
E3. SECURITY AND PRIVACY FOR MODERN AND EMERGING MOBILE SYSTEMS

Security and Privacy for Modern and Emerging
Mobile Systems

Alexander Hjelm

Abstract—The fundamentals of secure systems can be pre-
sented as the three cornerstones: authentication (trustworthiness
of senders), integrity (inability to alter messages) and confi-
dentiality (inability to read messages for anyone except the
intended recipient). In this project, an android application has
been programmed by the author with the purpose of sending
geographical data over a bluetooth connection in a secure peer-
to-peer manner. In the application, the three goals were met
primarily through the use of certificate validation, encryption and
digital signatures. The final application features a user-interface
with a Google Maps interface, and query parameters that the
user can set when requesting data about a certain position.

The final application would very much be considered secure in
an environment where only two android devices are communicat-
ing. However, more steps would have to be taken if the application
is to be deployed commercially. The primary questions are
scalability, speed and further security complications.

I. INTRODUCTION

LOCATION-BASED services (LBS), for instance Google
Places, offer smartphone users information about their

surroundings by delivering a set of nearby points of interest
(POI). These may be for instance restaurants, hotels or other
services. In the particular case of Google Places, there is a
privacy concern in that anyone who intercepts a mobile user’s
data traffic can learn about their whereabouts, the places they
frequent or which places they are interested in. There is even
the concern of privacy towards the company providing the
service, since software companies often maintain databases
of all users and their past search queries, and trade this
information to other companies.

One solution to this security problem is to let android
devices send POIs to each other using a peer-to-peer (P2P)
solution, which may be encrypted and include an identity-
check to not include any eavesdroppers in the communication.
It also limits the exposure to the service provider’s server, since
data is only fetched once from the server, and all subsequent
information exchanges are made between the devices.

A. Internet Security Goals

Consider a computer network make up out of nodes and
links. The primary issues that network security aims to solve
are, according to [1]:

• Authentication: A node on the network has to only accept
data from legitimate sources.

• Integrity: An unauthorized node shall not be able to alter
messages. Once the receiver node receives a message,
they must verify that the message is the same as it was
originally sent by the sender node.

• Confidentiality: Any data that is exchanged over any link
has to only be readable by the intended recipient. As for
instance wi-fi and bluetooth signals are broadcast though
radio waves, any receiver can acquire the message as it
is sent. Thus any intermediate nodes must not be able to
interpret the message.

B. Assignment

The goal of this project was to program an android appli-
cation where a peer-to-peer communication is used to share
data with other android devices. The data specifically is a set
of points of interest from the Google Places API, and thus the
application must be able to both request a list of POIs from
Google Places, as well as send them over a peer-to-peer link.
Finally, the POIs must be communicated between the android
devices in a secure and privacy-preserving manner. This is the
main focus of the assignment.

C. Program Specifications

The details of the project implementation were left to the
author, and they were given the opportunity to freely decide
upon which technologies and libraries (within the android
scope) to use when programming the app. The following
guidelines (program specifications) were set up, in addition
to the assignment:

• The program will run an HTTP-server and success-
fully download the correct POIs from Google, using the
Google Places API. The user specifies restrictions on the
desired POIs through the user interface.

• The client app will send its POIs to nearby devices using
Bluetooth Sockets connectivity, upon request.

• The data sent over the bluetooth connection will be
encrypted using the RSA-algorithm.

• The devices will verify each others identities using cer-
tificates signed by a trusted third-party, prior to sending
any data.

• The client app will store its own POIs internally for
display and further communication.

• The program shall work according to specifications in an
environment where two android devices are connected via
bluetooth.

II. THEORY

A. Communication, Bluetooth Sockets API

Bluetooth communication is open to developers via the
Bluetooth Sockets API, which is detailed in the official docu-
mentation at [2]. Communication is primarily handled though



E3. SECURITY AND PRIVACY FOR MODERN AND EMERGING MOBILE SYSTEMS

BluetoothSocket objects in the android API. Connecting the
devices works by first establishing a server-client relationship.
The server creates a BluetoothServerSocket which listens for
incoming connection attempts, and returns a BluetoothSocket
object to manage the connection once the client has connected.
The client itself connects by creating a BluetoothSocket object
with the remote device as a BluetoothDevice object. As
such, both devices access the communications link through
a BluetoothSocket object, and once connection has been
established, there is no longer any distinction between server
and client.

Note that the BluetoothServerSocket will block the current
thread until connected, meaning that any further code execu-
tion will be delayed until the BluetoothServerSocket receives
a connection call from a client. Thus, listening for connections
on the server should be done separately from the main thread
to not interrupt the user experience.

Once a connection has been established, both devices may
write bytes to the output stream of their respective socket. The
bluetooth protocol ensures that all data sent this way arrives
intact at the destination device, and that the packages arrive
in order. [2]

Finally, as the bluetooth API does not directly handle the
data sent over the Bluetooth link, the developer needs to define
their own communications protocol in terms of what messages
can be sent and how these are handled at the receiver. The
purpose of the bluetooth sockets API is only to ensure the
transmission and intactness of the data, and to do nothing
further.

B. Public Key Cryptography
The confidentiality goal for secure systems requires that

all messages sent must only be readable by the intended
recipient and no one else. To address this problem, encryption
is commonly used. An encryption function will take clear,
human-readable text as input and produce encrypted text
(also known as ciphertext), which is not human-readable.
The ciphertext will remain non-readable until the associated
decryption function is applied to it, meaning that it is safe to
transfer the ciphertext to the recipient.

For this to work, the encryption and decryption functions
needs to be only applicable by the sender and the recipient,
and no one else. This means that they have to share some piece
of information that no one else knows about. In cryptography,
this information is known as the key. Each communication
channel has one or more associated keys that the cryptography
functions use to operate. [3]

1) Symmetric / Asymmetric Cryptography: The two basic
types of cryptographic algorithms are:

• Symmetric algorithms (also known as secret key algo-
rithms). These algorithms use the same key for both en-
cryption and decryption. Secure communication requires
one secret key for each pair of users. See figure 1 for a
visual representation of the communication flow.

• Asymmetric algorithms (also known as public key al-
gorithms). These algorithms use two different keys for
encryption and decryption respectively. Secure commu-
nication requires two keys per user on the network. See

figure 2 for a visual representation of the communication
flow.

Fig. 1. Scheme of a secret key cryptosystem

Fig. 2. Scheme of a public key cryptosystem

Symmetric and asymmetric algorithms both pose the same
major challenges when it comes to distribution and manage-
ment of keys. One needs to safely convey keys to those who
want to establish a communication channel, and do so without
providing vital keys to anyone else. One also needs to have
the keys available as soon as needed. [3]

2) The Key Distribution Problem: Symmetric and asym-
metric ciphers both suffer from the key distribution problem.
If any of the decryption keys were compromised by a third-
party entity on the network, and that entity was not already
included in the encrypted channel, they may also decrypt any
ciphered text along that channel. They may now listen to the
conversations and, depending on the cipher used, send forged
messages of their own. This violates the confidentiality and
integrity goals in secure systems.

For public key cryptosystems this is less of an issue if there
is no way to easily derive the private key from the public key.
Because of this, a node on a network may freely distribute the
public encryption key to anyone who wishes to send data to
it over an encrypted channel. The public key is then used to
produce an encrypted message, which the private decryption
key can decipher into the original clear text. As long as each
receiver on the network have their own private keys, and these
are never compromised, the encrypted channel is considered
secure. [4]

3) Stream Cipher / Block Cipher: An equally important
distinction between type of encryption algorithms is that
between stream ciphers and block ciphers.



E3. SECURITY AND PRIVACY FOR MODERN AND EMERGING MOBILE SYSTEMS

• Stream ciphers: ciphers that take an input stream and
converts symbol by symbol into ciphertext. Decryption
is carried out in the same way. An example is the ROT-n
cipher where each character is shifted alphabetically by
n steps.

• Block ciphers: ciphers that encrypt a group of text sym-
bols at a time. The group is known as a block, and is
always of a fixed size (e.g. 1024 bits). Most modern
symmetric encryption algorithms are block ciphers.

Both ciphers have their respective advantages. Stream en-
cryption is faster and has low error propagation in that a single
error only affects one symbol. Block encryption is slower and
has higher error propagation, since an error in one symbol
may corrupt the entire block. High error propagation may
also be a valuable quality however, since it provides immunity
against manual changes in the ciphertext, which will result in
corrupted clear text which will not be handled by the receiver.
[5]

4) The RSA Algorithm: RSA is a public key block cipher
which is commonly used in secure systems today. The RSA
documentation provides four properties which the encryption
and decryption procedures must follow for public key cryp-
tography:

• Encrypting a message and then decrypting it must yield
the message.

• Decrypting a message and then encrypting it must yield
the message.

• Publicly revealing the encryption key must not reveal an
easy way to compute the decryption key.

• New public and private keys must be easy and fast to
generate.

Note that the first and second properties imply that the
decryption method is truly the inverse of the encryption
method, as long as the proper keys are provided.

In public-key cryptography, the encryption algorithm uses a
public/private key pair. In RSA specifically, these are two large
(100+ digit) prime numbers, which are always generated by
the same function. The message to be encrypted is represented
as a large integer through some mapping function.

The encryption function involves the message and the
public key integers, and outputs a new integer which is the
encrypted message. The decryption function uses the private
key integer, and operates on the encrypted message integer,
and produces the original message integer, which may once
again be represented as clear text. Decryption will only work if
the private key is available. This means that if only the receiver
has access to it, it will be nearly impossible for anyone else
to read the original message. [4]

The size of the RSA algorithm determines how large the
keys that will be used are, which in turn determines how large
the message blocks can be. Typical keys sizes are 1024 to 4096
bits (meaning we can choose prime numbers among the first
21024 to 24096 positive integers, and the block size in either
case is 1024 bits (128 bytes) or 4096 bits (512 bytes)). [6]

Since RSA is a block cipher, larger messages have to
be broken up into blocks of a fixed size, for instance 128
bytes for RSA 1024-encryption. One would then send message

packets in chunks of 128 bytes to the receiver, directly after
successfully encrypting. In this manner, even a block cipher
can be made to encrypt messages of an arbitrary length. This
means, however, that the trailing block will likewise be 128
bytes in size, even if the actual text is shorter. [7]

The security of RSA depends on the fact that it is difficult
to factor large prime numbers, even with the fastest known
factoring algorithms. Even using a brute-force attack to guess
the keys would be far less efficient, as it would take an average
of 21023 decryption attempts to correctly guess a user’s private
key for RSA 1024, which is far too slow for any modern
computer. As such, RSA is currently considered secure. [4]

C. Digital signatures

The integrity goal in secure systems is addressed through
what is known as digital signatures, which are sent along with
the data in each transmission. A digital signature is simply the
result of the sender applying their RSA decryption function
to the original message once. Since the sender’s encryption
function is the true inverse of their decryption function, the
receiver (who has the sender’s public key) can encrypt the
signature to receive the original message, and verify that it is
the same as the actual message. Since the encryption procedure
requires that the correct encryption key is used, successful
verification of the signature will mean that the message was
truly sent by the sender, who is presumed to be the only one
who has access to their own decryption key.

In most practical applications, the signature is not the
message itself but some hash that is shorter in length, to save
computation time. [4]

D. Certificate Verification

[8] explains that, for the purpose of authentication, a user’s
public key should be sent inside what is known as a certificate.
A certificate is simply a document which contains the public
key, along with information on the identity of a user, as well
as sometimes their location or department within a company.

Certificates are always issued by a certificate authority
(CA), which is simply some higher instance on the same
network, which is deemed trustworthy. All certificates that are
issued by the CA are signed using the CA’s own private key.
If the CA’s public key is embedded into the end application,
every user of the application may verify another user’s certifi-
cate to determine if they may be trusted, and begin sending
encrypted data to them on the network. More specifically:
successful verification of a certificate means the user can trust
that the certificate was truly issued by the CA, and that the
CA trusts whoever owns the associated public key.

In such a system, the CA has knowledge of all users that
have previously subscribed to the application. The CA may
also revoke certificates by maintaining a list of untrustworthy
sources. Once an end-user wants to verify the credibility
of another user, they may check their identity against the
certificate revocation list (CRL). If the serial number of the
other user’s certificate has been previously revoked, that user
is deemed untrustworthy and is excluded from any further
communication.



E3. SECURITY AND PRIVACY FOR MODERN AND EMERGING MOBILE SYSTEMS

Fig. 3. Visualization of the chain of trust, and how keys may be obtained
from certificates.

In larger networks, it may be necessary to decentralize the
process of certificate signing, to enable client companies or
third-party applications to use the trust of a company’s CA. In
such situations the top-level CA owns a root certificate, which
is used to sign certificates to other CAs on the network. The so-
called chain of trust is a list of certificates or serial numbers
that have to be verfied in a certain order to access a user’s
certificate and key, (starting with the root key) and thus one
may verify that the owner of the bottom certificate is to be
trusted. Many software companies, such as Microsoft, Apple
and Mozilla, have their own root certificate programs, which
users and other developers may subscribe to. See figure 3 for
a representation of the chain of trust. [8]

III. RESULTS

A. Generation of Credentials

The public- and private key pairs where generated in 1024
bit RSA using OpenSSL for ubuntu. Certificates and CA cre-
dentials were also generated using OpenSSL. Certificates were
generated in the x509 format, and signed by an intermediary
CA below the root CA.

B. Program Overview

Figure 4 shows a screen capture of the user interface of the
final application. Referring to the same figure, the app has the
following feature set:

1) Pressing the ”Start BT Sockets Server”-button at the top
left of the screen enables broadcasting of data from the
device. The device now acts as a bluetooth server, and
any other client running the app may connect to it.

2) The user may navigate the map by swiping to move
and pinching to zoom in and out. Pressing and holding
anywhere on the map will create a request for POIs on
that global position, and send that request to the server
device.

3) At the very bottom of the user interface are query
parameters

• Radius - How far (in meters) from the selected
position the user is interested in POIs.

Fig. 4. A screen capture showing the final application as it runs on a Samsung
Galaxy Alpha.

• Query type - A drop-down menu where the user may
select what type of POIs they are interested in. The
possible types are specified in the Google Places
API, and may be for instance restaurant, lodging or
spa.

• Source check boxes: Places API, P2P, Internal -
Specifies from which sources POIs are to be ob-
tained once the user presses the map.

The devices will have to have bluetooth enabled. Otherwise
a prompt will appear, allowing the user to enable bluetooth
from inside the app. From here, the devices need to be paired
before any communication can occur. The user may pair the
devices from the bluetooth interface on their android device.

C. Communication Flow

The communication sequence is illustrated as a sequence
diagram in figure 5. The contents of the messages that are
sent is represented in figure 6.

IV. DISCUSSION

A. How Does the Implementation Solve The Problem?

1) Authentication: The authentication requirement is effec-
tively handled by the certificate verification system. The CA



E3. SECURITY AND PRIVACY FOR MODERN AND EMERGING MOBILE SYSTEMS

Fig. 5. A sequence diagram that details the client-server relationship, and
in what order the messages are sent once the user requests information by
pressing the map.

Fig. 6. A detail schema of the messages. The fields marked in green are
encrypted using RSA 1024.

has knowledge of all nodes that has subscribed to the network,
and carries on this knowledge to the nodes through issuing
signed certificates. These certificates are verified by the client
running the app, who decides that another user is trustworthy
upon successful verification.

As of now however, the certificates have been created and
signed manually using a console, and then manually trans-
ferred to the device independently of installing the application.
This will be too inefficient in an environment where the
application is sold on the market and new users will appear on
the network on the fly. However little change would have to
be needed to the app in order to tie in an automated certificate
signing program (using certificate signing requests to the CA)
which allows for greater scalability.

Also, on the decentralized level, the digital signature is used

as a mean of verifying the identity of the sender, since a valid
signature requires that the message originated from the owner
of the private key with which it was signed.

2) Integrity: The integrity requirement is firstly fulfilled
by the strong message policy that dictates the format of the
messages (JSON structure), what message types are allowed
and what key-value pairs are expected to be found in each
type. The internal handler will only operate on these specified
values, and if anything were to be changed so that the handler
cannot perform its task correctly, the app will exit out of the
message handler and drop the incoming message before doing
anything further.

For the same purpose, the messages are encrypted. This
means that any direct changes to the ciphertext will result in
clear text that is meaningless to the message handler in that it
does not match the JSON data format.

Even if some modification were to be made to the ciphertext
that results in meaningful clear text, the digital signature still
has to match the original message, which is only possible if
no change were made to the message between sending and
receiving.

The only integrity concern is that the RSA private key may
be compromised or cracked, which may very well be a concern
since as of this writing moment, the key pairs are stored in
a human-readable format in the devices memory. It would be
better for future applications if the keys were stored in some
serialized or encrypted format, or through the use of session-
based keys, so that the user does not have direct access.

3) Confidentiality: The confidentiality requirement is
largely solved by the usage of a public-key cipher. This means
that nodes on the network will only be able to receive from
other nodes that have obtained their own public key.

The RSA cryptosystem further ensures that no one except
the intended receiver (who has the correct private key) may
read the contents of the messages sent. In the event that
a message is obtained by a node that is excluded from
communication, they will only be able to read the cipher
text, which is meaningless without knowledge of the correct
decryption key.

Furthermore, the public-key infrastructure allows for public
keys to be distributed exclusively to other clients running the
app, as long as they have the CA root public key stored
internally, and may verify the other user.

Again, the most topical system weakness is that the cipher
keys may be compromised.

B. Design Topics to Improve Upon

1) Security: In an environment where the application is
freely available for download, it may not be practical to
manually generate one certificate per device using a console.
The application could instead send a certificate signing request
(CSR) to the CA, using some hash that is generated from a
user id and some time stamp. The CA may use the hash to
determine if the user is legitimately using the application or
not, since no one else would have knowledge of what hash is
used internally.



E3. SECURITY AND PRIVACY FOR MODERN AND EMERGING MOBILE SYSTEMS

The use of session keys and session certificates with short
expiration times may further improve security against mali-
cious nodes, since they have a limited time to exploit a key
once they obtain them. Though security by this design should
not be taken for granted.

Finally there is the concern of the speed of RSA encryption,
since RSA 1024 is very slow for encryption large chunks of
data. A better procedure for large sets of POIs would have
been to use a faster symmetric cipher such as AES to encrypt
the POI data, and in turn encrypt the AES key using RSA
1024. Both the AES-encrypted data and the RSA-encrypted
secret key would have then been transferred over bluetooth
upon a POI request.

2) Bluetooth/Wireless Technology: As the application
works now, the devices have to be paired manually before any
of the users start making requests. This is indeed a bottleneck
in terms of user friendliness and speed, since it requires the
user to exit out of the app and enter the android bluetooth
interface to scan for other devices and connect to them.
Connection management and device pairing could instead be
done internally from within the application, given that the
android bluetooth API allows for this. This would be a topic
of future research.

Furthermore, bluetooth is relatively high on power con-
sumption. For a future project one may look into using
the Bluetooth Low Energy (BLE) protocol for power saving
purposes. BLE does not use sockets like the Bluetooth Sockets
API, but rather acts as a server-client relationship where the
server broadcasts data with set intervals or upon request. The
transmitter is turned off at all other times, which limits energy
usage. As for all bluetooth technologies, they has a standard
range of approximately 100 meters, which limit their usability
to cases where users of the application are located in each
others vicinity. For greater data availability, one may choose
to use TCP over wi-fi or 3G/4G. One may then have a web-
based automated tracker which provides clients with a start-
up list of peers. This may imply sacrificing decentralization
for availability, but it still solves the problem of limiting the
exposure to the provider of the location-based service. Even
still, the tracker would only manage connections, and have
no insight in what data is actually shared on the peer-to-peer
network, which promotes privacy.

3) Internal Storage: One of the clearer issues with using
the application is that of the time it takes to obtain POIs
from the internal storage, which affects the speed of delivery
for both internal queries as well as when the other device
is queried over bluetooth. One reasonable solution would be
to try implementing some existing database technology (for
instance MongoDB or SQL technologies like SQLite), rather
than storing POIs in an array in JSON format. This would in
theory provide quicker access, as technologies such as these
optimize searching through the use of hash tables and indexes.

V. CONCLUSION

This report presented the final version of a student-
programmed android application which sends data in a secure
manner. The fundamentals of secure systems was presented,

with its cornerstones being authentication, integrity and con-
fidentiality. In the application, these goals were met primarily
through the use of certificate validation, encryption and digital
signatures respectively. Even though the application would be
considered secure in an environment where only two android
devices are communicating, there are more steps to be taken if
the application is to be deployed commercially. The primary
concerns for future development are scalability, speed and
management of encryption keys.

ACKNOWLEDGEMENTS

The author would like to thank their supervisors Hongyu Jin
and Mohammad Khodaei for having frequent discussions on
how to organize the project, as well as program and optimize
a secure application. Special thanks also goes to professor
Panos Papadimitratos for teaching the fundamentals of secure
systems, and fellow KTH student Peter Caprioli for suggesting
a design for the peer-to-peer communication system.

REFERENCES

[1] H. Jin, M. Khodaei, and P. Papadimitratos, “Security and privacy in
vehicular social networks,” in Vehicular Social Networks. Taylor &
Francis Group, 2016.

[2] Android API Reference. Bluetoothsocket. [Online]. Avail-
able: https://developer.android.com/reference/android/bluetooth/
BluetoothSocket.html.

[3] B. Young. Foundations of computer security, lecture 44:
Symmetric vs. asymmetric encryption. [Online]. Available:
https://www.cs.utexas.edu/users/byoung/cs361/lecture44.pdf.

[4] Virginia Tech. Cryptography: Rsa algorithm. [Online]. Available:
http://courses.cs.vt.edu/∼cs5204/fall00/protection/rsa.html.

[5] B. Young. Foundations of computer security, lecture
45: Stream and block encryption. [Online]. Available:
https://www.cs.utexas.edu/users/byoung/cs361/lecture45.pdf.

[6] IBM Knowledge Center. (2014). Size considerations
for public and private keys. [Online]. Available:
https://www.ibm.com/support/knowledgecenter/SSLTBW 2.1.0/com.ibm.
zos.v2r1.icha700/keysizec.htm.

[7] F. Westreicher. (2010, Jun). Encrypting and decrypting large data using
java and rsa. [Online]. Available: http://coding.westreicher.org/?p=23m.

[8] M. Bruce. (2010, Aug). Chain certificates. [Online]. Available:
https://www.entrust.com/chain-certificates/.


