI for a large-scale deployment. A state-of-the-art VPKI
was refactored and architected to fit in microservices running on GCP. With
this, its availability, scalability towards a cost-effective VPKI deployment was
guaranteed. In addition to that, by adding health and load metrics to microser-
vices, and leveraging an orchestration platform, we managed to add fault tol-
erance and self-healing features to VPKIaaS services. A secret management
solution for VPKIaaS was proposed to ensure confidentiality of secrets dur-
ing the deployment procedure of microservices. Also, by designing a hybrid
approach of storing data, we showed that horizontal dynamic scalability is
achievable while fully eradicating Sybil attacks without compromising perfor-
mance. This effort would result in facilitating and catalyzing the deployment
of VPKIaaS for a large-scale VC system.

7.2 Future Work
Aswewere conducting our experiments, we noticed a discrepancy between the
number of served pseudonym requests from Locust’s perspective and the num-
ber of issued pseudonyms fromVPKI’s perspective. We figured the reasonwas
timeouts that are defined by default within the locust framework, meaning that
requests were being served and the response was coming back to Locust but
was not being counted as a successful transaction, because Locust had already
considered it exceeding its timeout. By implementing more methods of the
Locust interfaces, we believe we can get a more accurate results regarding the

42

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 43

total number of requests from the client side.
Also, in our experiments, unlike VPKIaaS that we allocated dynamic re-

sources for, we designed the load generator to have static resources. As a result
of this configuration, the load generation could not scale dynamically. In order
to create the flash crowd scenario in 6.2, the load generator is also under con-
siderable load due to the key-pair generation operations. This can be improved
by making Locust dynamically scalable so we make sure more stress tests can
be conducted hitting higher performance in benchmarks.

Another improvement is to implement a rate limiting technique based on
puzzles, e.g., [97, 98], which can be toggled on and off automatically upon
receiving higher loads suspicious to be originated as part of a DDoS attack.
When it is toggled on, vehicles need to solve a puzzle in order to be able to
send a request towards VPKIaaS. Such a security mechanism, can degrade
the power of an attacker to a great extent, hence providing a better protection
against resource exhaustion attacks.

Further improvement of the secret management mechanism, could also be
a potential story to follow. Besides implementation of the hybrid solutionmen-
tioned in 4.2.4, one can explore the possibility of using Cloud HSM to offer
higher level of compliance according to security standards. Although using
managed KMS solutions, comes with a risk of vendor locks-in, we inspect
that could be avoided by using the SOPS project [99] to have a cloud-agnostic
abstraction around the KMS service.

One interesting area of work is to explore the options of using a service
mesh when deploying VPKIaaS on Kubernetes. Leveraging features that a
service mesh offers, we can introduce authorization policies to further protect
microservices communication channels, hence controlling their ingress and
egress traffic. Also we can introduce mutual TLS (mTLS) to make sure only
intended messages can reach to our services. Then, researching options for
federation of the servicemesh is worth to be further investigated, which can po-
tentially facilitate having a multi-cluster and/or multi-cloud solution providing
even more robustness to services. In a geographically distributed multi-cluster
setup, by exploiting the weighted routing functionality of Domain Name Sys-
tem (DNS) service, and forwarding requests to the closest Kubernetes cluster,
we can optimize the round-trip of packets sent between vehicles and VPKIaaS.

Bibliography

[1] 6 firms that are testing driverless cars. Accessed March 1, 2021. url:
https://ddswireless.com/blog/6-companies-leading-
the-charge-in-self-driving-vehicles/.

[2] Car to car communications a step closer. 2012. url: https://www.
itsinternational . com / its10 / feature / car - car -
communications-step-closer.

[3] U.S. Department of Transportation Announces Decision to Move For-
ward with Vehicle-to-Vehicle Communication Technology for Light Ve-
hicles. 2014. url: https://mobility21.cmu.edu/u- s-
department-of-transportation-announces-decision-
to-move-forward-with-vehicle-to-vehicle-communication-
technology-for-light-vehicles/.

[4] Google Self-DrivingCar Project. AccessedMarch 1, 2021.url:https:
//waymo.com/.

[5] IEEE-1609.2. “IEEE Standard for Wireless Access in Vehicular Envi-
ronments - Security Services for Applications and Management Mes-
sages”. In: (2016). url: https : / / standards . ieee . org /
standard/1609_2-2016.html.

[6] ETSI. ETSI TS 103 097 v1.2.1-Intelligent Transport Systems (ITS); Se-
curity; Security Header andCertificate Formats, Standard, TC ITS. ETSI
TS 103 097, 2015. url: https://www.etsi.org/deliver/
etsi_ts/103000_103099/103097/01.02.01_60/ts_
103097v010201p.pdf.

[7] ETSI. Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Definitions. ETSI Tech. TR-102-638, 2009.
url:https://www.etsi.org/deliver/etsi_tr/102600_
102699/102638/01.01.01_ 60/tr_ 102638v010101p.
pdf.

44

https://ddswireless.com/blog/6-companies-leading-the-charge-in-self-driving-vehicles/
https://ddswireless.com/blog/6-companies-leading-the-charge-in-self-driving-vehicles/
https://www.itsinternational.com/its10/feature/car-car-communications-step-closer
https://www.itsinternational.com/its10/feature/car-car-communications-step-closer
https://www.itsinternational.com/its10/feature/car-car-communications-step-closer
https://mobility21.cmu.edu/u-s-department-of-transportation-announces-decision-to-move-forward-with-vehicle-to-vehicle-communication-technology-for-light-vehicles/
https://mobility21.cmu.edu/u-s-department-of-transportation-announces-decision-to-move-forward-with-vehicle-to-vehicle-communication-technology-for-light-vehicles/
https://mobility21.cmu.edu/u-s-department-of-transportation-announces-decision-to-move-forward-with-vehicle-to-vehicle-communication-technology-for-light-vehicles/
https://mobility21.cmu.edu/u-s-department-of-transportation-announces-decision-to-move-forward-with-vehicle-to-vehicle-communication-technology-for-light-vehicles/
https://waymo.com/
https://waymo.com/
https://standards.ieee.org/standard/1609_2-2016.html
https://standards.ieee.org/standard/1609_2-2016.html
https://www.etsi.org/deliver/etsi_ts/103000_103099/103097/01.02.01_60/ts_103097v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/103000_103099/103097/01.02.01_60/ts_103097v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/103000_103099/103097/01.02.01_60/ts_103097v010201p.pdf
https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf

BIBLIOGRAPHY 45

[8] ETSI TR 102 731. Intelligent Transport Systems (ITS); Security; Secu-
rity Services and Architecture. 2009. url: https://www.etsi.
org/deliver/etsi_ ts/102700_ 102799/102731/01.
01.01_60/ts_102731v010101p.pdf.

[9] ETSI TR 102 941. Intelligent Transport Systems (ITS); Security; Trust
and Privacy Management. 2012. url: https://www.etsi.org/
deliver/etsi_ts/102900_102999/102941/01.01.01_
60/ts_102941v010101p.pdf.

[10] PKI Memo. Tech. rep. C2C-CC, 2011. url: http://www.car-2-
car.org/.

[11] Panagiotis Papadimitratos, Virgil Gligor, and Jean-Pierre Hubaux. “Se-
curingVehicular Communications-Assumptions, Requirements, and Prin-
ciples”. In:Workshop on Embedded Security in Cars (ESCAR). Berlin,
Germany, 2006, pp. 5–14. url: https : / / people . kth . se /
~papadim/publications/fulltext/secure-vehicular-
communication-requirements-fundamentals.pdf.

[12] Panagiotis Papadimitratos, Levente Buttyan, TamasHolczer, Elmar Schoch,
Julien Freudiger, Maxim Raya, Zhendong Ma, Frank Kargl, Antonio
Kung, and J-P Hubaux. “Secure Vehicular Communication Systems:
Design and Architecture”. In: IEEE Communications Magazine 46.11
(2008), pp. 100–109. url: https://ieeexplore.ieee.org/
document/4689252.

[13] Frank Kargl, Panos Papadimitratos, Levente Buttyan, M Muter, Elmar
Schoch, Bjoern Wiedersheim, Ta-Vinh Thong, Giorgio Calandriello,
Albert Held, and Antonio Kung. “Secure Vehicular Communication
Systems: Implementation, Performance, and Research Challenges”. In:
IEEECommunicationsMagazine 46.11 (2008), pp. 110–118.url:https:
//ieeexplore.ieee.org/abstract/document/4689253.

[14] Panagiotis Papadimitratos, Levente Buttyan, J-P Hubaux, Frank Kargl,
Antonio Kung, and Maxim Raya. “Architecture for Secure and Pri-
vate Vehicular Communications”. In: IEEE International Conference
on ITS Telecommunications (ITST). Sophia Antipolis, France, 2007,
pp. 1–6. url: https://ieeexplore.ieee.org/abstract/
document/4295890.

https://www.etsi.org/deliver/etsi_ts/102700_102799/102731/01.01.01_60/ts_102731v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102700_102799/102731/01.01.01_60/ts_102731v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102700_102799/102731/01.01.01_60/ts_102731v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102900_102999/102941/01.01.01_60/ts_102941v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102900_102999/102941/01.01.01_60/ts_102941v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102900_102999/102941/01.01.01_60/ts_102941v010101p.pdf
http://www.car-2-car.org/
http://www.car-2-car.org/
https://people.kth.se/~papadim/publications/fulltext/secure-vehicular-communication-requirements-fundamentals.pdf
https://people.kth.se/~papadim/publications/fulltext/secure-vehicular-communication-requirements-fundamentals.pdf
https://people.kth.se/~papadim/publications/fulltext/secure-vehicular-communication-requirements-fundamentals.pdf
https://ieeexplore.ieee.org/document/4689252
https://ieeexplore.ieee.org/document/4689252
https://ieeexplore.ieee.org/abstract/document/4689253
https://ieeexplore.ieee.org/abstract/document/4689253
https://ieeexplore.ieee.org/abstract/document/4295890
https://ieeexplore.ieee.org/abstract/document/4295890

46 BIBLIOGRAPHY

[15] W. Whyte, A Weimerskirch, V. Kumar, and T. Hehn. “A Security Cre-
dential Management System for V2V Communications”. In: IEEE Ve-
hicular Networking Conference (VNC). Boston, MA, 2013, pp. 1–8.
url:https://ieeexplore.ieee.org/abstract/document/
6737583.

[16] M. Khodaei, H. Jin, and P. Papadimitratos. “SECMACE: Scalable and
Robust Identity and Credential Management Infrastructure in Vehic-
ular Communication Systems”. In: IEEE Transactions on Intelligent
Transportation Systems 19.5 (2018), pp. 1430–1444. url: https://
ieeexplore.ieee.org/abstract/document/8332521.

[17] MohammadKhodaei, HamidNoroozi, and Panos Papadimitratos. “Scal-
ing Pseudonymous Authentication for Large Mobile Systems”. In: Pro-
ceedings of the 12th ACM Conference on Security & Privacy in Wire-
less and Mobile Networks (ACM WiSec). Miami, FL, USA, 2019. url:
https://dl.acm.org/doi/10.1145/3317549.3323410.

[18] P. Papadimitratos, ALa Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza.
“Vehicular Communication Systems: Enabling Technologies, Applica-
tions, and FutureOutlook on Intelligent Transportation”. In: IEEECom-
municationsMagazine 47.11 (2009), pp. 84–95.url:https://ieeexplore.
ieee.org/document/5307471.

[19] Reza Shokri, George Theodorakopoulos, Panos Papadimitratos, Ehsan
Kazemi, and J-P Hubaux. “Hiding in the Mobile Crowd: Location Pri-
vacy through Collaboration”. In: IEEE Transactions on Dependable
and Secure Computing 11.3 (2014), pp. 266–279. url: https://
ieeexplore.ieee.org/abstract/document/6682907.

[20] Hongyu Jin and Panos Papadimitratos. “Resilient Privacy Protection for
Location-Based Services ThroughDecentralization”. In:ACMTransac-
tions on Privacy and Security (ACM TOPS) 22.4 (2019), 21:1–36. url:
https://dl.acm.org/doi/abs/10.1145/3319401.

[21] Stylianos Gisdakis, Vasileios Manolopoulos, Sha Tao, Ana Rusu, and
Panagiotis Papadimitratos. “Secure and Privacy-Preserving Smartphone-
Based Traffic Information Systems”. In: IEEE Transactions on Intelli-
gent Transportation Systems (IEEE ITS) 16.3 (2015), pp. 1428–1438.

[22] V. Manolopoulos, S. Tao, A. Rusu, and P. Papadimitratos. “HotMobile
2012 Demo: Smartphone-based Traffic Information System for Sustain-
able Cities”. In: ACMMobile Computing and Communications Review
(ACM MC2R) 16.4 (2012), pp. 30–31. issn: 1559-1662.

https://ieeexplore.ieee.org/abstract/document/6737583
https://ieeexplore.ieee.org/abstract/document/6737583
https://ieeexplore.ieee.org/abstract/document/8332521
https://ieeexplore.ieee.org/abstract/document/8332521
https://dl.acm.org/doi/10.1145/3317549.3323410
https://ieeexplore.ieee.org/document/5307471
https://ieeexplore.ieee.org/document/5307471
https://ieeexplore.ieee.org/abstract/document/6682907
https://ieeexplore.ieee.org/abstract/document/6682907
https://dl.acm.org/doi/abs/10.1145/3319401

BIBLIOGRAPHY 47

[23] V. Manolopoulos, Panos Papadimitratos, S. Tao, and A. Rusu. “Secur-
ing Smartphone based ITS”. In: IEEE International Conference on ITS
Telecommunications (IEEE ITST). St. Petersburg, Russia, 2011, pp. 201–
206.

[24] H. Jin, M. Khodaei, and P. Papadimitratos. “Security and Privacy in
Vehicular Social Networks”. In: Vehicular Social Networks. Taylor &
Francis Group, 2016. url: https : / / www . taylorfrancis .
com / chapters / edit / 10 . 1201 / 9781315368450 - 12 /
security-privacy-vehicular-social-networks-hongyu-
jin-mohammad-khodaei-panos-papadimitratos.

[25] Virendra Kumar, Jonathan Petit, and William Whyte. “Binary Hash
Tree based Certificate Access Management for Connected Vehicles”.
In: Proceedings of the 10th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (ACM WiSec). Boston, USA, 2017.
url: https://dl.acm.org/doi/abs/10.1145/3098243.
3098257.

[26] Patrick McDaniel and Aviel Rubin. “A Response to “CanWe Eliminate
Certificate Revocation Lists?”” In: FC (Springer). Berlin, Heidelberg,
2000, pp. 245–258. url: https://doi.org/10.1007/3-540-
45472-1_17.

[27] Jeremy Clark and Paul C Van Oorschot. “SoK: SSL and HTTPS: Re-
visiting Past Challenges and Evaluating Certificate Trust Model En-
hancements”. In: IEEE SnP. Berkeley, USA, 2013. url: https://
ieeexplore.ieee.org/abstract/document/6547130.

[28] Mohammad Khodaei and Panos Papadimitratos. “Efficient, Scalable,
and Resilient Vehicle-Centric Certificate Revocation List Distribution
in VANETs”. In: Proceedings of the 11th ACM Conference on Security
& Privacy in Wireless and Mobile Networks (ACM WiSec). Stockholm,
Sweden, 2018. url: https://dl.acm.org/doi/abs/10.
1145/3212480.3212481.

[29] MarcosASimplicio Jr, Eduardo Lopes Cominetti, HarshKupwade Patil,
Jefferson E Ricardini, and Marcos Vinicius M Silva. “ACPC: Efficient
Revocation of Pseudonym Certificates using Activation Codes”. In: El-
sevier AdHocNetworks (2018).url:https://www.sciencedirect.
com/science/article/pii/S1570870518304761.

https://www.taylorfrancis.com/chapters/edit/10.1201/9781315368450-12/security-privacy-vehicular-social-networks-hongyu-jin-mohammad-khodaei-panos-papadimitratos
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315368450-12/security-privacy-vehicular-social-networks-hongyu-jin-mohammad-khodaei-panos-papadimitratos
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315368450-12/security-privacy-vehicular-social-networks-hongyu-jin-mohammad-khodaei-panos-papadimitratos
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315368450-12/security-privacy-vehicular-social-networks-hongyu-jin-mohammad-khodaei-panos-papadimitratos
https://dl.acm.org/doi/abs/10.1145/3098243.3098257
https://dl.acm.org/doi/abs/10.1145/3098243.3098257
https://doi.org/10.1007/3-540-45472-1_17
https://doi.org/10.1007/3-540-45472-1_17
https://ieeexplore.ieee.org/abstract/document/6547130
https://ieeexplore.ieee.org/abstract/document/6547130
https://dl.acm.org/doi/abs/10.1145/3212480.3212481
https://dl.acm.org/doi/abs/10.1145/3212480.3212481
https://www.sciencedirect.com/science/article/pii/S1570870518304761
https://www.sciencedirect.com/science/article/pii/S1570870518304761

48 BIBLIOGRAPHY

[30] M. Khodaei, H. Jin, and P. Papadimitratos. “Towards Deploying a Scal-
able & Robust Vehicular Identity and Credential Management Infras-
tructure”. In: IEEE Vehicular Networking Conference (VNC). Pader-
born, Germany, 2014. url: https://ieeexplore.ieee.org/
abstract/document/7013306.

[31] Ismail Ari, Bo Hong, Ethan L Miller, Scott A Brandt, and Darrell DE
Long. “Managing Flash Crowds on the Internet”. In: IEEE/ACM MAS-
COTS. Orlando, FL,USA, 2003, pp. 246–249.url:https://ieeexplore.
ieee.org/abstract/document/1240667.

[32] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani,
Slava Galperin, and Carlisle Adams. X. 509 Internet Public Key Infras-
tructure Online Certificate Status Protocol - OCSP. Tech. rep. 2013.
url: https://www.hjp.at/doc/rfc/rfc6960.html.

[33] Giorgio Calandriello, Panos Papadimitratos, Jean-Pierre Hubaux, and
Antonio Lioy. “Efficient and Robust Pseudonymous Authentication in
VANET”. In: ACM VANET. NY, USA, 2007, pp. 19–28. url: https:
//dl.acm.org/doi/abs/10.1145/1287748.1287752.

[34] Panos Papadimitratos, Giorgio Calandriello, Jean-Pierre Hubaux, and
Antonio Lioy. “Impact of Vehicular Communications Security on Trans-
portation Safety”. In: IEEE INFOCOM Mobile Networking for Vehic-
ular Environments (MOVE) Workshop (IEEE MOVE). Phoenix, AZ,
USA, 2008, pp. 1–6. url: https://ieeexplore.ieee.org/
abstract/document/4544663.

[35] Giorgio Calandriello, Panos Papadimitratos, J-P Hubaux, and Antonio
Lioy. “On the Performance of Secure Vehicular Communication Sys-
tems”. In: IEEE Transactions on Dependable and Secure Computing
(TDSC) 8.6 (2011), pp. 898–912. url: https://ieeexplore.
ieee.org/abstract/document/5611547.

[36] M. Khodaei, A. Messing, and P. Papadimitratos. “RHyTHM: A Ran-
domized Hybrid Scheme To Hide in the Mobile Crowd”. In: IEEE Ve-
hicular NetworkingConference (VNC). Torino, Italy, 2017.url:https:
//ieeexplore.ieee.org/abstract/document/8275642.

[37] ZhendongMa, FrankKargl, andMichaelWeber. “Pseudonym-on-demand:
A New Pseudonym Refill Strategy for Vehicular Communications”. In:
IEEE VTC. Calgary, BC, 2008, pp. 1–5. url: https://doi.org/
10.1109/VETECF.2008.455.

https://ieeexplore.ieee.org/abstract/document/7013306
https://ieeexplore.ieee.org/abstract/document/7013306
https://ieeexplore.ieee.org/abstract/document/1240667
https://ieeexplore.ieee.org/abstract/document/1240667
https://www.hjp.at/doc/rfc/rfc6960.html
https://dl.acm.org/doi/abs/10.1145/1287748.1287752
https://dl.acm.org/doi/abs/10.1145/1287748.1287752
https://ieeexplore.ieee.org/abstract/document/4544663
https://ieeexplore.ieee.org/abstract/document/4544663
https://ieeexplore.ieee.org/abstract/document/5611547
https://ieeexplore.ieee.org/abstract/document/5611547
https://ieeexplore.ieee.org/abstract/document/8275642
https://ieeexplore.ieee.org/abstract/document/8275642
https://doi.org/10.1109/VETECF.2008.455
https://doi.org/10.1109/VETECF.2008.455

BIBLIOGRAPHY 49

[38] MohammadKhodaei and Panos Papadimitratos. “EvaluatingOn-demand
PseudonymAcquisition Policies inVehicular Communication Systems”.
In: Proceedings of the First International Workshop on Internet of Ve-
hicles and Vehicles of Internet (IoV/VoI). Paderborn, Germany, 2016.
url: https://dl.acm.org/doi/abs/10.1145/2938681.
2938684.

[39] John R Douceur. “The Sybil Attack”. In: ACM Peer-to-peer Systems.
London, UK, 2002. url: https : / / link . springer . com /
chapter/10.1007/3-540-45748-8_24.

[40] HamidNoroozi,MohammadKhodaei, and Panos Papadimitratos. “DEMO:
VPKIaaS:AHighly-Available andDynamically-ScalableVehicular Public-
Key Infrastructure”. In: Proceedings of the 11th ACM Conference on
Security & Privacy in Wireless and Mobile Networks (ACM WiSec).
Stockholm, Sweden, 2018. url: https://dl.acm.org/doi/
abs/10.1145/3212480.3226100.

[41] Pierpaolo Cincilla, Omar Hicham, and Benoit Charles. “Vehicular PKI
Scalability-Consistency Trade-Offs in Large Scale Distributed Scenar-
ios”. In: IEEE Vehicular Networking Conference (VNC). Columbus,
Ohio, USA, 2016. url: https : / / ieeexplore . ieee . org /
abstract/document/7835970.

[42] Martin Fowler and Kent Beck. Refactoring: Improving the design of ex-
isting code. 2018. url: https://martinfowler.com/books/
refactoring.html.

[43] MohammadKhodaei, HamidNoroozi, and Panos Papadimitratos. “POSTER:
Privacy Preservation through Uniformity”. In: Proceedings of the 11th
ACM Conference on Security & Privacy in Wireless and Mobile Net-
works (ACMWiSec). Stockholm, Sweden, 2018, pp. 279–280.url:https:
//dl.acm.org/doi/abs/10.1145/3212480.3226101.

[44] Redis, In-memoryData Structure Store, Used as aDatabase. 2018.url:
https://redis.io/.

[45] An Open Source Load Testing Tool. 2019. url: https://locust.
io/.

[46] What’s a Linux container? 2021. url: https://www.redhat.
com/en/topics/containers/whats-a-linux-container.

[47] What is a Container?A standardized unit of software. 2021.url:https:
//www.docker.com/resources/what-container.

https://dl.acm.org/doi/abs/10.1145/2938681.2938684
https://dl.acm.org/doi/abs/10.1145/2938681.2938684
https://link.springer.com/chapter/10.1007/3-540-45748-8_24
https://link.springer.com/chapter/10.1007/3-540-45748-8_24
https://dl.acm.org/doi/abs/10.1145/3212480.3226100
https://dl.acm.org/doi/abs/10.1145/3212480.3226100
https://ieeexplore.ieee.org/abstract/document/7835970
https://ieeexplore.ieee.org/abstract/document/7835970
https://martinfowler.com/books/refactoring.html
https://martinfowler.com/books/refactoring.html
https://dl.acm.org/doi/abs/10.1145/3212480.3226101
https://dl.acm.org/doi/abs/10.1145/3212480.3226101
https://redis.io/
https://locust.io/
https://locust.io/
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

50 BIBLIOGRAPHY

[48] Kubernetes: Production-Grade Container Orchestration. 2019. url:
https://kubernetes.io/.

[49] Google Kubernetes Engine Overview. 2021. url: https://cloud.
google.com/kubernetes-engine/docs/concepts/kubernetes-
engine-overview.

[50] Kubernetes workloads, Pods. 2021. url: https://kubernetes.
io/docs/concepts/workloads/pods/.

[51] Kubernetes workloads, Deployments. 2021.url:https://kubernetes.
io/docs/concepts/workloads/controllers/deployment/.

[52] Kubernetes service. 2021.url:https://kubernetes.io/docs/
concepts/services-networking/service/.

[53] Kubernetes ingress. 2021.url:https://kubernetes.io/docs/
concepts/services-networking/ingress/.

[54] Kubelet. 2021.url:https://kubernetes.io/docs/reference/
command-line-tools-reference/kubelet/.

[55] Martin Fowler.Microservices, a definition of this new architectural term.
2014.url:https://martinfowler.com/articles/microservices.
html.

[56] T. Leinmüller, L. Buttyan, J-P. Hubaux, F. Kargl, R. Kroh, P. Papadimi-
tratos, M. Raya, and E. Schoch. “SEVECOM-Secure Vehicle Commu-
nication”. In: Proceedings of IST Mobile Summit. 2006. url: https:
//nss.proj.kth.se/publications/fulltext/sevecom-
early-1.pdf.

[57] AntonioKung. Security Architecture andMechanisms for V2V/V2I, SeVe-
Com - Deliverable 2.1. Version 3.0. 2008. url: https://sevecom.
eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.
pdf.

[58] PRESERVE-Project. 2015. url: www.preserve-project.eu/.

[59] Stylianos Gisdakis, Marcello Laganà, Thanassis Giannetsos, and Panos
Papadimitratos. “SEROSA: SERviceOriented SecurityArchitecture for
Vehicular Communications”. In: IEEE Vehicular Networking Confer-
ence (VNC). Boston,MA,USA, 2013.url:https://ieeexplore.
ieee.org/abstract/document/6737597.

https://kubernetes.io/
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://nss.proj.kth.se/publications/fulltext/sevecom-early-1.pdf
https://nss.proj.kth.se/publications/fulltext/sevecom-early-1.pdf
https://nss.proj.kth.se/publications/fulltext/sevecom-early-1.pdf
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
www.preserve-project.eu/
https://ieeexplore.ieee.org/abstract/document/6737597
https://ieeexplore.ieee.org/abstract/document/6737597

BIBLIOGRAPHY 51

[60] Stylianos Gisdakis, Thanassis Giannetsos, and Panos Papadimitratos.
“SPPEAR: Security and Privacy-preservingArchitecture for Participatory-
sensing Applications”. In: ACM Conference on Security & Privacy in
Wireless andMobile Networks (ACMWiSec). Oxford, United Kingdom,
2014, pp. 39–50. isbn: 978-1-4503-2972-9.

[61] Stylianos Gisdakis, Thanassis Giannetsos, and Panagiotis Papadimi-
tratos. “Security, Privacy, and Incentive Provision for Mobile Crowd
Sensing Systems”. In: IEEE Internet of Things Journal (IEEE IoT) 3.5
(2016), pp. 839–853.

[62] Thanassis Giannetsos, Stylianos Gisdakis, and Panos Papadimitratos.
“Trustworthy People-Centric Sensing: Privacy, Security and User In-
centives Road-Map”. In: IEEE IFIPMediterranean Ad Hoc Networking
Workshop (IEEE IFIP MedHocNet). Piran, Slovenia, 2014, pp. 39–46.

[63] M.Khodaei and P. Papadimitratos. “Scalable&Resilient Vehicle-Centric
Certificate Revocation List Distribution in Vehicular Communication
Systems”. In: IEEE Transactions on Mobile Computing (TMC) (2021).
url:https://ieeexplore.ieee.org/abstract/document/
9042314.

[64] Jason J Haas, Yih-Chun Hu, and Kenneth P Laberteaux. “Efficient Cer-
tificate Revocation List Organization and Distribution”. In: IEEE Jour-
nal on Selected Areas in Communications (JSAC) 29.3 (2011), pp. 595–
604. url: https : / / ieeexplore . ieee . org / abstract /
document/5719271.

[65] Kenneth P Laberteaux, Jason J Haas, and Yih-Chun Hu. “Security Cer-
tificate Revocation List Distribution for VANET”. In: Proceedings of
the fifth ACM international workshop on VehiculAr Inter-NETworking.
New York, NY, USA, 2008. url: https://dl.acm.org/doi/
abs/10.1145/1410043.1410063.

[66] Jason J Haas, Yih-Chun Hu, and Kenneth P Laberteaux. “Design and
Analysis of a Lightweight Certificate RevocationMechanism forVANET”.
In: Proceedings of the sixth ACM international workshop on VehiculAr
InterNETworking. New York, NY, USA, 2009. url: https://dl.
acm.org/doi/abs/10.1145/1614269.1614285.

[67] Julien Freudiger,MaximRaya,Márk Félegyházi, Panos Papadimitratos,
and Jean-Pierre Hubaux. “Mix-zones for Location Privacy in Vehicular
Networks”. In:Win-ITS. Vancouver, BC, Canada, 2007. url: https:

https://ieeexplore.ieee.org/abstract/document/9042314
https://ieeexplore.ieee.org/abstract/document/9042314
https://ieeexplore.ieee.org/abstract/document/5719271
https://ieeexplore.ieee.org/abstract/document/5719271
https://dl.acm.org/doi/abs/10.1145/1410043.1410063
https://dl.acm.org/doi/abs/10.1145/1410043.1410063
https://dl.acm.org/doi/abs/10.1145/1614269.1614285
https://dl.acm.org/doi/abs/10.1145/1614269.1614285
https://people.kth.se/~papadim/publications/fulltext/location-privacy-mix-zones-vanet.pdf
https://people.kth.se/~papadim/publications/fulltext/location-privacy-mix-zones-vanet.pdf
https://people.kth.se/~papadim/publications/fulltext/location-privacy-mix-zones-vanet.pdf

52 BIBLIOGRAPHY

//people.kth.se/~papadim/publications/fulltext/
location-privacy-mix-zones-vanet.pdf.

[68] M. Khodaei and P. Papadimitratos. “Cooperative Location Privacy in
Vehicular Networks:Why SimpleMix-zones are not Enough”. In: IEEE
Internet Of Things Journal (2021). url: https://ieeexplore.
ieee.org/document/9288855.

[69] Christian Vaas, Mohammad Khodaei, Panos Papadimitratos, and Ivan
Martinovic. “Nowhere to hide?Mix-Zones for Private PseudonymChange
usingChaffVehicles”. In: IEEEVehicular NetworkingConference (VNC).
Taipei, Taiwan, 2018. url: https://ieeexplore.ieee.org/
abstract/document/8628449.

[70] Xiaodong Lin, Xiaoting Sun, Pin-Han Ho, and Xuemin Shen. “GSIS:
A Secure and Privacy-preserving Protocol for Vehicular Communica-
tions”. In: IEEE Transactions on Vehicular Technology (2007). url:
https://ieeexplore.ieee.org/abstract/document/
4357367.

[71] Rongxing Lu, Xiaodong Lin, Haojin Zhu, Pin-Han Ho, and Xuemin
Shen. “ECPP: Efficient Conditional Privacy Preservation Protocol for
Secure Vehicular Communications”. In: IEEEConference on Computer
Communications (INFOCOM). Phoenix, AZ,USA, 2008.url:https:
//ieeexplore.ieee.org/abstract/document/4509774.

[72] M. Khodaei and P. Papadimitratos. “The Key to Intelligent Transporta-
tion: Identity and Credential Management in Vehicular Communica-
tion Systems”. In: IEEE Vehicular Technology Magazine 10.4 (2015),
pp. 63–69.url:https://ieeexplore.ieee.org/abstract/
document/7317862.

[73] Dave Cooper. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List Profile. Tech. rep. RFC 5280, 2008. url:
https://tools.ietf.org/html/rfc5280.

[74] Maximiliano Contieri. Singleton Pattern: The Root of All Evil. 2020.
url: https://hackernoon.com/singleton- pattern-
the-root-of-all-evil-e4r3up7.

[75] Horizontal Pod Autoscaler. 2019. url: https://kubernetes.
io/docs/tasks/run-application/horizontal-pod-
autoscale/.

[76] YAML API Reference. 2018. url: https://learn.getgrav.
org/advanced/yaml.

https://people.kth.se/~papadim/publications/fulltext/location-privacy-mix-zones-vanet.pdf
https://people.kth.se/~papadim/publications/fulltext/location-privacy-mix-zones-vanet.pdf
https://people.kth.se/~papadim/publications/fulltext/location-privacy-mix-zones-vanet.pdf
https://people.kth.se/~papadim/publications/fulltext/location-privacy-mix-zones-vanet.pdf
https://ieeexplore.ieee.org/document/9288855
https://ieeexplore.ieee.org/document/9288855
https://ieeexplore.ieee.org/abstract/document/8628449
https://ieeexplore.ieee.org/abstract/document/8628449
https://ieeexplore.ieee.org/abstract/document/4357367
https://ieeexplore.ieee.org/abstract/document/4357367
https://ieeexplore.ieee.org/abstract/document/4509774
https://ieeexplore.ieee.org/abstract/document/4509774
https://ieeexplore.ieee.org/abstract/document/7317862
https://ieeexplore.ieee.org/abstract/document/7317862
https://tools.ietf.org/html/rfc5280
https://hackernoon.com/singleton-pattern-the-root-of-all-evil-e4r3up7
https://hackernoon.com/singleton-pattern-the-root-of-all-evil-e4r3up7
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml

BIBLIOGRAPHY 53

[77] Google Cloud HSM. 2019. url: https://cloud.google.com/
hsm/.

[78] FIPS 140-2 Level 3 Non-Proprietary Security Policy. 2018.url:https:
//csrc.nist.gov/csrc/media/projects/cryptographic-
module- validation- program/documents/security-
policies/140sp2850.pdf.

[79] Redis Transactions. 2021. url: https://redis.io/topics/
transactions.

[80] Homomorphic Encryption Standard. 2021.url:https://homomorphicencryption.
org/.

[81] Bluemail app removed from Google play store without notice! 2021.
url: https://www.androidheadlines.com/2020/07/
bluemail-app-removed-from-play-store-without-
notice-from-google.html.

[82] L. A. Martucci, A. Zuccato, B. Smeets, S. M. Habib, T. Johansson, and
N. Shahmehri. “Privacy, Security and Trust in Cloud Computing: The
Perspective of the Telecommunication Industry”. In: 2012 9th Interna-
tional Conference on Ubiquitous Intelligence and Computing and 9th
International Conference on Autonomic and Trusted Computing. 2012,
pp. 627–632. doi: 10.1109/UIC-ATC.2012.166.

[83] OpenStack by Open Infrastructure Foundation. 2021. url: https :
//www.openstack.org/.

[84] Cloud Memorystore. 2019. url: https://cloud.google.com/
memorystore/.

[85] Hsu-Chun Hsiao, Ahren Studer, Chen Chen, Adrian Perrig, Fan Bai,
Bhargav Bellur, and Aravind Iyer. “Flooding-Resilient Broadcast Au-
thentication for VANETs”. In: ACM Mobile Computing and Network-
ing. Las Vegas, Nevada, USA, 2011. url: https://dl.acm.org/
doi/abs/10.1145/2030613.2030635.

[86] Cloud Armor. 2021.url:https://cloud.google.com/armor.

[87] Paul Heinlein. “FastCGI”. In: Linux journal 1998.55es (1998), p. 1.

[88] XML-RPC for C/C++. Accessed March 1, 2021. 2021. url: http:
//xmlrpc-c.sourceforge.net/.

[89] Google Protocol Buffer. Accessed March 1, 2021. 2021. url: https:
//developers.google.com/protocol-buffers/.

https://cloud.google.com/hsm/
https://cloud.google.com/hsm/
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2850.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2850.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2850.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2850.pdf
https://redis.io/topics/transactions
https://redis.io/topics/transactions
https://homomorphicencryption.org/
https://homomorphicencryption.org/
https://www.androidheadlines.com/2020/07/bluemail-app-removed-from-play-store-without-notice-from-google.html
https://www.androidheadlines.com/2020/07/bluemail-app-removed-from-play-store-without-notice-from-google.html
https://www.androidheadlines.com/2020/07/bluemail-app-removed-from-play-store-without-notice-from-google.html
https://doi.org/10.1109/UIC-ATC.2012.166
https://www.openstack.org/
https://www.openstack.org/
https://cloud.google.com/memorystore/
https://cloud.google.com/memorystore/
https://dl.acm.org/doi/abs/10.1145/2030613.2030635
https://dl.acm.org/doi/abs/10.1145/2030613.2030635
https://cloud.google.com/armor
http://xmlrpc-c.sourceforge.net/
http://xmlrpc-c.sourceforge.net/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

54 BIBLIOGRAPHY

[90] Cloud SQL. 2019. url: https://cloud.google.com/sql.

[91] Prometheus. 2019. url: https://prometheus.io/.

[92] Grafana. 2019. url: https://grafana.com/.

[93] Styx. 2020. url: https://github.com/go-pluto/styx.

[94] SandeshUppoor, Oscar Trullols-Cruces,Marco Fiore, and JoseMBarcelo-
Ordinas. “Generation and Analysis of a Large-scale Urban Vehicular
Mobility Dataset”. In: IEEE Transactions on Mobile Computing 13.5
(2014), pp. 1061–1075. url: https : / / ieeexplore . ieee .
org/abstract/document/6468040.

[95] Lara Codeca, Raphaël Frank, and Thomas Engel. “Luxembourg SUMO
Traffic (LuST) Scenario: 24 Hours of Mobility for Vehicular Network-
ing Research”. In: IEEE Vehicular Networking Conference (VNC). Ky-
oto, Japan, 2015, pp. 1–8. url: https://ieeexplore.ieee.
org/abstract/document/7385539.

[96] JohnHarding, Gregory Powell, RebeccaYoon, Joshua Fikentscher, Char-
lene Doyle, Dana Sade, Mike Lukuc, Jim Simons, and Jing Wang. V2V
Communications: Readiness of V2V Technology for Application. Tech.
rep. U.S. Department of Transportation -National HighwayTraffic Safety
Administration -DOTHS812 014, 2014.url:http://www.nhtsa.
gov/staticfiles/rulemaking/pdf/V2V/Readiness-
of-V2V-Technology-for-Application-812014.pdf.

[97] M. Abliz and T. Znati. “A Guided Tour Puzzle for Denial of Service
Prevention”. In: IEEE ACSAC. Honolulu, HI, 2009, pp. 279–288. url:
https://doi.org/10.1109/ACSAC.2009.33.

[98] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. “DoS-Resistant
Authentication with Client Puzzles”. In: Proceedings of Security Pro-
tocols Workshop. New York, USA, 2001. url: https://doi.org/
10.1007/3-540-44810-1_22.

[99] SOPS: Secrets OPerationS. 2021. url: https://github.com/
mozilla/sops.

https://cloud.google.com/sql
https://prometheus.io/
https://grafana.com/
https://github.com/go-pluto/styx
https://ieeexplore.ieee.org/abstract/document/6468040
https://ieeexplore.ieee.org/abstract/document/6468040
https://ieeexplore.ieee.org/abstract/document/7385539
https://ieeexplore.ieee.org/abstract/document/7385539
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/V2V/Readiness-of-V2V-Technology-for-Application-812014.pdf
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/V2V/Readiness-of-V2V-Technology-for-Application-812014.pdf
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/V2V/Readiness-of-V2V-Technology-for-Application-812014.pdf
https://doi.org/10.1109/ACSAC.2009.33
https://doi.org/10.1007/3-540-44810-1_22
https://doi.org/10.1007/3-540-44810-1_22
https://github.com/mozilla/sops
https://github.com/mozilla/sops

	Introduction
	Background
	Research Question
	Contributions
	Definitions and Key Concepts

	Related Work
	System Model
	Overview and Assumptions
	Adversarial Model
	Requirements
	Security Protocols
	Pseudonym Acquisition Process
	Pseudonym Issuance Validation Process

	VPKI Services Overview
	VPKI as a Service
	Implementation
	Microservices Architecture
	Load Generator
	Deployment
	Secret Management

	Sybil Attacks against VPKIaaS
	Sybil Attack Prevention
	Ticket Acquisition from LTCA
	Pseudonym Acquisition from PCA

	Qualitative Analysis
	Security and Privacy Analysis
	Trust in Cloud Provider
	Sybil Attacks
	DDoS Attacks
	System Entities Failure

	Quantitative Analysis
	Prerequisite Setup
	Experiment Scenarios
	Large-scale Pseudonym Acquisition
	Flash Crowd Situation
	Dynamic Scalability & High Availability

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

