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Vehicular Communication Systems (VCSs)

Communication
I Vehicle-to-Vehicle (V2V)

I Vehicle-to-Infrastructure (V2I)

Messages

I Cooperative Awareness Messages (CAMs)

I Decentralized Environmental Notification
Messages (DENMs)

Basic requirements

I Message authentication & integrity

I Message non-repudiation

I Authorization & access control

I Entity authentication

I Accountability

I Anonymity (conditional)

I Unlinkability (long-term)
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Multi-domain Vehicular Public-Key Infrastructure (VPKI) overview
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I Registration with Long Term CA (LTCA)

I Ticket acquisition from LTCA

I Pseudonym acquisition from Pseudonym CA (PCA)

I Inter-Domain trust by Root CA (RCA) or X-certification

I Revoke anonymity by of Resolution Authority (RA) & PCA & LTCA

1
“SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems”. In: IEEE TITS 19.5 (2018).
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VPKI deployment challenges

VPKI vs. traditional PKI
I Dimension (5 orders of magnitude more

credentials)

I Privacy (anonymity & unlinkability)

I Short-lived pseudonyms

I High availability

I Dynamic scalability

Preloading

I Overlapping psnyms → Sybil-based misbehavior

I Non-overlapping psnyms → Waste of psnyms

I Expensive revocation (not efficient)

On-demand

I Non-overlapping psnyms

I Efficient revocation

I Reliable connection

I Requires high availability

I Rush hour & flash crowd
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Research question

How to achieve:
I High availability

I Dynamic scalability

I Fault tolerance & resilience

I Self-healing

I Large-scale deployment
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VPKI as a Service (VPKIaaS) Overview

Microservice architecture
I Refactoring VPKI

I Containerization

I Health metric

I Load metric

Kubernetes
I Google Kubernetes

Engine (GKE)

I Automation
I Declarative language

I Deployments
I Services
I Ingresses
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Secret management

Key Management Service (KMS)

I Offered by Google Cloud Platform (GCP)

I Federal Information Processing
Standard (FIPS) PUB 140-2 level 2
and/or 3

I Role Based Access Control (RBAC)
provided by Identity & Access
Management (IAM)

I Vendor lock-in

I Overhead for each cryptographic operation

Kubernetes secret management

I Secret volumes

I Cloud-agnostic

I More efficient than KMS

I No protection during deployment
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Secret management (cont’d)

KMS + Kubernetes secret management

I Encrypt secret volumes

I Bootstrap with KMS

I RBAC provided by IAM

I No major overhead

I Minimize the impact of vendor lock-in
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Figure: VPKIaaS bootstrapping secrets

1. Load encrypted key into the memory
2. PCA asks Cloud KMS to decrypt the key
3. Cloud KMS asks IAM for authorization control
4. IAM responds with yes/no based on RBAC
5. PCA receives the decrypted key, if authorized,

otherwise it will be denied
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Sybil attack while scaling horizontally

PCA/LTCA Operation

I Asynchronous
I High performance
I No Sybil attack protection

I Synchronous
I Performance depends on the operation
I Sybil attack protection possible

Figure: VPKIaaS Sybil attack prevention with Redis and MySQL
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Sybil attack prevention by LTCA

Protocol 1 Ticket Request Validation
1: procedure ValidateTicketReq(SN i

LTC , tkt istart , tkt
i
exp)

2: (value i )← RedisQuery(SN i
LTC )

3: if value i == NULL OR value i <= tkt istart then

4: RedisUpdate(SN i
LTC , tkt iexp)

5: Status ← IssueTicket(. . . ) . Invoking ticket issuance procedure

6: if Status == False then
7: RedisUpdate(SN i

LTC , value i ) . Reverting SN i
LTC to value i

8: return (False) . Ticket issuance failure

9: else
10: return (True) . Ticket issuance success

11: end if
12: else
13: return (False) . Suspicious to Sybil attacks

14: end if
15: end procedure

Figure: VPKIaaS Sybil attack prevention with Redis and MySQL
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Sybil attack prevention by PCA

Protocol 2 Pseudonym Request Validation
1: procedure ValidatePseudonymReq(SN i

tkt )

2: (value i )← RedisQuery(SN i
tkt )

3: if value i == NULL OR value i == False then
4: RedisUpdate(SN i

tkt ,True)

5: Status ← IssuePsnyms(. . . ) . Invoking pseudonym issuance

6: if Status == False then
7: RedisUpdate(SN i

tkt , False) . Reverting SN i
tkt to False

8: return (False) . Pseudonym issuance failure

9: else
10: return (True) . Pseudonym issuance success

11: end if
12: else
13: return (False) . Suspicious to Sybil attacks

14: end if
15: end procedure

Figure: VPKIaaS Sybil attack prevention with Redis and MySQL
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Prerequisite setup

Load generator

I Vehicle implementation

I Locust framework

I Locust interface for XML-RPC

Monitoring

I Prometheus & Grafana

I Export data from Prometheus using Styx

I Monitoring Horizontal Pod
Autoscaler (HPA)

I Monitoring Locust

Parameters Config-1 Config-2

total number of vehicles 1000 100, 50,000

hatch rate 1 1, 100

interval between requests 1000-5000 ms 1000-5000 ms

pseudonyms per request 100, 200, 300, 400, 500 100, 200, 500

LTCA memory request 128 MiB 128 MiB

LTCA memory limit 256 MiB 256 MiB

LTCA CPU request 500 m 500 m

LTCA CPU limit 1000 m 1000 m

LTCA HPA 1-40; CPU 60% 1-40; CPU 60%

PCA memory request 128 MiB 128 MiB

PCA memory limit 256 MiB 256 MiB

PCA CPU request 700 m 700 m

PCA CPU limit 1000 m 1000 m

PCA HPA 1-120; CPU 60% 1-120; CPU 60%

I Config-1: normal vehicle arrival rate; every second 1 vehicle simulator

joins, every 1-5 sec all simulators simulate vehicles requesting 100-500

pseudonyms

I Config-2: flash crowd scenario; every second 100 vehicle simulators join,

every 1-5 sec all simulators simulate vehicles requesting 100, 200, 500

pseudonyms
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Performance Evaluation
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(a) CDF of end-to-end latency to issue a ticket
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(b) CDF of end-to-end processing delay to issue
pseudonyms

Large-scale pseudonym acquisition (based on Config-1)

I (a) End-to-end Latency for ticket: Fx (t = 24 ms) = 0.999.

I (b) Asking for 100 pseudonyms per request, 99.9% of the vehicles are served within less than 77 ms (Fx (t = 77 ms) = 0.999)

I (b) Asking for 500 pseudonyms per request,99.9% of the vehicles are served within less than 388 ms Fx (t = 388 ms) = 0.999



14/23

Performance Evaluation (cont’d)
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(c) CPU utilization and the number of requests
per second (100 pseudonyms per request)
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(d) CDF of processing latency to issue tickets and
pseudonyms

Flash crowd situation (based on Config-2)

I (c) CPU utilization hits 60% threshold, services scale out, CPU utilization drops

I (d) The processing latency to issue a single ticket is: Fx (t = 87 ms) = 0.999

I (d) Issuing a batch of 100 pseudonyms per request: Fx (t = 192 ms) = 0.999

I ‘normal’ conditions vs. flash crowd: processing latency of issuing a single ticket increases from 24 ms to 87 ms; the processing latency to issue a batch of

100 pseudonyms increased from 77 ms to 192 ms
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Performance Evaluation (cont’d)

100 200 300 400 500

Number of Pseudonyms per Request

0

100

200

300

400

500

E
n
d
-t
o-
E
n
d
L
at
en
cy

[m
s]

Client Side Operations

All PCA Operations

All LTCA Operations

(e) Average e2e latency to obtain pseudonyms

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

End-to-end Latency [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

P
ro
b
ab
ili
ty

100 psnyms per request

200 psnyms per request

300 psnyms per request

400 psnyms per request

500 psnyms per request

(f) CDF of e2e latency, observed by clients

Flash crowd situation (based on Config-2)

I (e) The processing delay for issuing 100 psnyms is ≈ 56 ms which is 36-fold improvement comparing to 2010 ms reported in prior work [4]

I (f) During a surge of requests, all vehicles obtained a batch of 100 pseudonyms within less than 4,900 ms (including the networking latency)

I 100 vehicles join the system every second, but they simulate a new vehicle every 1-5 seconds. After all 50000 vehicles joined the system, every 1-5 seconds

50000 new vehicles join. After an hour at least ≈ 36 million vehicles will be served.
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Performance Evaluation (cont’d)
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(h) Dynamic scalability of VPKIaaS system

Dynamic Scalability & High Availability (with flash crowd load pattern, based on Config-2)

I Each vehicle requests 500 pseudonyms

I Synthetic workload generated using 30 containers, each with 1 vCPU and 1GB of memory (based on Config-2)

I (h) CPU utilization observed by Horizontal Pod Autoscaler (HPA)

I Shows how our VPKIaaS system dynamically scales out or scales in according to the rate of pseudonyms requests.
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Contribution summary

VPKI → VPKIaaS

I Refactoring state-of-the-art VPKI

I Microservices architecture

I Health & Load metrics

I Eradication of Sybil attacks against VPKIaaS

I Declarative deployment on Kubernetes

I Automated deployment on GCP

Performance evaluation

I Vehicle simulator

I XML-RPC for Locust

I Monitoring tools

I Various stress test scenarios (normal & flash crowd)
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Future work

I Distributed DoS (DDoS) protection
I Puzzle-based schemes similar to SECMACE.
I Cloud Armor & Rule-based GCP Web Application Firewall (WAF)

I Secret management
I Cloud Hardware Security Module (HSM)
I Secrets OPerationS (SOPS)

I Service Mesh for microservices
I mutual Transport Layer Security (TLS) (mTLS)
I Geographically distributed multi-cluster
I Federation of clusters
I Domain Name System (DNS) weighted routing
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CySeP 2019

Figure: 180 million pseudonyms issued at CySeP summer school 2019
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Adversarial model

I Entities are honest-but-curious

I LTCA can:
I Issue a fake/invalid ticket
I Fraudulently accuse another vehicle

I PCA can:
I Issue many psnyms, potentially all valid at the same time for a legit vehicle
I Issue psnyms, for non-existing vehicle
I Fraudulently accuse another vehicle

I VCS entities can:
I Sybil attacks
I DDoS attacks
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VPKIaaS key concepts

I Managed Service: A service offered by a Managed Service Provider (MSP) via ongoing monitoring,

maintenance and support for customers

I Container: A unit of packaged software along with its dependencies running as an isolated process

I Docker: A software facilitating build, shipment and running containers

I Kubernetes: An container orchestration platform

I GKE: A managed Kubernetes cluster offered by GCP

I Pod: The smallest unit of execution in Kubernetes which may contain one or more containers

I Deployment: A resource object in Kubernetes defining a Pod’s life-cycle and its attributes
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VPKIaaS key concepts (cont’d)

I Service: An abstract resource in Kubernetes defining a logical set of Pods, and the way they can be

accessed

I Ingress: An Application Programming Interface (API) object at Kubernetes edge network handling

external access to a service in cluster

I Kubelet: A primary agent of Kubernetes, running on worker nodes

I Horizontal scalability: The ability of increasing/decreasing capacity by adding/removing replicas, nodes

to/from a system running the same software

I Vertical scalability: The ability of increasing/decreasing capacity by adding/removing hardware

component to/from a system

I Microservices architecture: An architectural style for an application defining it as loosely coupled

services that can scale in/out independently

I Sybil attack: Exploiting a system by creating more [pseudonymous] identities than one should and uses

them to gain more influential advantage

I Redis: A high performance in-memory key-value data store.
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Conclusion

I Practical framework for large-scale deployment of VPKIaaS

I High Availability with enterprise level Service Level Agreement (SLA)

I Resilient, fault tolerant and self-healing

I Resource efficiency through dynamic scalability

I Horizontal scalability without the risk of Sybil attacks


