

DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERNIG

SECOND CYCLE, 30 CREDITS

Implicit Message Integrity Provision

In Heterogeneous Vehicular Systems

PAUL MOLLOY

Stockholm, Sweden 2023

Implicit Message Integrity
Provision

in Heterogeneous Vehicular Systems

PAUL Molloy

Master’s Programme, ICT Innovation, 120 credits
Date: April 4, 2023

Supervisors: Dr. Mohammad Khodaei, Dr. Per Hallgren
Examiner: Professor Panagiotis Papadimitratos

School of Electrical Engineering and Computer Science
Host company: Einride AB
Swedish title: Implicit Integrity In Heterogeneous Vehicular
Systems
Swedish subtitle: Implicit Integritet i Heterogena Fordonsmiljöer
Systems

© 2023 Paul Molloy

Abstract | i

Abstract
Vehicles on the road today are complex multi-node computer networks.
Security has always been a critical issue in the automotive computing industry.
It is becoming even more crucial with the advent of autonomous vehicles
and driver assistant technology. There is potential for attackers to control
vehicles maliciously. Traditionally Original Equipment Manufacturers have
relied on physical security and a firewall to secure vehicles but with network
connected and autonomous capable vehicles this is not enough. The concept
of defence in depth is required. This means not trusting that internal traffic
inside the firewall is benign. Each node in the vehicles network should be
able to verify the authenticity and validity of communications it receives from
other nodes. Implementation of the crypto-graphic systems for doing this is
error prone. Therefore a key issue in the thesis is reducing the attack surface
by developing these checks in the autonomous vehicle stack in a scalable way
so the programmer does not have to be aware of this security layer on a day-to-
day basis nor re-implement it for each node in these heterogeneous systems.
Although message integrity and authenticity verification have been studied
and implemented in many fields, the area of heterogeneous autonomous
systems present unique research challenges. There are tight performance
constraints due to the real time requirements for vehicle control systems and
data publishing rates. It is an open question if this approach can achieve
performance within the bounds required for a reliable autonomous vehicle.
Additionally the security benefit of scalably automatically generating the
message integrity verification code across all of the nodes in a heterogeneous
system would help the field quantify the defect reduction and security benefit
of this kind of code generation on complex software systems.

Keywords
Privacy, CodeGeneration, Vehicle-to-infrastructure, Vehicular ad hocNetworks,
Standardization, Remote Procedure Calls, Safety

ii | Abstract

Sammanfattning | iii

Sammanfattning
Dagens fordon på vägarna är komplexa datanät med flera noder. Säkerheten har
alltid varit en viktig fråga inom bilindustrin. Det blir ännu viktigare i och med
tillkomsten av autonoma fordon och förarassistentteknik. Det finns en potential
för angripare att styra fordon på ett illvilligt sätt. Traditionellt har tillverkare
av originalutrustning förlitat sig på fysisk säkerhet och en brandvägg för
att säkra fordonen, men med nätverksanslutna och autonoma fordon räcker
detta inte längre. Begreppet försvar på djupet är nödvändigt. Detta innebär
att man inte kan lita på att den interna trafiken innanför brandväggen är
godartad. Varje nod i fordonets nätverk bör kunna kontrollera äktheten och
giltigheten hos den kommunikation som den tar emot från andra noder.
Genomförandet av kryptografiska system för att göra detta är felkänsligt.
En viktig fråga i avhandlingen är därför att minska angreppsytan genom att
utveckla dessa kontroller i det autonoma fordonet på ett skalbart sätt så att
programmeraren inte behöver vara medveten om detta säkerhetslager dagligen
eller implementera det på nytt för varje nod i dessa heterogena system. Även
om meddelandeintegritet och äkthetskontroll har studerats och genomförts
inom många områden, innebär området heterogena autonoma system unika
forskningsutmaningar. Det finns snäva prestandabegränsningar på grund av
realtidskraven för fordonskontrollsystem och datapubliceringshastigheter. Det
är en öppen fråga om detta tillvägagångssätt kan uppnå prestanda inom de
gränser som krävs för ett tillförlitligt autonomt fordon. Dessutom skulle
säkerhetsfördelarnamed en skalbar automatisk generering av koden för verifiering
av meddelandets integritet över alla noder i ett heterogent system hjälpa
fältet att kvantifiera felminskningen och säkerhetsfördelarna med denna typ
av kodgenerering i komplexa programvarusystem.

Nyckelord
Integritet, Kodgenerering, Fordon-till-infrastruktur, Ad hoc-nät för Fordon,
Standardisering, Samtal om fjärrprocedur, Säkerhet

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
I would like to thank Per Hallgren for proposing the thesis Project andAlexadre
Thenorio for mentoring me through the collaboration with Einride. I am
extremely grateful for the guidance, advice as well as patience shown to me
by Mohammad Khodaei my supervisor as well as Panagiotis Papdimitratos
my examiner. I would also thank them for helping to push to publish a paper
together on the work done as part of this Masters thesis project.

Stockholm, April 2023
Paul Molloy

vi | Acknowledgments

CONTENTS | vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 4
1.3 Original Problem and Definition 5

1.3.1 Scientific and Engineering Issues 6
1.4 Purpose . 6
1.5 Research Methodology . 7
1.6 Delimitations . 8
1.7 Structure of the Thesis . 8

2 Background 11
2.1 Security Requirement Definitions 11

2.1.1 Integrity . 11
2.1.2 Authentication . 12
2.1.3 Non-repudiation . 12

2.2 Symmetric Cryptographic Primitives 13
2.2.1 Hash-based Message Authentication Code 13

2.3 Asymmetric Cryptographic Primitives 13
2.3.1 Rivest–Shamir–Adleman 13
2.3.2 Digital Signature Algorithm 14
2.3.3 Elliptic Curve Digital Signature Algorithm 14
2.3.4 Ephemeral Keys . 14

2.4 Network Protocols & Encoding Formats 15
2.4.1 TCP . 15
2.4.2 UDP . 16
2.4.3 WSMP . 16
2.4.4 Lightweight Communication and Marshalling 17

2.5 Networked Vehicular Systems 18
2.6 Heterogeneous Real Time Systems 21

viii | CONTENTS

2.7 Micro-service Architecture in Vehicular Systems 22
2.7.1 Intra-vehicle Communication Authentication 24

2.8 Security in Vehicular Communication Systems 24
2.8.1 Security and Privacy Risks 24
2.8.2 Vehicular Communication Security Standards 25
2.8.3 Wireless Access in Vehicular Environments 25
2.8.4 Vehicular Public-Key Infrastructure 26
2.8.5 Institute of Electrical and Electronics Engineers 1609.2

WG . 27
2.9 Signatures in Data interchange formats 28

2.9.1 Message Integrity Verification for XML 28
2.9.2 Implicit Signatures 31
2.9.3 Protocol Buffers . 31
2.9.4 Protobuf Encoding 32
2.9.5 gRPC . 32

2.10 Code Generation . 33
2.11 Static Code Analysis . 34
2.12 Summary . 36

3 Method 37
3.1 Research Process . 37
3.2 Research Paradigm . 38
3.3 Data Collection . 38
3.4 Experimental Design / Planned Measurements 39

3.4.1 Test Environment . 39
3.4.2 Hardware/Software to be Used 39

3.5 Assessing Reliability and Validity of the Data Collected 40
3.5.1 Validity of Method and Data 40

3.6 Planned Data Analysis . 41
3.6.1 Data Analysis Technique 41
3.6.2 Software Tools . 41

3.7 Evaluation Framework . 41
3.8 System Documentation . 41

4 Design & Implementation 43
4.1 Protocol Buffer Transpiler Plugin 44

4.1.1 Linter . 45
4.2 User Flow of SecProtobuf . 47
4.3 Implementation . 47

Contents | ix

4.3.1 Protocol Buffer Interface and Code Generation 47

5 Results and Analysis 53
5.1 Major Results . 53
5.2 Payload Size Increase . 54
5.3 Analysis of Wire Representation 55
5.4 Time Performance of integrity-lint 56
5.5 Qualitative Comparison . 56
5.6 Reliability Analysis . 57
5.7 Validity Analysis . 57

6 Discussion 59
6.1 Research Question One . 59
6.2 Research Question Two . 59
6.3 Research Question Three . 60

7 Summary of Original Work 61

8 Conclusions and Future work 63
8.1 Conclusions . 63
8.2 Limitations . 64
8.3 Future Work . 64
8.4 Reflections . 65

References 67

x | Contents

LIST OF FIGURES | xi

List of Figures

1.1 A Use-case Scenario: Data-stream to Remote Driver Station
Over User Datagram Protocol (UDP) (taken from [1]). 2

2.1 Transmission Control Protocol (TCP) Datagram Format 16
2.2 UDP Datagram Format . 17
2.3 WSMP Datagram Format . 17
2.4 LCM Small Message Format (64 kB maximum) 18
2.5 Lightweight Communications andMarshalling (LCM) Fragmented

Message Format . 18
2.6 V2X Network Example . 19
2.7 Einride’s Autonomous Truck (Pod) [1] 19
2.8 A Use-case Scenario: Datastream to Remote Driver Station

Over UDP (Taken from [1, 2]). 20
2.9 Heterogeneous Vehicular System Architecture [3] 21
2.10 Illustrative Autonomous Vehicle Micro-Service Architecture [3] 23
2.11 1609.2 EU VKPI High Level Overview [4] 27
2.12 Enveloped XML Signature 30
2.13 Enveloping XML Signature 30
2.14 Protobuf Field Encoding . 32
2.15 Abstract Syntax Tree Example Showing an Assignment Using

a Method Call Inside a Go Program File 35

4.1 Integrity Lint Findings Returned for an Example Programwith
Un-signed and Un-verified SecProtobuf Enabled Messages. . . 47

4.2 SecProtobuf User Development Process 49

5.1 The Proportion of the Payload Taken up by the Signatures as
the Payload is Increased [2]. 54

5.2 Analysis of Raw Protocol Buffer Bytes from Signed Steering
Message . 56

xii | LIST OF FIGURES

LIST OF TABLES | xiii

List of Tables

2.1 Transport Layer Protocol Characteristics 15

5.1 Performance of message-integrity in Terms of Processing
Time (Base-line: Just Marshalling + Unmarshalling) 53

xiv | LIST OF TABLES

LISTINGS | xv

Listings

2.1 XML Standard Signature . 28
2.2 Example gRPC Service Protocol Buffer Definition 33
4.1 Compiling ProtoBuf Message with SecProtobuf [2]. 45
4.2 Calling Static Analysis Linter on a Go Source File [2]. 45
4.3 The message_integrity_signature Custom Option Definition . . 48
4.4 Example Protocol Buffer Message with no Message Integrity

Signature . 48
4.5 ProtoBuf Message with Signature Option Enabled [2]. 50
4.6 SecProtobuf Plugin Generated Code for Protobuf Message (as

Specified in Listing 4.5) [2]. 50
5.1 Commands Used to Generate ECDSA NIST P-256 Key Pairs . 55
5.2 Generating Protoscope Representation of Serialized Signed

Steering Command . 55
5.3 ProtoScope Analysis of Signed Steering Message 55
5.4 Profiling of integrity-lint Performance 56

xvi | LISTINGS

LISTINGS | xvii

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

ASN.1 Abstract Syntax Notation One

AST Abstract Syntax Tree

BSM Basic Safety Message

BSSID Basic Service Set Identifier

CA Certification Authority

CAM Cooperative Awareness Message

CAN Controller Area Network

CI/CD Continuous-Integration/Continuous-Deployment

CPU Central Processing Unit

C2C-CC CAR 2 CAR Communication Consortium

DENM Decentralized Environmental Notification Message

DSA Digital Signature Algorithm

DUKPT Derived Unique Key Per Transaction

E2E End-to-End

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECU Electronic Control Unit

EMV Europay Mastercard Visa

ETSI European Telecommunications Standards Institute

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

xviii | LISTINGS

gRPC gRPC Remote Procedure Call

HMAC Hash-based Message Authentication Code

IDE Integrated Developer Environment

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

JSON JavaScript Object Notation

LCM Lightweight Communications and Marshalling

LTC Long Term Certificate

LTCA Long Term Certification Authority

MAC Message Authentication Code

MSB Most Significant Bit

ms millisecond

NSRC Dedicated Short-range Communications

NIST National Institute of Standards and Technology

OBU On-Board Unit

OEM Original Equipment Manufacturer

OSI Open Systems Interconnection

PCA Pseudonym Certificate Authority

PER Packed Encoding Rules

PII Personally Identifiable Information

PKCS Public-Key Cryptography Standards

PKC Public Key Cryptography

PKI Public-Key Infrastructure

PSS Probabilistic Signature Scheme

LISTINGS | xix

RCA Root CA

RPC Remote Procedure Call

RSA Rivest–Shamir–Adleman

RSU Roadside Unit

SHA Secure Hash Algorithms

SLC Short-Lived Certificate

SOAP Simple Object Access Protocol

SSH Secure Shell

SeVeCom Secure Vehicle Communication

SoC System-On-A-Chip

TBCG Template-Based Code Generation

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

V2C Vehicle-to-Cloud

V2I Vehicle-to-Infrastructure

V2N Vehicle-to-Network

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)

VANET Vehicular Ad-hoc Network

VANET Vehicular Ad-hoc Network

xx | LISTINGS

VC Vehicular Communication

VM Virtual Machine

VPKI Vehicular Public-Key Infrastructure

W3C World Wide Web Consortium

WAVE Wireless Access in Vehicular Environments

WS-Security Web Service Security

WSMP WAVE Short Message Protocol

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

Introduction | 1

Chapter 1

Introduction

This thesis project focuses on the challenge of improving the security of
heterogeneous vehicular systems by creating away of automatically generating
security code to enable signing and verifying of communications for the
component software sub-systems.

Please note that this thesis is based on the same work as the accompanying
paper [2]. As such, some of the context, background and discussion overlaps
with this paper.

1.1 Background
Traditionally vehicles had relatively simple internal networkswith components
communicating with the Electronic Control Unit (ECU) over a Controller Area
Network (CAN) bus which is a simple wired multi-cast network protocol.
Such vehicles were made with the assumption that physical access would be
needed to access the network. In other words relying primarily on physical
security rather than cryptographic security. The real-time nature of these
communications also meant that cryptographic security checks were less
feasible.

Modern and next generation vehicles are moving to be more highly
networked both internally and externally. Vehicles are increasingly networked
internally using more complex protocols such as Internet Protocol (IP) using
UDP and TCP to connect machine learning and connected sensors need for
new use cases. Externally vehicles are moving to become more networked
externally through trends such as V2V and V2I (V2X) connecting vehicles
with each other, infrastructure and cloud services [5].

To help illustrate this, Fig. 1.1 shows a use-case for remote driving, in

2 | Introduction

Pod (truck)

1. msg.Sign()
2. proto.Marshal(msg)
3. sendUDP(msg)

Remote Drive Station

1. receiveUDP(&bytes)
2. proto.Unmarshal(bytes, &msg)
3. If ok, err := msg.verify();..
4. processData(&msg)

Figure 1.1: A Use-case Scenario: Data-stream to Remote Driver Station Over
UDP (taken from [1]).

which vehicles interact with a remote driving station every 10 ms. The
interfaces for signing and validating are also shown [2]. All messages need to
be signed before transmission to the backend infrastructure; at the same time,
all messages need to be validated on the remote driving station when received.
Each new application may have numerous distinct message types, all of which
must be signed to maintain security guarantees, and thus requiring custom
code for digital signing and verification [2].

There are new risks such as eavesdropping on private information andman-
in-themiddle attacks [6] which be comemore practical over wireless networks.
For this reason such heterogeneous networked vehicles will need to provide
security guarantees using cryptographic algorithms to help protect against
these risks. At the same time, Original Equipment Manufacturers (OEMs) are
mandated to comply with the Institute of Electrical and Electronics Engineers
(IEEE) 1609.2 standards [7] and implement the vehicular communication
standard as well as provide security protection guarantees for integrity, non-
repudiation and authentication [6].

As the complexity of multi-node systems increases, the risk of introducing
new vulnerabilities trying to implement security mechanisms also grows. To

Introduction | 3

mitigate against such a risk, a security in depth approach is needed [8]: all in-
vehicle communications require security guarantees for interactions among
different components and sub-systems instead of just of edge nodes [2].
This is further complicated by the adoption of a micro-service architecture-
orientated design in many Vehicular Communications (VCs), with a multitude
of computing sub-systems and sensors using different programming languages [2]
and frameworks.

In order to provide these required security guarantees, it is needed to add
security code to each software subsystem of the vehicle and all of the other
networked systems it communicates with. This requires writing code for each
component, which must be carefully written and audited by security engineers
due to its critical nature. This process can be time-consuming and costly
for vehicular systems developers and their employers, especially when each
component requires nearly identical code with only minor modification based
on the structure of the messages being communicated between nodes.

Most V2X developers are not information security professionals and are
likely to be the source of security bugs if working on security critical code;
The code to locate and handle the signature in the structured data, particularly
enveloped signatures nested in the structured data sent. It is possible an
inexperienced engineer may slip up when writing the verification code and
forget to clear the signature field before the message is compared to the
expected signature. In general this security code is bug prone and may take
inordinate developer time. It is also difficult to always remember to verify
signatures and message-integrity codes before use. It has been found in one
study [9] that for every thousand lines of code an additional 7.4 defects are
added to a software system. This extra work to program custom signature code
for every custom data-structure message in every language will have a heavy
cost in terms of both developer time and money for large networked vehicular
software systems.

Clearly adding protection mechanisms correctly and consistently in a
heterogeneous system is an extremely difficult and error-prone task when done
manually. As a solution an automated system for generating this code for
signing, verifying and accessing the keys automatically would alleviate much
of this chore work, critical security bugs likely to spawn from it as well as
crucially cost for the companies developing these systems.

To ensure that a system correctly enforces security policies, this thesis
proposes an architecture where the necessary functionality is not individually
re-implemented andmanually for eachVC node, but rather consists of reusable
components that can be audited separately [2]. This requires a security layer

4 | Introduction

that provides code generation of such functionality as needed that does not
need to be touched by programmers in their day to day work, but is implicit
for every message sent [2].

The World Wide Web Consortium (W3C) Extensible Markup Language
(XML) signatures standard [10] is widely used: it allows for enveloped
signature elements, stored inside the data-structure of the message. There
exist other standards for message integrity and authentication in vehicular
contexts such as IEEE 1609.02 [7]: Abstract Syntax Notation One (ASN.1)
with a compact and performant binary encoding format [11, 12, 13]. However,
these standards do not provide support for automatic generation of the code for
signing and verifying. Rather, a developer needs to program it manually [2].

To simplify this process, code generation can be used. This is discussed
in Section 2.10 of the background. Code generation refers to the process of
creating new code automatically using a program based on some input such
as the structure of a message. This technique is used successfully across the
software industry and may be fruitfully applied here also.

1.2 Problem
The research questions are as follows:

• Research Question One: Can message integrity verification be added
to the Protocol Buffer tool-chain for the requirements of complex
heterogeneous vehicular systems?

• Research Question Two: Can such a system have an acceptable
performance impact in terms of end-to-end performance time and effect
on message size?

As such, the framework should aim to be able to complete end-to-end
signing serializing, de-serializing and verifying within 1 millisecond
(ms). In terms of message size the framework should aim to add only
constant extra space to serialized messages over a message signed using
manually created code.

• Research Question Three: Qualitatively can such a system be easily
extendable to add new features and algorithms as need to support the
creation of practical VC systems?

• Research Question Four: Can this framework save development time
for the creation of VC systems?

Introduction | 5

1.3 Original Problem and Definition
The original thesis project proposal is written below. The final problem
statement has been iterated upon based on this:

To reduce the likelihood of an exploit, this thesis aims to minimize
the attack surface of a complex micros-service architecture where each unit
secures its own perimeter. To this end, message integrity must be assured.

It would be an incredibly complex task to ensure that these required
protection mechanisms are implemented in both a correct and consistent
manner. Additionally this process is likely to be highly error prone when
carried out manually [2]. To ensure that such large VC systems correctly
enforce a security policy, we must therefore use an architecture where the
implementation is not designed again for each new node but it is a reusable
component that can be audited in isolation [2]. This calls for a security layer
that is transparent to a programmer in their normal development work, but is
implicitly used for every message that is sent over the wire [2] between nodes.

This thesis is about adding digital signatures to all messages in a system
where all peers use Protobuf for data serialization. The Protobuf (or gRPC
Remote Procedure Call (gRPC)) tool-chain is a good place to instrument
peers to add signatures without putting this effort on the daily work of the
programmer.

Originally proposed deliverables for the thesis were described as follows
in the project proposal: Add support through the Protocol Buffer tool-chain to
verify the integrity of Protocol Buffer payloads. Decide on which scheme to
use (e.g. as in Transport Layer Security (TLS), or just Hash-based Message
Authentication Code (HMAC)) to assure integrity. Report on the efficiency
impact of the additional cryptographic verification.

A extra milestone was described as a stretch goal if time allowed:
The weakest link in many authentication schemes is the cryptographic key

used for signing. Therefore, it is common to rotate keys - as seen in TLS,
Secure Shell (SSH), and all long-lived cryptographic protocols. For credit
card payments (Europay Mastercard Visa (EMV)) a protocol called Derived
Unique Key Per Transaction (DUKPT) is used.

Enable ephemeral (preferably per-message as in Double-Ratchet (used by
WhatsApp, FacebookMessenger andmany others), but can also be per-session
as in TLS) keys to be exchanged, signed using a pre-shared key

6 | Introduction

1.3.1 Scientific and Engineering Issues
There are several scientific and engineering issues that need to be overcome to
solve this research problem. Designing a generalized system that will work for
an arbitrary structured message is a challenging task. The framework needs to
flexible enough to be broadly useful for many tasks. That is it should not be
useful for some toy applications but instead a large subset of the heterogeneous
system communications that are in need of security guarantees.

It will also require analysis and thought to decide on cryptographic
schemes to use (e.g. as in TLS, or just HMAC) to assure integrity and any other
security guarantees identified. Additionally the underlying the environment to
develop the tool will need to be identified out of several possible options not
limited to LCM, gRPC and Protocol Buffers.

The framework (and systems developed using it) will need to have good
performance characteristics. This means that the framework should run
quickly and using minimal resources during the development process. On top
of this the security code generated by the framework should also be efficient in
terms of Central Processing Unit (CPU) and memory as the code will in many
cases run on hardware with limited resources.

The framework will also need to be engineered with use-ability in mind so
that the average developer can use it easily and intuitively while developing
software for the V2X use case. This should mean that the interface is
simple and exposes the right information so that it is difficult for the user to
inadvertently make security bugs regarding such security code.

1.4 Purpose
The purpose of the thesis is to investigate and develop a prototype framework
for automatically generating security code needed for communications between
and within network vehicular systems.

This benefits vehicle OEM as it will reduce development time of the
software components of heterogeneous networked vehicular systems. This
will lead to these systems being able to be brought to market much more
rapidly. Through the same vein it also benefits from reduced cost due to
the developer time saved. It also reduces the risk of security bugs and
vulnerabilities in such systems which protects long term reputation for the
OEM. Einride the supporting company benefit for these reasons particularly
the development time saved. Additionally this framework proposed for this
degree project would greatly reduce the amount of time spent on security

Introduction | 7

reviews of security code as the security code would just need to be written
once in the framework and audited there.

There should also be benefits to the academic field of computer security in
networked vehicular environments more broadly. A framework for automatic
generation of security code also practically speeds up development of simulated
vehicular networks and V2X scenarios as the security code does not need
to be re-developed for each heterogeneous node in the network. This will
allow larger scale simulations to be tested with less work by researchers. The
framework can also be built on top of by other researchers so that different
security protocols can be added. Support for other languages can be added
as the framework is open source. The openness and extendable nature of the
framework is designed with the aim to make the thesis project as widely useful
to other researchers and industry as possible.

One of the primary benefits of this thesis is on Privacy and Security of
Users of Networked vehicles. This thesis aims to better protect users from
being endangered due to malicious actors exploiting vulnerabilities in vehicles
that they use. The framework aimed to be constructed can also help to improve
privacy chiefly if it is used to write better systems to authenticate uses.

This project benefits society as it makes the realization of Networked
Vehicles more easily achievable. This will positive externalities on both
sustainability and social issues.

Enabling Networked vehicle use cases (such as safety and traffic messages,
between vehicles, platooning remote driving and autonomous driving will
provide increased efficiency in driving and reduced congestion. This should
have a positive effect on the environment [14]. Similarly these use cases such
as safety messages and remote driving enabled by this additional networking
will make roads safer. They will do this by providing more information to
improve the decision making of both local human drivers, remote drivers and
autonomous systems.

1.5 Research Methodology
The engineering design process was used in this thesis project. This entailed
defining the problem, then conducting background research to understand the
problem space. Finally quantitative measurements were made in evaluation
tests to evaluate if the problem has been adequately solved by the engineered
solution.

This was an iterative process of researching and clarifying problem in
more detail. Particularly a closer link was made to real VC standards used in

8 | Introduction

industry as more research was done into the literature surrounding vehicular
communication both for the thesis and preparing for publishing the paper.
Additionally the thesis problem focused more overtime on the core research
questions over time and away from key management and ephemeral keys
sections as that was considered to large of a scope. It also became clear that
the thesis should not only take a quantitative but also a qualitative angle to
the evaluation to show that the framework could be practically be used by a
developer.

1.6 Delimitations
The chief aim of this thesis is to explore the possibility of creating a set of
tooling to automatically generate security code to enable security guarantees
such as authentication automatically in heterogeneous vehicular networked
systems. The second aim is to create a working prototype of such a system
and evaluate it for both performance and functionality.

Such tooling would really show its usefulness though time saved and
bugs prevented in a large scale vehicular software development project. It
is not aimed to evaluate the performance of this proposed system in such an
environment due to time and resource constraints.

The system aimed to be developed for this thesis would be most effective
if it worked across all languages. Initially for the scope of this thesis it will
be just aimed to be functional in generating this security code for a single
programming language. It is proposed that once such a system has been
proposed and proven to work in one language it should follow directly that
it can be created for the other leading programming languages needed in
networked vehicular systems and autonomous vehicular system environments.

Such a system of automatic Remote Procedure Call (RPC) security code
may have additional usefulness outside of the field of vehicular systems and
more generally in software engineering due to the scope of the thesis only this
field was focused on for the thesis.

1.7 Structure of the Thesis
Chapter 1 - Introduction is the current chapter and outlines the purpose,
definition and scope of the thesis project. Chapter 2 - Background presents
relevant background information on Vehicular Networks and V2X, critical
security concepts as well as meta-programming concepts such as static code

Introduction | 9

analysis and code synthesis. Chapter 3 - Method outlines the research
methodology chosen for this degree project. It also covers to evaluation
method used and describes the steps taken to ensure the accuracy and validity
of both the results obtained and the conclusions taken from those results.
Chapter 4 - Design & Implementation details the design of the solution
decided on to solve the problem outlined in the introduction. It describes the
software components created to solve the problem and the internal algorithms
used by them. The user interfaces of the components are described and
the user work flow of a software developer using the framework is outlined.
Chapter 5 - Results & Analysis showcases the results obtained through
measuring the performance characteristics of the framework that was designed
and implemented. Additionally the results of manual testing of functionality
and use-ability of the framework is also presented. Chapter 6 - Discussion
In this chapter implications, significance and relevance of the results obtained
are discussed. Chapter 7 - Original Work provides information as to the
peer reviewed research published as part of the work towards this masters
thesis. Chapter 8 - Conclusion & Further Work The final chapter provides
a summary of the research problem and the designed solution as well as the
significance of the results. Finally it highlights limitations of the thesis project
and suggestions of potentially fruitful avenues for future work.

10 | Introduction

Background | 11

Chapter 2

Background

This chapter provides basic background information about Vehicular Ad-hoc
Networks (VANETs) and V2X, as well critical network and security concepts.
Finally related work related meta-programming concepts such as static code
analysis and code synthesis are introduced.

2.1 Security Requirement Definitions

2.1.1 Integrity
In the field of information security, Integrity of communication refers to the
certainty that the content of a message has not been modified by interference
or a third party between the time when the sender sent the message and when
it is read by the recipient. This is typically achieved by using a secret key
shared by the sender and intended recipient which is used to hash the content
of the message to create a digest of the message. This digest is easy to
recalculate on the receiver side using the received message and the secret key.
Message Integrity algorithms are typically designed so that it is a very hard
problem to craft a different message for a secret key which would have the
same digest [15]. It is important to note that in the case where the secret key is
symmetric then message integrity is only guaranteed against parties who don’t
have the secret key. Parties with the secret key can all create, modify and then
sign or resign messages and their integrity will appear valid to other holders
of the secret key.

In VC systems [6] Message integrity is need for example so vehicles can
trust safety messages or remote driving commands are coming from the agent
in the network that you believe it has and importantly that it has not been

12 | Background

modified along the way.

2.1.2 Authentication
Authentication refers to the way that the identity of a party in communications
can be determined [6, 16]. Specifically in this context we are not concerned
with human user auth-entication but networked computer systems authenticating
each other. So password based authentication will not be considered. The
main focus is cryptographic authentication in this thesis as network based
authentication has the weakness of sometimes being vulnerable to network
address imp-ersonation and is therefore not the gold standard [16].

Authentication can be provided through both symmetric and asymmetric
cryptography. With HMAC two actors can authenticate each other if they
have a shared key as they know if they didn’t sign a message then it must be
signed by the other party. Asymmetric cryptography provides a more robust
authentication capability as if an actor signs a message with their private key
any other actor who has the public key can authenticate that the message was
signed by the signer if they have the signer’s public key.

In VC systems [6] Authentication is needed to make sure that for example
a vehicle or piece of infrastructure in question is who it claims to be and that
the data sent from it e.g. collision avoidance information can be trusted due to
their identity.

2.1.3 Non-repudiation
Non-repudiation [16] means that a party which has signed a message is not
able to deny that they are the party who signed the message. This is due
to the cryptographic guarantees of the algorithm chosen. This cannot be
done with secret key symmetric cryptography as both parties share the same
secret key and a party can always claim that they did not sign a message but
another party that with the same key did. With asymmetric cryptography,
as only one actor has the private key no-one else can sign messages with it
and pose as the identity represented by it (unless the key falls into the hands
of a bad actor). This means that the holder of the key cannot deny having
signed a message. In VC systems [6] non-repudiation is needed for example
to prove that a VANET node e.g. a vehicle was the one that was sending
spam Basic Safety Message (BSM) for example forward collision warnings
to make vehicles stop and create traffic problems. There should be proof that
the driver was the one who created the spam messages and not that they are

Background | 13

being framed by another actor for example a Certification Authoritys (CAs)
or V2I node. Non-repudiation allows this guarantee.

2.2 Symmetric Cryptographic Primitives

2.2.1 Hash-based Message Authentication Code
HMAC [17] is a standard cryptographic message authentication protocol
which utilizes symmetric cryptography. It is used as it addresses a weakness
in more basic Message Authentication Code (MAC) algorithms which are
vulnerable to length extension attacks [16].

A naive MAC works by concatenating the secret key on the end of a
message and getting the hash of this using a common hash algorithm such
as Secure Hash Algorithms (SHA)-1. The problem with this is that an attacker
who knows the message and the MAC can simply add padding to the message
and then append extra data to the message at the end and this will also match
the same MAC for both the original and longer message [16]

HMACcan be usedwith any underlying cryptographic hash function. HMAC
works by applying the hash function twice. For a givenmessage (M) and secret
key (K), message authentication code will be generated. If K is shorter than
the underlying cryptographic algorithm it is padded with zeros, if it is too
long it is hashed with the algorithm to make it the right length. Two keys
are generated from K, the inner key kinner and kouter. This is done by xor-ing
them with repeated 0x36 bytes and 0x5c bytes respectively. The message is
concatenated to kinner and then hashed. The result of this is then concatenated
to kouter and then this is hashed again. The result is the message authentication
code. The extra steps of hashing with a second key protects against the length
extension attack described above.

2.3 Asymmetric Cryptographic Primitives

2.3.1 Rivest–Shamir–Adleman
Rivest–Shamir–Adleman (RSA) [18] is a form of asymmetric cryptographic
where key pairs of public and private keys are generated between parties based
on initial starting values. In terms of signatures Alice can sign a payload using
her private key and then it can be verified using Alice’s public key which can
be distributed over clear text. RSA can also be used to send keys between

14 | Background

parties Bob could encrypt a new session key with Alice’s public key and Alice
would be the only party able to de-crypt this message using her private key.
This session key could then be used to sign many messages in the future. The
problem is that this session key or the RSA private key could be compromised
at some point in the future and fraudulent payloads could be signed from then
on.

2.3.2 Digital Signature Algorithm
Digital Signature Algorithm (DSA) is an asymmetric cryptographic algorithm
created by the National Security Agency and standardized byNational Institute
of Standards and Technology (NIST)[16]. It is based on ElGamal, another
asymmetric algorithm. Both ElGamal and DSA rely on the discrete logarithm
problem. DSA requires random number for each new signature and so a weak-
point of the algorithm is the randomness of the random number generator
used [19].

2.3.3 Elliptic Curve Digital Signature Algorithm
Elliptic Curve Digital Signature Algorithm (ECDSA) is another asymmetric
cryptographic algorithm which relies on the discrete logarithm problem the
key difference from DSA which it is based on, is that it uses elliptic curves.
ECDSA is thus an Elliptic Curve Cryptography (ECC) algorithm. The most
efficient solutions to this problem are exponential [19]. This means that
generally ECDSA requires shorter key sizes for the same amount of security in
comparison to RSA which uses the integer factorisation problem. Like DSA,
ECDSA relies on a random number generator to sign a message. The quality
of this random number generator is thus also a weak-point of this algorithm.
ECDSA was chosen as the main algorithm use in the IEEE 1609.2 WG
standard. See later in the background at Section. 2.8.2 regarding VANET.

2.3.4 Ephemeral Keys
Preventing key reuse entirely by generating new keypairs for eachmessage/short
session reduces the size of the security risk. If a key is swapped several times
a minute then there is a very narrow window where a bad actor could make
use of a compromised key. This is difficult to orchestrate clearly as there is an
orchestration cost of making sure every party has the correct keys at the correct
time. If the key used for signatures was updated every time ephemerally it
would mean that compromised keys would be useless in the future.

Background | 15

Often Schemes for providing ephemeral keys in cryptography are used for
encrypted messaging where forward secrecy is important. The keys generated
are discarded by all parties once new ones are created to prevent previously
sent messages being decrypted again. For signature verification it may be
useful for auditing to be able to verify old messages at a later point. In this case
although new keys are use each time, it may be desirable to store old signing
keys. Developed by signal used in Signal, Whatsapp, Facebook Messenger,
Skype, Google Allo [20]. Derives new keys for each message being sent, using
ratchet such that there is forward secrecy and ephemeral keys [21].

2.4 Network Protocols & Encoding Formats
There are several transport layer protocols used in VC systems, in Einride
Protocol Buffers are used over UDP and TCP and LCM is used over the CAN
bus. In the Wireless Access in Vehicular Environments (WAVE) standard set
TCP UDP and used alongside WAVE Short Message Protocol (WSMP). The
fact that so many different transport protocols are used in VC communication
hints at the heterogeneity of such systems.

Table 2.1 summarizes these characteristics and contrasts the various transport
protocols used in VC systems studied as part of this thesis. The characteristics
compared are whether they provide a reliable channel and how suitable they
each are for safety critical real time systems. In addition an example use-case
where the protocol would be suitable is given.

Table 2.1: Transport Layer Protocol Characteristics

Protocol Reliable Channel Real-time Use-case
TCP Yes Low Non-safety traffic info
UDP No Medium Camera Feed Streaming
WSMP Yes High Collision Avoidance Message
LCM w/ CAN Yes High Torque sensor data

2.4.1 TCP
This is a reliable channel protocol used broadly in computer networking.
The TCP datagram is larger than UDP as can be seen in Figure 2.1 [22].
This protocol allows for re-sending messages if they do not reach their

16 | Background

destination but at the cost of higher latency and more acknowledgement
messages verifying that messages have been received. There is also a larger
handshake for creating a persistent connection. TCP is used in VC systems as
part of the WAVE [23] standard set as well as in non-standard use-ages. It can
be used for a broad range of non-safety critical examples such as requesting
predicted weather data to provide to sensors and the driver or updating map
data.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port
Sequence Number

Acknowledgement Number

Offset Reser. Flags Window Size

Checksum Urgent Pointer

Options (0-320 bits)

Header

Payload

}
Payload

Figure 2.1: TCP Datagram Format

2.4.2 UDP
This is an unreliable channel protocol used broadly in computer networking.
This protocol safes space by having a smaller packet size as seen in Figure [24].
UDP is designed to be fast and and connection-less. The header of the packets
are smaller than in UDP 2.2. It does not allow for any control flow or re-
transmission if messages do not arrive in time. Crucially UDP allows multi-
cast functionality. Which is where one sender can send the same data to a
subset of IP addresses at once. In VC systems this protocol is often used
for streams of data where the latency to receive the latest data is the most
important. An example of this would be streaming remote driving commands
to a vehicle.

2.4.3 WSMP
WSMP is a protocol that carries out both the transport and network parts of the
Open Systems Interconnection (OSI)model stack, this protocol’s packet layout

Background | 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port
Length Checksum

}
Header

Payload

}
Payload

Figure 2.2: UDP Datagram Format

is shown in Figure 2.3. This protocol covers roles comparable to both internet
protocol and TCP together. It was needed as a protocol was needed that would
be able to prioritize smaller high priority and safety critical messages that are
time-sensitive [23].
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version PSID (1-4 bytes)

Extension Fields (Optional 0-9 bytes)

Wave Element ID Length

Header

WAVE Short Message (Payload)

}
Payload

Figure 2.3: WSMP Datagram Format

2.4.4 Lightweight Communication and Marshalling
LCM is a common data communication format and library intended for
inter-process communication low-latency use-cases [25]. The protocol uses
a publisher and subscriber model and allows for automatic generation of
marshalling and un-marshalling code for many languages. The protocol
uses UDP multi-cast and allows easy logging and debugging of messages.
There are two data-gram formats a simple version if the data is under 64kB
which is show in Figure 2.4 and a fragment data-gram format as in Figure 2.5
with extra metadata. If the payload is too long it is broken up into numbered
fragments.
∗ The channel name is included for the first fragment of the sequence only.

18 | Background

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Short Header Magic

Sequence Number

}
Header

NULL Terminated Channel Name (UTF-8) . . .

Payload

 Payload

Figure 2.4: LCM Small Message Format (64 kB maximum)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fragmented Header Magic

Sequence Number

Payload Size

Fragment Offset

Fragment Number Number of Fragments

Header

NULL Terminated Channel Name (UTF-8)∗. . .

Payload

 Payload

Figure 2.5: LCM Fragmented Message Format

2.5 Networked Vehicular Systems
V2X is the overarching term for vehicular commutation between the many
potential parties that such a system can communicate with enabling vehicular
networking use-cases. Figure 2.6 illustrates several of the categories withinV2X.
V2V refers to the communication between networked vehicles which can
enable use-cases such as platooning, signalling, co-operative merging and co-
operative overtaking [26]. V2I refers to communication with infrastructure in
the road such as traffic lights, roadside information systems and parking. Vehicle-
to-Network (V2N) is simply the direct connection of the vehicle to the
internet chiefly through 5G. Vehicle-to-Cloud (V2C) means communication
with cloud services and providers over the internet, this enables use-cases
such as remote driving, information retrieval such as weather forecasts and
offloading non-time sensitive compute tasks.

Background | 19

V2C

V2I

V2N

V2V

Figure 2.6: V2X Network Example

Figure 2.7: Einride’s Autonomous Truck (Pod) [1]

InVC systems, vehicles regularly transmit CooperativeAwarenessMessages
(CAMs) andDecentralized Environmental NotificationMessages (DENMs) at
a frequent tempo. These messages are used to facilitate transportation safety
and efficiency [2]. CAMs messages are used for sharing information about
nearby vehicle positions. DENMs meanwhile is the standard system for safety
messages about hazards on the road for road users as well as traffic conditions.

The susceptibility of VC systems to information security attacks has been
shown and is well-understood [27]. A lot is at stake as such vulnerabilities
have the potential to compromise both the privacy and even physical safety
of VC users. To address these potential risks, security and privacy solutions

20 | Background

Pod (truck)

1. msg.Sign()
2. proto.Marshal(msg)
3. sendUDP(msg)

Remote Drive Station

1. receiveUDP(&bytes)
2. proto.Unmarshal(bytes, &msg)
3. If ok, err := msg.verify();..
4. processData(&msg)

Figure 2.8: A Use-case Scenario: Datastream to Remote Driver Station
Over UDP (Taken from [1, 2]).

have been proposed by standardisation bodies such as IEEE 1609.2WG [7] and
ETSI [28]), harmonisation efforts (C2C-CC [29]), and projects (SeVeCom [30,
31, 32], PRESERVE [33], and CAMP [34, 35]). Following this, there has been
a general consensus to use Public Key Cryptography (PKC) to protect V2X
communication through using a set of short-term anonymized certificates,
known as pseudonyms which are issued to registered vehicles by a Vehicular
Public-Key Infrastructure (VPKI) [36, 34, 37]. Users privacy is thus protected
as vehicles regularly switch between unlinkable pseudonyms to maintain
unlinkability [2].

The number of CAM and DENM data structure types, as specified in IEEE
1609.2 [7] and European Telecommunications Standards Institute (ETSI) [38],
increases greatly as V2X systems are scaled and deployed [2]. These messages
are nested data structures, needing custom code to traverse, sign and verify
them. The WAVE HeaderInfo [7] data structure illustrates the format of
basic safety messages with multiple nested sub-data structures. The ISO
standard 15628 [39] specifies 20 different types (dsrcApplicationEntityId)
for vehicular networking applications, such as parking, electronic fee collection
and emergency warning [2]. Fig. 2.8 shows a use-case for remote driving

Background | 21

with vehicles interacting with the remote driving station every 10 ms [2]. A
common process for signing (sign, serialize, transmit) and validating (receive,
de-serialise, verify and handle, process) is shown [2]. All messages need to
be signed before transmission to the back-end infrastructure; at the same time,
all messages need to be validated on the remote driving station when received.
Each new application would have many different message types, all of which
would need to be signed, thus requiring custom code to digitally sign and
verify [2].

2.6 Heterogeneous Real Time Systems

3rd Party

CAN Bus
LAN Network

3rd Party

Figure 2.9: Heterogeneous Vehicular System Architecture [3]

A typical architecture for a networked vehicular system with capabilities
such as remote drive, autonomous driving as well as remote drive and
other V2X use-cases is shown in Figure 2.9. Such a system will commonly
have a multitude of different compute units of different architectures across
the gamut from low level ECUs, specialized Field Programmable Gate Arrays
(FPGAs), Graphics Processing Units (GPUs) as well as other Application-
Specific Integrated Circuits (ASICs) and even integrated sensor-System-On-
A-Chip (SoC) packages [40].

22 | Background

ECUs are low level compute modules often with safety critical real time
requirements. They generally control low level components in a vehicular
system and use the CAN bus to communicate with each other. GPUs, FPGAs
and ASICs compute units are often used for highly specialized compute task
common in autonomous vehicular systems such asmachine learning and linear
algebra heavy workloads as well as sensor processing.

2.7 Micro-service Architecture in Vehicular
Systems

A micro-services architecture is a strategy for designing software systems
where the overall system is composed of many sub-systems which each
are responsible for one thing and can run independently using different
technologies such as languages, platforms and hardware. These micro-
services communicate with each other using RPC which are requests from
external micro-services asking a micro-service to execute a procedure and
return a response with data. These RPC are sent between micro-services
over the network and thus a micro-service system can flexibly operate across
processes whether they are on the same machine in a local network or across
the internet.

An example micro-architecture of an Autonomous vehicle system capable
of lane following is shown in Figure 2.10. In this diagram each box is a
micro-service which does one sub task which is part of the overall task of
driving a vehicle. Each arrow represents an RPC sending response data in the
direction of the arrow. These micro-services can then be composed together to
do more complicated tasks. For example micro-services providing date from
the Camera’s, LiDAR and Motor Encoders are shown in the the architecture
diagram Figure 2.10. These sub-components run independently and just run
the task of providing the data needed when requested. The odometry unit,
which is another micro-service requests this data from these sensor micro-
services and when requested by other micro-services returns the latest 2D Pose
of the vehicle.

This architecture generally has benefits for system development as the
components can be tested and developed independently making development
easier. In heterogeneous environments such as modern autonomous and
networked vehicular systems, micro-service architectures have several benefits.
As the compute environment is heterogeneous the many different compute
nodes on the vehicle need to communicate with each other for example the

Background | 23

data from different ECUs need to be communicated to higher level systems
such as odometry, planning, prediction which may run on different compute
platforms. In addition they may use different languages and technologies. As
their interaction is over a RPC these micro-services can communicate between
different components within the car but also just as easily between micro-
services across V2X a network. An example of this would be communication
between a remote driving station for controlling a vehicle remotely and a
networked vehicular system.

Figure 2.10: Illustrative Autonomous Vehicle Micro-Service Architecture [3]

24 | Background

2.7.1 Intra-vehicle Communication Authentication
There has been some work in the area of adding authentication to the CAN bus
network such as CANAuth [41, 42, 43]. This is a difficult area in particular as
messages on the CAN bus often have real time requirements which are difficult
to balance with security requirements.

2.8 Security in Vehicular Communication Systems

2.8.1 Security and Privacy Risks
Themain privacy risk fromVC systems is data beingmisused. Often themost
valuable information is location data. Other potential data could include.

• GPS Data (this could provide a users routine, business, home workplace
locations etc).

• Driving behavior e.g. acceleration, harshness of breaking.

• Data from sensors e.g. proximity, LiDar, Cameras.

• Car model information.

Such data is valuable to advertisers as it would help them segment users
to advertise to them more correctly. At the same time users have not given
consent to such use-cases and so should be protected from their data being
used except for VANET use-cases either mandated in the future or that they
choose to use. Many of these pieces of data would also be highly valuable
to an insurer for example as data misuse includes the case of an honest-but-
curious [44] actor in a VANET for example an CA. This type of actor might
try to use its position as a central piece of infrastructure to connect various
pseudonyms a user is using. This could be done with timing attacks. An
example of a timing attackwould be a hostile actor with access to PCAdata and
correlating location data to de-anonymise a user and track them. The VANET
standards have been designed to prevent this being possible.

There are also many security risks regarding VC systems. A user could
have private Personally Identifiable Information (PII) data stolen from them
e.g. Location data. This could be done by a compromised actor similarly
to an honest-but-curious especially if they are able expand their access to
compromise multiple actors e.g. both a Long Term Certification Authority
(LTCA) and Pseudonym Certificate Authority (PCA).

Background | 25

A nefarious VC user getting multiple certificates and spamming messages
is another risk. This is especially apparent for example in cases where
information is crowd-sourced. A bad actor could report a traffic accident or
ice on the road [6] at certain location with an aim to create traffic chaos.

This flooding of messages could also have an effect on the network. With
enough messages a denial of dervice effect for legitimate messages on the
network [45] could be created which is difficult to counter.

2.8.2 Vehicular Communication Security Standards
The technical standards such as IEEE 1609.2 WG and ETSI and CAR 2 CAR
Communication Consortium (C2C-CC)

To solve these risks listed above the Secure Vehicle Communication
(SeVeCom) [30] project funded by the European Commission, as an approach
to mitigate these security and privacy problems. The project focused on
identifying these risks, specifying a security architecture suitable for the
threat-surface of VC systems as well as define security primitives needed for
the environment.

2.8.3 Wireless Access in Vehicular Environments
The WAVE standard is an overarching standard for VC including security of
suchVANETs. The standard proposes the data link layer, network and physical
standard for vehicular networking. The identifier for the network standard is
IEEE 802.11p this is an amendment to the Wi-Fi standard 802.11p. [7, 46].

Practically VC systems can be moving at high speeds i.e. driving and so
the time when a vehicle is within range of a piece of VANET infra structure
could be very short; in the order of seconds. Thus the main requirement for
this amendment is the requirement is increased reliability and lower latency.
One of the the main ways to achieve this is lower set up time. For this reason
802.11p removes the need to go through some of the traditional 802.11 initial
authentication and association procedures. For example every Basic Service
Set Identifier (BSSID) uses the sameMedia Access Control address. This also
allows for smaller packet sizes.

This standard also used the 5.9Ghz frequency reserved specifically for VCs.
The standard specifies thatWSMPmust be used for safety messages but allows
for protocols like TCP and UDP for non-safety applications, with dedicated
channels in the spectrum for safety, control and non-safety signalling.

26 | Background

The WAVE standards settled on a common set of several message types
for use-cases of V2X systems,

• Basic Safety Message

• Intersection Collision Avoidance

• Map data

• Traveller Information

• Emergency Vehicle Alert Message

These are originally specified in the Dedicated Short-range Communications
(NSRC) SAE J2335 standard [47, 48].

2.8.4 Vehicular Public-Key Infrastructure
In terms of key management the idea was that there would be a hierarchy
of CAs that would provide sign public private key pairs for their children with
the route-nodes being VC systems on and around the roads such as vehicles
and Roadside Units (RSUs) and sensor systems on the road [4]. The CA
tree would function as follows as specified in IEEE 1609.2 WG (illustrated
in Figure 2.11. There would be a Root CA (RCA) that would be at the top of a
given tree this would often represent a nation-state or Government. This RCA
would then sign keys for OEMs and large organizations. These organisations
would serve as LTCA on the next level down the hierarchy.

Each vehicle would be given a Long Term Certificate (LTC) by an LTCA
that would be tied to the vehicle for its life in most circumstances. As a
vehicle operates it would routinely obtain pseudonyms that it would use to sign
messages. It would do this by public-private key pairs locally and sending
the public keys to the PCA over a secure channel. The PCA would create
pseudonyms by signing the vehicles public keys and returning a pseudonym
for each public key, made up of a tuple of:

1. The identifier of the PCA

2. The lifetime of the pseudonym Short-Lived Certificate (SLC) that it
would use to sign messages

3. The public key

4. The signature of the PCA

Background | 27

Root CA

Long-Term CA (LTCA) Pseudonym CA (PCA)

PCA
Cert

LTCA
Cert

LTC PC

Authorize PC

V2X

Figure 2.11: 1609.2 EU VKPI High Level Overview [4]

If only LTC were used then a CA could use this information to track
vehicles as theymove around. There is also the concept of a Linkage-Authority
that traces misbehaving devices, revoking their certificates to then allow them
to be tracked.

2.8.5 Institute of Electrical and Electronics Engineers
1609.2 WG

This is the standard for Secure Vehicle based communication, this standard
builds on top of the lower layer standard of 802.11p [34].

Due to the design decision to not handle authentication at the data-link-

28 | Background

layer (802.11p) the authentication, integrity and non-repudiation security
guarantees must be ensured at the application layer.

Standard for VC messages that can be used generally and flexible for
many V2X use-cases.

The standard IEEE 1609.2 deals with the security related aspects VC
communication. There are other related standards for different aspects of VC
systems, for example 1609.2.3 covers Networking Services.

The standard 1609 defines several Message Types for security messages
for example:

• Ieee1609Dot2Data-Signed

• HeaderInfo

• P2pcdLearningRequest

• BasePublicEncryptionKey

• PKRecipientInfo

These standards standardizes structures for the signatures, payloads and
other metadata [7].

2.9 Signatures in Data interchange formats

2.9.1 Message Integrity Verification for XML
Severalmethods for data integrity verification ofXMLdata have been proposed
and deployed using signatures. The W3C XML Signature Standard [10]
specifies the XML syntax for signatures, how they should be processed and
how they should be sent with XML data.

Listing 2.1: XML Standard Signature

<?xml ver s i on=" 1 . 0 " encod ing="UTF−8 " ?>
< S i g n a t u r e xmlns=" h t t p : / / w3 . o rg / 2 0 0 0 / 0 9 / xmlds ig # "

Id=" MyF i r s t S i g n a t u r e ">
<S i gn ed I n f o >

<Canon i c a l i z a t i o nMe t h od Algo r i t hm=" h t t p : / / w3 .
o rg /TR/ 2 0 0 1 /REC−xml−c14n −20010315 " / >

<S igna tu r eMe thod Algo r i t hm=" h t t p : / / w3 . o rg
/ 2 0 0 0 / 0 9 / xmlds ig #dsa − sha1 " / >

Background | 29

<Re f e r ence URI=" h t t p : / / w3 . o rg /TR/ 2 0 0 0 /REC−
xhtml1 −20000126/ " >
<Trans fo rms>

<Trans fo rm Algo r i t hm=" h t t p : / / w3 . o rg /TR
/ 2 0 0 1 /REC−xml−c14n −20010315 " / >

< / T rans fo rms>
<Diges tMethod
Algo r i t hm=" h t t p : / / w3 . o rg / 2 0 0 0 / 0 9 / xmlds ig #

sha1 " / >
<Dige s tVa l u e >j6lwx3rvEPO0vKtMup4NbeVu8nk=<

/ D ige s tVa l u e >
< / Re f e r ence >

< / S i g n ed I n f o >
<S i g n a t u r eVa l u e >MC0CFFrVLtRlk = . . . < /

S i g n a t u r eVa l u e >
<KeyInfo>

<KeyValue>
<DSAKeyValue>

<P> . . . < / P>
<Q> . . . < /Q>
<G> . . . < /G>
<Y> . . . < /Y>

< / DSAKeyValue>
< / KeyValue>

< / KeyInfo>
< / S i g n a t u r e >

The Signature element contains signatures as well as metadata for XML data
the data object which is signed is referenced by a reference Uniform Resource
Identifier (URI) Listing 2.1. This Signature can be either embedded in the data
object (enveloped signature) as in Figure 2.12 or the data object itself can be
embedded in the Signature (enveloping signature) as in Figure 2.13.

One popular XML based protocol for exchanging structured data between
web servers is Simple Object Access Protocol (SOAP) [49].Web Service
Security (WS-Security) is an additional component on top of SOAP. SOAP
is used as an RPC protocol to request processes to run in other web-servers
and receive responses. To provide security guarantees such as integrity,
authentication and non-repudiation signatures need to be integrated into
this protocol. For this reason an additional component of the specification
calledWS-Security [50]was defined as part of the extended protocol.WS-Security

30 | Background

Figure 2.12: Enveloped XML Signature

Figure 2.13: Enveloping XML Signature

makes use of the standard XML Signature elements. Specifically it uses the
enveloped version of the element. WS-Security stores the Signature elements
in a top level element in the SOAP request <wsse:Security> element alongside
additional metadata such as expiry and creation timestamps. WS-Security also
includes the Public Key of the signer of the the SOAP message. This can be
useful for ensuring the correct public key is used for verifying the messages
in the verification logic. This additional information comes at the cost of
increasing the overall message size significantly. This extension allows SOAP

Background | 31

services to sign requests and responses. It also allows the receiving SOAP
services to verify the signature of the requests to ensure security guarantees
needed for the use-case. For example to the verify the identity of the sender
(authentication) using the signature, to verify that the message content has not
been tampered with (integrity) or that the sender cannot deny that they signed
the request (non-repudiation).

2.9.2 Implicit Signatures
Work has been done into systems for automatically updating signing keys in
a heterogeneous networked vehicle environment [51]. Rotating keys regularly
is a crucial step in reducing security risk by minimising the window of attack
if a key is compromised without its users being aware [52]. Automatically
handling the rotation in distributed heterogeneous environment is a challenging
task.

2.9.3 Protocol Buffers
Protocol Buffers ∗ are a cross language data format which allows serialization
and de-serialization on either end of the wire. Protocol buffers compared
to other data interchange formats such as XML. Protocol buffers can be
marshalled into a binary format which is smaller than XML or JavaScript
Object Notation (JSON) minimizing bandwidth usage. Protocol buffers also
allow the automatic generation of code for the parsing objects and methods
for use in different languages such as GO, Java and C++. This saves developer
time and speeds up development across multiple languages [53]. The compiler
for translating Protocol Buffer message into a different language e.g. C++
is proto-c. proto-c creates a structure or object native to the language being
compiled containing all of the fields in a message defined by a Protocol Buffer
message. It assigns appropriate types for the fields in the message. It also
generates methods to serve as setters, getters and clearing methods for the
fields. Additionally it also generates internal code necessary for dealing with
the marshalling i.e. serialisation of the message as well as un-marshalling i.e.
de-serialisation of the code to and from this high level object type and the
binary compressed format which the message is sent over the network with.

Protocol Buffer also allows customization to add additional functionality
on top of the basic functionality. Plugins can be created that add additional
functionality to the primary compiler for Protocol Buffer to a target language.
∗ https://developers.google.com/protocol-buffers

32 | Background

Plugins have been created to add additional methods to types generated from
Protocol Buffers. They have also been used to add validating code that adds
additional constraints to a type of message. As well as custom compilers there
is also the concept of Options ∗ which are optional pieces of information that do
not change the meaning of a piece of Protocol Buffer configuration in them-
selves. They simply annotate parts of Protocol Buffer messages. They can
be placed at the message level or added to specific fields inside of message
definitions. These options can then be read by programs parsing the message
types. Often they are used by Protocol Buffer plugins to identify messages that
should be treated in a certain way by the plugin.

2.9.4 Protobuf Encoding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field Metadata Field Data

MSB Field Number Type MSB Data

0 0 0 0 1 1 0 1 0 X X X X X X X

Figure 2.14: Protobuf Field Encoding

Protocol Buffer messages are serialized into an encoding where data is
stored in groups of seven bits where the eighth bit Most Significant Bit (MSB)
in every byte indicates whether the section of data continues to the next byte.
If the bit is 1 or stops if it is 0. This allows for variable length integers to be
more compact [54]. The fields in a message are not serialized in a set order.
Each field in the message will start with a Field Metadata section which will
indicate the field type and field number. Proceeding that there will be the data
of the field. So for example in the case of Figure 2.14 the most significant bit
is not set indicating that this is the end of the metadata after one byte. The
field bits indicate that it is field 1. The Type bits indicate that the field’s type
is 32-bit in this case a float. The MSB is not set so the var int finishes at this
point. The next field if there is one would begin right after this.

2.9.5 gRPC
gRPC is a cross language framework for definingRPCApplication Programming
Interfaces (APIs) using Protocol Buffers. gRPC itself is an instance of a
∗ https://developers.google.com/protocol-buffers/docs/proto#options

Background | 33

Listing 2.2: Example gRPC Service Protocol Buffer Definition

// The square number service definition .
service SquareNumberService {

// Sends the number requested Squared .
rpc AddOne (SquareNumberRequest) returns (

SquareNumberReply) {}
}

// The request message containing the number to be
squared .

message SquareNumberRequest {
int64 number = 1;

}

// The response message containing the squared
number .

message SquareNumberReply {
int64 response_squared_number = 1;

}

Protocol Buffer plugin. By using the special keyword service around a
message as well as messages with RPC written before then an entire RPC
services can be spun up with essentially no other code. The Protocol Buffer
messages define the interface of messages that define the requests and also
the message formats that describe the response. An example gRPC annotated
Protocol Buffer message is show in Listing 2.2 would represent a service
which takes a number as a request and returns a squared version of that
number in a response message. The gRPC framework generates all of the
code needed to create a working RPC server for this service. The developer
simply implements the generated functions for converting a request message
into a response message. Servers and clients can be created easily and quickly
for many languages as this framework has been built to work for nearly any
language. The same Protocol Buffer message definitions can be use used for
a server or client in any of these languages.

2.10 Code Generation
Code generation is an essential enabling technology for this degree project.
The core concept of code generation is that of writing a program which itself
can write other source code for new programs. This is a very powerful idea as

34 | Background

intuitively we can imagine that the productivity of a developer can be greatly
amplified by this. If a developer can write X lines of code per day but a code
generation program can be reused 100 times then a developer writing a code
generation program is 100 times more productive than a develop who attempts
to write the repetitive code manually each time.

A more subtle benefit of code generation is the reduced amount of bugs
in a software system. The code generation program needs to be reviewed
thoroughly and tested well to ensure that it works correctly for the various
edge cases of code that will be generated. Once this is done though the
generated code can be trusted with a higher certainty to have less bugs and
also less variation in bugs compared to a human writing the repetitive code by
hand. Each time a human would write such code there is additional chance
of bugs being introduced [9]. With generated code if there is a bug found
in the implementation the code generation template can be fixed and then
the affected code can be simply regenerated. In comparison if the repetitive
code was manually fixed in each instance where there could be a bug in the
implementation.

There are several sub-genres of CodeGeneration, often referred in literature
as code synthesis. Template-Based Code Generation (TBCG) is one of the
most common approaches [55] in which a template source code file is marked
up with parameterised sections which are customised based on input to the
source code generating program. The input to the source code generating
program is often written in a structured configuration language such as JSON,
XML, YAML Ain’t Markup Language (YAML) or Protocol Buffer.

2.11 Static Code Analysis
Static Code Analysis is a term that describes the process of gaining insights
about the source code of a programwithout compiling or running the code [56].
Static analysis of code generally refers specifically to programs which do
this analysis on source code automatically. Most common use-cases of this
outside of academic research of programming languages are those of static
analysis code checkers. These include programs finding bugs in code, finding
anti-patterns in code, programs that help to aid with understanding of code
and tools which provide statistical analysis on code bases such as usage of
library and code patterns. The use-case of detecting bugs in code is the one of
primary interest to this thesis. Practical example of this are the static analysis
checkers which run inside ID’s and give warnings about missing semi-colons
and unused variables by adding marks or warning outputs inside the Integrated

Background | 35

Developer Environment (IDE).

SelectorExpression
“proto.Marshal”

Identifier
“proto”

Identifier
“Marshal”

CallExpression
“proto.Marshal(msg)”

Identifier
“msg”

AssignmentStatement
“bytes :=
proto.Marshal(msg)
”

Identifier
“bytes”

FunctionStatement
“Func
processData(DataRequest
data) {...}”

AssignmentStatementsListExpressionStatementsList

File:
server.go

…

AssignmentStatement AssignmentStatement…… …

FunctionStatementFunctionStatement

ImportStatementsList…

Figure 2.15: Abstract Syntax Tree Example Showing an Assignment Using a
Method Call Inside a Go Program File

There are several steps to creating a code checker. The first of which is the
routine to actually read the source code files that need to be checked. After
this the source code text needs to be converted into a model of the code stored
in a data-structure that is more straight forward to reason about. For this the
obvious choice is often a tree structure specifically an Abstract Syntax Tree
(AST) [57]. An AST is a tree like structure where the route node is the highest
level concept in a program the file all of its child nodes are the next largest
entities the package declaration, list of import statements and list of functions.
Each of these sub-concepts in the tree are gradually smaller. Down lower in
the tree there may be a Call Expression which has only two leaf elements
and Identifier which represents the method name and another identifier which
represents its one method parameter. This can be seen in Figure 2.15 towards
the bottom of the tree. ASTs can be traversed easily using graph algorithms

36 | Background

and since the nodes in the tree represent semantically meaningful concepts
in the programming language it is easy to reason with the data-structure to
make inferences about the code. The third step in creating a code checker is
to ascertain some facts about the program. This usually means traversing the
tree one or more time to find information required information. For example
a code checker could be created to find unused variables. This could be done
by traversing the tree depth first and taking note of variable names as they
are assigned in the tree. Then if the variable is later found in an expression
statement in the tree remove the variable from the map. If a variable is not
referenced again until the depth first traversal ends up going back up out of the
level of the tree where the variable then we know it is an unused variable. This
is a very simplified example but it is illustrative.

The language Go in particular has a strong AST library as well as a
powerful introspective analysis library for parsing code inside the standard
library. Similar libraries can be found formost popular programming languages.

2.12 Summary
To close of the background section the following is a short summary of the
main ideas that are aimed to be to built upon during this thesis. In terms of
security concepts it is clear that Integrity, Non-repudiation and Authentication
are strong requirements in terms of security guarantees for V2X systems and
these requirements should be possible to implement in the framework which
is the goal of this thesis. The exploration of the topic of Vehicular networks
and heterogeneous vehicular systems as well of the exciting use-cases of these
brought into clear focus the benefit to society of this work by both helping
to bring about these use-cases but also the need to protect future vehicles
users from the increased risk to their privacy and security if concerns are not
addressed. In terms of protocols, Protocol Buffers particularly stood out due
to their good tooling for static code analysis and code generation as well as
Einride’s use of Protocol Buffers which makes it more practical for them if
that is used. Meta-programming concepts such as code generation and static
code analysis are crucial enabling technologies for this thesis and exploring
them in the background helped clarify the concepts before they are practically
put into practice in the design and implementation.

Method | 37

Chapter 3

Method

As stated in the introduction, engineering design process was used in this thesis
project. This entailed defining the problem, then conducting background
research to understand the problem space. Finally quantitative measurements
were made in evaluation tests to evaluate if the problem has been adequately
solved by the engineered solution.

3.1 Research Process
Firstly a literature review will identify the most promising message integrity
options. The assumed focus will be on developing the functionality into the
Protobuf compiler and adding key fields. Although other options such as
working on the gRPC level of the stack and using the LCM protocol will be
explored for feasibility. [25].

Then message verification will be designed and implemented into the tool-
chain using options identified in the literature review.

During the design process diagrams partially based on Unified Modeling
Language (UML) diagrams will be used to help visualize and understand the
use case and user flow of the envisioned developer whowill use the framework.

Profiling of performance of the generated Protobuf code with message
integrity verification added. The planned profiling would include the latency,
bandwidth, possibly CPU and memory as well as other useful metrics to
Einride.
Themessage integrity verification component can be tested on testingmessages
as well potentially real world message flows replayed from components of
autonomous truck components message data. The measurements from all
different implementations will be compared to the baseline systemwithout any

38 | Method

message integrity verification to understand the effect of this added overhead.
Full end to end testing of the whole heterogeneous system can identify any
macro effects due to the added overhead such as cascading delays that do
not appear in simple two node evaluation. All of these measurements will be
compared to each other and to acceptable metrics for Einride’s performance
requirements.
The aim of this work is to investigate the effect of implementing message
authentication centrally in RPC serialization/serialization code to reducing the
redundant re-implementation of code higher on the stack and security issues
avoided due to this. This improvement can be shown by the number of lines
of code saved by centralizing this message authentication.

3.2 Research Paradigm
The research paradigm chosen for this thesis is Positivist, this means that
the core aim is the gain factual knowledge about the performance of such a
framework as proposed. This will be done primarily through a quantitative
approach; that is conducting small experiments measuring the performance of
the system once it is built. There are some qualitative aspects of the research
paradigm chosen as some elements of evaluation such as does the system
function are more qualitative. Another qualitative aspect is assessing how use-
able the framework is for a developer although this is not the main aim through
developing this some critical assessment of the tool can be made. Overall the
main paradigm is positivist taking advantage of quantitative methods to get
data to assess the performance.

3.3 Data Collection
Data will be collected primarily once the system has been developed. Timers
will be used to measure the running time of different parts of the system both
running time of code generated by the framework as well as time taken to
generate code. Additionally if the static analysis Linter is completed then its
running time will also be evaluate to see that their performance is adequate
enough to be used practically. As the programs are not necessarily highly
computationally dependent there should not be a significant environmental
impact from the energy used to evaluate the system. Personal data is not
needed in order to evaluate the system as the system can be run repeatedly

Method | 39

and does not need multiple people to run it individually.

3.4 Experimental Design / PlannedMeasurements
The experiments planned are as follows.

1. Measure the running time for signing and verifying a small message
with only a signature and one other field end-to-end using HMAC and
ECDSA.

2. After this the same will be repeated but with varying byte size of the
message payload this will be varied to see the effect on the overall
message size.

3. Measure the running time to evaluate the time taken to generate the
signing and verification code created by SecProtobuf for a simple
message with only a signature and one other field.

4. Measure the run-time of the static analysis Linter when evaluating a
program with several integrity based security bugs.

5. Evaluated the number of bugs out of the total expected to be caught by
the Linter that are caught.

3.4.1 Test Environment
All of the performance evaluation tests of SecProtobuf (the system developed)
as well as programs developed using it were conducted on the same platform.
The specifications for the system were as follows: It was running Ubuntu
20.04. It had 16 GB of RAM memory. The processor was an Intel® Core©

i7-7700HQ CPU @2.80GHz [2]. The evaluation of the system as well as
small scale tests of programs created can be reproduced easily The vehicle
software stack was running on a set of containers using Docker v20.10.7 [58]
running the Ubuntu Virtual Machine (VM). Further details are proprietary to
the company and hence is out of scope of this section.

3.4.2 Hardware/Software to be Used
The original plan was to eventually evaluate the performance and practically it
of the framework developed directly on the Einride’s electric trucks compute

40 | Method

hardware and hopefully test drive the vehicle while running code using the
framework.

In terms of software used, the main programming language to be used will
be Golang. The main libraries which are planned to be used are primarily
within the standard library. Note that the URIs listed here are Go package
names not web Uniform Resource Locators (URLs). For static analysis
components of the system theAnalysis package (golang.org/x/tools/go/analysis)
is aimed to be used additionally the AST Package (go/ast) will be used.
Additionally outside of the core language libraries the Go Protocol Buffer
library (google.golang.org/protobuf) will be used. Additionally the protoc-
go compiler will be used and modified by adding a custom plugin to it.
Additionally a proprietary vehicle simulation software will be used to verify
that the system can be used end-to-end as part of a real vehicular software
system. Further details about this simulation system cannot be given for
company confidentiality reasons.

3.5 Assessing Reliability and Validity of the
Data Collected

Steps were taken to ensure the reliability and validity of the date collected as
part of the evaluation of the system.

3.5.1 Validity of Method and Data
]The validity of the results will be verified by several steps. While the
evaluations are ongoing to results of the cryptographic checks will be verified
to ensure they are occurring and not giving misleadingly low figures. The
tests will be run first with print statement logging enabled to ensure the
cryptographic steps are occurring and not being avoided or saved due to some
bug. The tests will each be run several times and the average of all of the runs
will be taken to try and avoid the risk of an outlier result. Keys will randomly
picked to avoid some chance of an outlier key which could make the results
predictable or invalid in some way.

Method | 41

3.6 Planned Data Analysis

3.6.1 Data Analysis Technique
As the data will not be very large in size much of it can simply be displayed
in tables. For the effect of payload size on message size. The data will be
graphed and visualized.

3.6.2 Software Tools
For the data-analysis python was used, the libraries NumPy and MatPlotLib
were used also. In addition analysis tools such as Unix time command and
Protoscope which are discussed later were used for performance analysis.

3.7 Evaluation Framework
The results will be evaluated against reasonable benchmark values. Einride
provided a goal of 1 ms total for end-to-end signing, serialising, deserialising
and verifying and this will be used as a bench marks for the different
configurations of SecProtobuf.

3.8 System Documentation
It is crucial that the framework resultant from this thesis project is well
documented so that it can both be used easily by developers as a tool, but
also such that it can be further built upon, improved and extended by others.
As the framework is designed to be open sourced using the MIT open source
licence [59] it can be used, extended and commercialised by anyone once the
licence and copyright notices are retained in the framework. For this reason it
is also crucial to make sure the implementation is also well documented. The
source code is required to be thoroughly commented so that future contributors
can easily add to the framework. A Markdown ’README’ will also be
written to describe the use-age of the framework. Additionally it is hoped
that this thesis along side the peer reviewed accompanying paper will serve as
additional documentation.

42 | Method

Design & Implementation | 43

Chapter 4

Design & Implementation

In this chapter the design decisions between possible solutionswill be described.
Then the design of the chosen solution is explained.

Through a combination of the knowledge gained through the background
and related work research as well as evaluation of the type of solution which
would be valuable to Einride while also an interesting engineering challenge
three potential design paths were shortlisted as possible plans. These options
roughly aligned to the level of the communication stack where the signing and
verifying would be done.

The first option was building the framework at the data presentation layer.
That is the using the Protocol Buffer library as a basis for the framework.
Strengths of this option were versatility as Einride the company supporting
the thesis utilize Protocol Buffers for most aspects of communication through
out the systems of their company, low-level vehicle communications, higher-
level communications as well as V2X communications. Additionally Protocol
Buffers strong support for plugins aswell as code generations support, particularly
using the language Go were strong pluses.

The second option was building the framework at the Session Layer of the
network specifically gRPC. This is a protocol for remote procedure calling
which uses Protocol Buffers as discussed earlier. Einride uses this protocol
for much of their higher level intra-vehicular communication as well as some
V2X communication. This therefore would not be as universally practical as
a solution for Einride as it would only solve the problem of Implicit Message
Integrity for their communication using gRPC. From tooling point-of-view
as gRPC uses Protocol Buffers, implementation should be equally possible as
with lower level simple Protocol Buffers. Additionally it may be the more
natural choice to integrity checks, signature checks at the data link layer

44 | Design & Implementation

traditionally.
Finally basing the framework around the LCM was strongly considered.

This would be another solution built between essentially at the Session layer as
Einride uses protocol buffers as the data presentation layer inside LCM frames.
This would also suffer from being less broadly useful as it would only work
for messages using LCM. Additionally this protocol is primarily used for low
level near-real time communications on the CAN bus, this was likely the area
of operations where the additional delay of signing and verifying messages
would be most felt as there are much tighter deadlines.

Weighing up these options it was decided to go with the first approach and
design SecProtobuf the proposed framework using Protocol Buffers.

A framework was created to enable the automatic generation of the code
needed to sign an verify any message written using the format Protocol Buffer.
Additionally the framework has a static code analysis tool or Linter to help
prevent the incorrect use-age of SecProtobuf.

4.1 Protocol Buffer Transpiler Plugin
A custom protocol buffer transpiler plugin was developed an published called
protoc-gen-messageintegrity [2]. This plugin takes standard protocol buffer
message definition files and generates additional Go code in a file <proto_
file_name>.messageintegrity.go. This plugin is run alongside
the standard protoc-gen-go plugin.

The plugin checks the protocol buffermessage definitions for anymessages
that have the custommessage integrity protocol buffer signature set toOPTIONAL
or REQUIRED and if so add the following additional receiver methods for
the protoc-gen-go generated Go types for these messages. The transpiler
generates the needed security code for any of these protocol buffers types
that will be needed for the code being compiled and that have the requisite
custom SecProtobuf option set. Specifically the plugin [2] adds Sign and
Verify methods on to the standard generated Go type corresponding to a
protocol buffer messages. This has the effect of automatically adding message
integrity-checking code to all Go source language types that require message
integrity checking. The compiler plugin is executed as part of the protoc-
gen-go compiler command, as in Listing 4.1, as part of the normal build
process [2].

Design & Implementation | 45

Listing 4.1: Compiling ProtoBuf Message with SecProtobuf [2].
#!/ bin / bash
$ protoc -- proto_path = src -- go_out = gen --

messageintegrity_out = gen -- go_opt = paths =
source_relative src / steering_command_example
. proto

Listing 4.2: Calling Static Analysis Linter on a Go Source File [2].
#!/ bin / bash
$ integritylint example .go

4.1.1 Linter
To ensure that SecProtobuf [2] was used correctly and in the right places in
systems a custom code analysis tool (linter) for the Go programming language
was created [2]. The goal of the Linter is to give a warning if a developer
tries to marshal a protocol buffer message which has a Message Integrity
Signature option and they have not signed the message. Similarly if a protocol
buffer message is unmarshalled and that protocol buffer message is not verified
immediately in the code.

The Linter traverses the AST of source-code files to make its analysis to
check that SecProtobuf is used correctly where required [2]. The Golang
library for creating code analysis tools "tools/analysis" will be used to create
the lint warnings. The Linter can be simply run through the command
line interface (as seen in Listing 4.2) or integrated into common IDEs or
continuous integration environments. The SecProtobuf Linter only applies
to code containing data types generated from SecProtobuf Protocol Buffer
messages custom option set to REQUIRED. For types where signing and
verification is required, the Linter ensures that this is done for any instance of
those types that appears in the code under analysis. If any instance is found
where data is serialized or de-serialized without signing or verifying at the
correct point at the correct point, then the tool will throw a linter error. For
example an error is thrown if there is not a call to V erify() immediately after
de-serialisation of a message in the code. This provides a safeguard against
entire class of errors caused by signing or verify messages being forgotten by
engineers where it needs to be done [2].

The Linter is started as part of the pre-build process or automatically by
an IDE integration so that it is run every time a file is saved. The Linter tool

46 | Design & Implementation

can also be integrated to run as part of Continuous-Integration/Continuous-
Deployment (CI/CD) process. The in depth process that Linter follows to
identify potential problems with unsigned or unverified message payloads:

1. Find files containing Protocol Buffer based types by Going through
the imports of each file and then see if any of them are Protocol
Buffer imports by checking recursively if they import the internal proto
implementation packages.

2. Go through each Protocol Buffer based structure found from the previous
and see if any of them have the message integrity signature option set
for a field.

(a) Check the extensions on the fields and see if any of them are
message_integrity_signature

(b) Check that the option field in message_integrity_signature is set to
REQUIRED

3. Make a short list of these structure types matching the previous criteria.
From this criteria that these types have a field in them that is intended to
store a SecProtobuf signature and they also have the piece of metadata
that shows that the signature is required to be used.

4. Go through the file looking for proto.Marshal() calls on any of these
types.

5. If found look that proto.Sign() is called immediately before it. If not add
this finding to the list of errors to be reported by the linter.

6. Go through the file looking for proto.Unmarshal() calls on any of these
types.

7. If found look that proto.Verify() is called immediately after it. If not add
this finding to the list of errors to be reported by the linter.

After the Linter finishes it will print the various findings about signatures
that may not be properly signed and/or verified across the code-base. The list
of warnings are shown in Figure. 4.1. Each warning links to the potentially
offending line in the code i.e. a point where a message is deserialised but
does not have its signature checked afterwards for example. This enables
the developer to catch these problems easily at development time instead of
becoming critical security bugs.

Design & Implementation | 47

Figure 4.1: Integrity Lint Findings Returned for an Example Program with
Un-signed and Un-verified SecProtobuf Enabled Messages.

4.2 User Flow of SecProtobuf
The following is a description of an envisioned usage flow of the SecProtobuf
framework in the development of a new subsystem for reporting the steering
angle of a vehicle.

1. Developer creates protocol buffer message representing a steering angle
as well as a request for the current steering angle.

2. Developer compiles the protocol buffer message to Golang as they
intend to develop the component in this language.

3. Developer develops the component of the system that needs to communicate
using the generated message type in the language (Golang).

4. As the developer writes the code the Linter runs to identify locations
where security signing and other security features are not used correctly
for the messages being communicated.

5. The developer iterates based on the error and warning messages to fix
the security bugs in the system.

6. The component is compiled into a binary which can be run and that is
less vulnerable with fewer security bugs.

4.3 Implementation

4.3.1 Protocol Buffer Interface and Code Generation
The custom Protocol Buffer Message option message_integrity_signature was
defined in Listing 4.3. Meanwhile Listing 4.5 shows an example of a Protocol
Buffer message definition with the Message Integrity Option enabled and the
signature field set to REQUIRED.

48 | Design & Implementation

Listing 4.3: The message_integrity_signature Custom Option Definition

import " google / protobuf / descriptor . proto ";

extend google . protobuf . FieldOptions {
// Message Integrity Signature options .
Signature signature = 1090;

}

// An indicator of if a field is a signature
// field and if it is required or not .
enum SignatureBehaviour {

SIGNATURE_BEHAVIOUR_UNSPECIFIED = 0;
// Don ’t use , unless to disable the signature
// from being used .
SIGNATURE_BEHAVIOUR_OPTIONAL = 1;
// Allow if field does not have a signature .
SIGNATURE_BEHAVIOUR_REQUIRED = 2;
// Fail if field does not have a signature .

}

// Signature option for message integrity code
// generation .
message Signature {

// Indicates if MessageIntegrity code
// generation is enabled for the message
// and if it is required or optional .
SignatureBehaviour behaviour = 2;

}

Listing 4.4: Example Protocol Buffer Message with no Message Integrity
Signature

import " integrity / signature . proto "
message Steering Command {

bytes steering_angle = 0
}

Design & Implementation | 49

1. Create RPC message
definition: in Protocol
Buffer format.

2. Compile to needed
service Client and Server
languages.

message.proto

message.pb.go

message.messa
geintegrity.go

message.pb.cpp

message.messa
geintegrity.cpp

protoc-gen-go protoc-gen-me
ssageintegrity

protoc-gen-cp
p

protoc-gen-cp
p-messageinte
grity

3. Develop server and
client programs using the
message generated
types.

server.go client.cppclient.go

4. Linter Checks source
code and returns error
messages in IDE if
signatures aren’t handled
correctly.

linter

Error Warning:
Line 203:
message not
signed

Error Warning:
Line 407:
message not
signed

Success: No
Problems
found

5. Developer fixes
problems with signing
and verifying signatures server.go client.go client.cpp

6. Client and server
source code compile to
binaries successfully with
fewer security bugs.

go-compiler

server.go.bin client.go.bin

java-compiler

client.cpp.bin

Figure 4.2: SecProtobuf User Development Process

When this protocol buffer is compiled using the message integrity plugin
it will generate a file steering_command.message_integrity.go. An illustration
of the content of one of these files is shown in Listing 4.6. This file is generated
in addition to the standard steering_command.pb.go file which is generated for
any Protocol Buffer file which is compiled with the protoc-go file without any

50 | Design & Implementation

Listing 4.5: ProtoBuf Message with Signature Option Enabled [2].

message SteeringCommandVerificationOption {
float steering_angle = 1;
bytes signature = 2 [(integrity .v1. signature) =

{
behaviour : SIGNATURE_BEHAVIOUR_REQUIRED ,

}];
}

Listing 4.6: SecProtobuf Plugin Generated Code for Protobuf Message (as
Specified in Listing 4.5) [2].
func (x * SteeringCommandVerification) Sign ()

error {
keyID := os. Getenv (

ImplicitMessageIntegrityKeyID)
return verificationRsaOption .

SignPKCS1v15 (x,
verificationRsaOption . KeyID (keyID))

}

func (x * SteeringCommandVerification) Verify ()
(bool , error) {

keyID := os. Getenv (
ImplicitMessageIntegrityKeyID)

return verificationRsaOption .
ValidatePKCS1v15 (

x, verificationRsaOption . KeyID (keyID))
}

plugins. The message integrity generated file adds the extra functionality for
message integrity signatures and verification to the generated types defined in
the Protocol Buffer file.

There are two verification protocols implemented for the messageintegrity
plugin. Initially a HMAC SHA-256 implementation was created. As this
uses symmetric keys this offered message integrity guaranties to the messages
generated using the plugin. This was implemented in the verification and
verificationoption packages.

After this was completed an RSA based implementation was created in the
verificationrsaoption package. The specific RSA implementation chosen was

Design & Implementation | 51

was Public-Key Cryptography Standards (PKCS) #1 v1.5 due to its tenure of
use compared to Probabilistic Signature Scheme (PSS).

Finally an ECDSA implementation was added the the framework so that
SecProtobuf would be capable of using the same cryptographic algorithms as
used in the WAVE standard.

The plugin was structured to take the protocol to be used as a parameter.
This allowed the different protocols to be switched between easily.

52 | Design & Implementation

Results and Analysis | 53

Chapter 5

Results and Analysis

In this chapter, we present the results and discuss them.
For the ECDSA implementation the curve NIST P-256 as it is the main

curve chosen for the 1609.02 Standard in the ssh-keygen tool this is listed in
the tool as prime256v1.

5.1 Major Results
Some statistics of the delay measurements are shown in Table 5.1. The
Baseline End-to-End (E2E) result is the amount of time that unmarshalling and
unmarshalling on of the test messages takes. The non-baseline E2E include
the time taken to sign a message, marshal it to bytes, then immediately un-
marshal it and then verify the signature using the custom generated code for
the message type. The Sign and Verify benchmarks just include the time for
signing and marshalling, and for unmarshalling and verifying respectively.

Table 5.1: Performance of message-integrity in Terms of Processing Time
(Base-line: Just Marshalling + Unmarshalling)

Benchmark Baseline (ms) HMAC SHA256 (ms) ECDSA (ms)
E2E 0.000413 0.004754 2.266337
Sign 0 0.002165 2.104739
Verify 0 0.001976 0.125568

Given these benchmarks we can see that in these simple benchmarks the
HMAC implementation of the message integrity protocol buffer plugin meets
the performance benchmark of being sub 1ms. The ECDSA implementation

54 | Results and Analysis

unsurprisingly does not meet it due to the extra complexity of the algorithm.
From this it seems that the plugin can be useful for providingmessage integrity
guarantees to any V2X communication for Einride’s use-cases. The ECDSA
implementation may be useful for less time critical use cases inside the vehicle
as well as intra-vehicle communication. The two protocol implementations
are also useful for broader use as they allow message integrity and optionally
authentication and non-repudiation guarantees added to any protocol buffer
messages.

5.2 Payload Size Increase
Evaluation was also carried out into the increase caused by the addition of the
signature and metadata to the protocol buffer message types.

The results of this comparison are shown in Figure 5.1.

0 200 400 600 800 1000
payload (bytes)

20
30
40
50
60
70
80
90

100

sig
na

tu
re

 %
 o

f p
ay

lo
ad

Sec ProtoBuf
ASN1

Figure 5.1: The Proportion of the Payload Taken up by the Signatures as the
Payload is Increased [2].

As expected the Signature is a static size of 20 bytes and so for small
messages the signature is a significant overhead on communications but for
larger messages it is less significant.

Results and Analysis | 55

Listing 5.1: Commands Used to Generate ECDSA NIST P-256 Key Pairs
#!/ bin / bash
Create private key .
$ openssl ecparam - genkey \

-name prime256v1 \
-noout -out private . pem

Create public key .
$ openssl ec -in private . pem \

- pubout -out public . pem

Listing 5.2: Generating Protoscope Representation of Serialized Signed
Steering Command
#!/ bin / bash
$ protoscope -- explicit - length - prefixes \

-- explicit -wire - types \
steering_ecdsa_id_4_asn1 . protobin

Listing 5.3: ProtoScope Analysis of Signed Steering Message
1: I32 5.0 i32 # 0 x40a00000i32
2: LEN 71

‘304502207 fc09ebb77af2cbf501e9dbe9f01fdc5
e5703a6ec2c920272edccd49db220b9202210084
ced54c2d82d9a8d1236879ad6f116d29ba94d492
e1dda336c0e6b7f017be56 ‘

5.3 Analysis of Wire Representation
The steering message from earlier was analysed to inspect how the signature is
represented. This was done through a Protocol buffer utility called Protoscope [54]
as well as raw analysis of the bytes using the documentation. For more
information see the Protocol Buffers section in Chapter 2 Background.

The layout of the binary (shown in Figure 5.3) is simply the 32 bit float
storing the value 5.0 for the steering angle. With Metadata showing the type
and field number. This is followed by a ASN.1 encoding of the signature which
turns out to be a byte array of length 71. The length of the byte array is encoded
directly after the metadata for the byte data as seen in Figure 5.2

56 | Results and Analysis

Figure 5.2: Analysis of Raw Protocol Buffer Bytes from Signed Steering
Message

Listing 5.4: Profiling of integrity-lint Performance
#!/ bin / bash
$ time ./ bin / integritylint \
integritycheck / testdata / src /a/ marshalling .go

5.4 Time Performance of integrity-lint
Basic profiling of the Linter was done by running the linter on the example
‘marshalling.go‘ file using the command shown in Listing 5.4. The average of
5 runs was 6.083 seconds.

5.5 Qualitative Comparison
A simple qualitative analysis was done as to the functionality of the framework
vs the prior state. Previously every newmessage type required several hundred
lines of new critical security code to be written. Now it has been written no
new security code needs to be written for handling Protocol Buffer messages
with SecProtobuf Signatures.

Results and Analysis | 57

This is a huge improvement as compared to previous conditions.

5.6 Reliability Analysis
The code generation plugin, the generated code as well as the Linter were
run many times during the evaluation. During all of this the results stayed
consistent. This is not particularly surprising as the code should be deterministic
given that the key and random noise source is the same for evaluation purposes.
The system was also designed without parallelism and so there is no risk of
race conditions so there was a low expectation of reliability issues being a
concern.

5.7 Validity Analysis
Much thought was put into ensuring the validity of the implementation and
verification of the code that was created by the system as mentioned in
Chapter 3.

58 | Results and Analysis

Discussion | 59

Chapter 6

Discussion

6.1 Research Question One
Can message integrity verification be added to the Protocol Buffer tool-chain
for the requirements of complex heterogeneous vehicular systems?

In response to this research question the SecProtobuf framework was
successfully created and validated. From the results it is clear that the
framework can generate the code needed to sign and verify any messages with
a SecProtobuf field option set.

6.2 Research Question Two
Can such a system have an acceptable performance impact in terms of end-
to-end performance time and effect on message size?

On the second question regarding performance the results are mixed.
The performance of the ECDSA implementation for the end-to-end signing

and verification was slower than the goal of 1 ms at 2.266 ms. As this is the
algorithms used in the standard IEEE 1609.2 [4] this did not fully meet the bar
of success for this research question. The path to reaching this goal for ECDSA
e.g. using cryptographic enclave hardware to the cryptographic operations is
discussed in the further work section.

The goal of Einride for the thesis would be satisfiedwith verified signatures
simply using symmetric cryptography i.e. HMAC. The results for this were
within the 1ms goal for the end-to-end score for this reason on performance is
seen as being partially met.

In terms of effect on message size. It was found that the use of SecProtobuf
did not add any additional overhead to the message payloads over a Protocol

60 | Discussion

buffer with a manually added signature. This is because the information about
which field in a message is a SecProtobuf signature field is stored in the
message definition Protocol Buffer file and not the serialized payload. Only
metadata such as basic field type and field length are stored in addition to the
signature. This means that the most significant effect on payload size is the
key size.

This aspect of the performance evaluation is seen as a success and validates
that the performance in terms of space is within bounds that mean that the
framework can be used practically for time constrained use-cases.

6.3 Research Question Three
Qualitatively can such a system be use-able, easily extendable and save
development time for the creation VC systems?

The framework was found to be easily usable to create new Protocol
Buffer messages to send between a client and a server. The included Linter
made it impossible to not call Sign() or Verify() on a message created using
SecProtobuf as this is caught as a compile time error.

Three versions of the package were created supporting HMAC, RSA
and ECDSA from this it was easy to modify the framework to add new
cryptographic algorithms and features. As the codewas automatically generated
for verifying the messages by the framework. It did not need to be written
manually and so would save development time.

Overall qualitatively this research goal was met although interviews and
studies with potential users would have further backed up the answer to this
question.

Summary of Original Work | 61

Chapter 7

Summary of Original Work

In this chapter, the summary of the papers in the context of this thesis, along
with the contribution of the author, are given.

Paper A: SecProtobuf: Implicit Message Integrity Provision in Heterogeneous
Vehicular Systems

Paul S Molloy, Mohammad Khodaei, Per Hallgren, Alexandre Thenorio,
Panagiotis Papdimitratos
In IEEEVehicular NetworkingConference, Ulm, Germany, November 2021 [2]

Abstract: Novel vehicular applications, such as remote driving, platooning,
and autonomous driving systems are increasing the complexity of networked
vehicular systems. These V2X use-cases require strong security (and privacy)
guarantees, authentication, integrity, and non-repudiation. Standardization
bodies and harmonization efforts provide complex data structures for basic
safety messages, mandated to be digitally signed and validated. Due to the
complex data structures, the multiplicity of use-cases, the rapid deployment,
as well as the need for interoperability among OEMs, developing the code
needed to provide security becomes a more challenging, error prone, and time
consuming task; even more so as the scale of VC systems grow. In order to
tackle this challenge, we propose SecProtobuf, a novel security framework to
automate the signature generation and validation procedures for any VC safety
and non-safety data structures. Our framework facilitates the serialisation and
deserialisation processes for arbitrarily complex data types, thus, mitigating
potential security defect risks and catalyzing the deployment. In order to
ensure the correct usage of the framework by developers, SecProtobuf is
provided with a static code analysis (linter).

62 | Summary of Original Work

Contribution: The author of this thesis with the guidance of the co-
authors created and evaluated the SecProtobuf framework. The conference
paper was written by all authors.

Conclusions and Future work | 63

Chapter 8

Conclusions and Future work

In the following sections the conclusions taken from this masters thesis will
be described this will include the successful elements as well as limitations.
The insights gained will be listed as well as suggestions for others aiming to
further explore implicit message integrity through code generation.

8.1 Conclusions
In this thesis a Protocol Buffer plugin was designed and implemented which
has the capability to generate the code needed to sign and verify messages at
the point of serialisation and deserialisation [2]. Additionally to ensure that
messages with SecProtobuf metadata are always signed and verified correctly
a code linter was created [2]. This framework is not solely relevant to VC
systems, but to any large scale heterogeneous software systems where there
are multitudes of nodes running different software stacks and communicating
using common messages. This framework has shown to be functional,
practically useful and performant enough to be potentially used in industry
in the future. In contrast to signature generation and validation in XML
and ASN.1, SecProtobuf can generate the custom code for each data type
automatically at compile time. This allows it to be statically analysed to help
guarantee that the signatures are always used correctly and that the security
and privacy requirements are upheld [2].

The framework and it’s associated code is open-sourced under the MIT
licence[59], available on Github∗. A detailed ’README’ has been provided†

which serves as basic user documentation on how to use the framework.
∗ https://github.com/einride/protoc-gen-messageintegrity† https://github.com/einride/protoc-
gen-messageintegrity#readme

64 | Conclusions and Future work

8.2 Limitations
If both time allowed and Covid conditions were suitable for travelling to
Gothenberg during my thesis in Stockholm it would have been beneficial to
visit the Einride main offices and possibly evaluate the software on some of
Einride’s compute hardware and possibly one of the vehicles. Unfortunately
this was not the case and so all of the evaluation was done on a personal
computer. Having access to the specialised hardware may have been powerful
enough to meet the 1 ms performance criteria proposed for the end-to-end
serialisation-deserialisation. Otherwise there were not any other limitations.

8.3 Future Work
Due to the breadth of the problem, only some of the initial goals have beenmet.
In these section we will focus on some of the remaining issues that should be
addressed in future work including across evaluation, additional features and
Public-Key Infrastructure (PKI).

The Linter was designed to take several passes over the source code being
analysed in order to make observations on to correct usage of signatures.
These passes were done to make the code easier to reason with, debug and test
while developing, the Linter component. The performance in the evaluation
of its performance evaluating these test file was six seconds which is large
enough be disruptive to the developer flow when added to the build time of
large software projects. The efficiency of the Linter could now be further
optimised by restructuring it make fewer passes over code being analysed
before it reports its findings [2]. Now that the viability of the SecProtbuf
framework has been validated using Protocol Buffers one can prepare plugins
that target different encoding formats, e.g., Packed Encoding Rules (PER)
format message encoded in ASN.1. This would enable the framework to be
more broadly useful to the wider VC community as it would allow for the
automation of WAVE message signatures and message integrity codes.

If there were more time it would be interesting an valuable to test the
framework against additional adversarial payloads of various kinds as measure
the performance on more a more specialize compute platform such as an On-
Board Unit (OBU), e.g., NexCom OBU [33].

The plugin can be expanded to include additional functionality, it would
make the tool more practical, for example, if it integrated with a PKI system
such as those seen in prior work [37, 60] as this tool does not manage the life-

Conclusions and Future work | 65

cycle of the keys used in any way. Developing better interfacing between PKI
and this plugin is left to further work. DSA and other algorithms could still
be added. The performance cost of this extra metadata would also need to be
evaluated.

The prototype does not meet one of the performance requirements for
authentication as set out for the thesis as the ECDSA solution did not meet
the 1 ms requirement for end-to-end signing serialisation, de-serialisation and
verification. Possibly improvements to the code templates created for the
plugin could be made to make the system slightly more efficient and pass this
metric set for the thesis.

8.4 Reflections
After completing this thesis and taking some time to reflect on the work done
there are some thoughts on the impact and implications the thesis could have
on society in general. There are are it could have both economically, socially,
environmentally and ethically. Primarily these impacts are positive. The
economic efficiency of security code generation frameworks have potential to
greatly speed up the large scale commercial advent of innovative technologies
such as remote driving, modern electric vehicles and automatic road safety
communication messages. In terms of environmental impact Einride the
supporting company for this thesis is an Electric Truck company aiming to
greatly reduce the environmental impact of truck haulage. This thesis project
will hopefully help bring these trucks to large scale adoption soon reducing
the carbon em-missions on our streets. In therms of the ethical impacts of
this thesis improving the security and privacy of users of modern vehicles is
a clearly ethically beneficial thing. Reducing the number of security bugs in
networked vehicular systems significantly could have a clear impact on the
safety and security of us all.

Overall this thesis project has been both a challenging and rewarding
experience I have learned a lot about security, meta-programming and also
about the academic research process which I feel has been greatly beneficial
for my both my educational and professional career.

66 | Conclusions and Future work

REFERENCES | 67

References

[1] Einride Tech, https://www.einride.tech/, Jul. 2021.

[2] P. Molloy, M. Khodaei, P. Hallgren, A. Thenorio, and P. Papadimitratos,
“SecProtobuf: Implicit Message Integrity Provision in Heterogeneous
Vehicular Systems,” in 2021 IEEE Vehicular Networking Conference
(VNC). IEEE, Nov. 2021. doi: 10.1109/VNC52810.2021.9644658 pp.
190–193.

[3] G. Parthasarathy, N. Dutta, D. Zebrowski, P. Molloy, R. Sahore, Z. Liu,
and A. Dagar, “Applications of Robotics and Autonomous Systems
Report 2: An Algorithm for Autonomous Vehicle Parking,” Jul. 2020.

[4] W. Whyte, “IEEE 1609.2 and Connected Vehicle Security: Standards
Making in a Pocket Universe,” in Secur. Standardization Res. Workshop,
Dec. 2016.

[5] P. Papadimitratos, A. de La Fortelle, K. Evenssen, R. Brignolo,
and S. Cosenza, “Vehicular Communication Systems: Enabling
Technologies, Applications, and Future Outlook on Intelligent
Transportation,” IEEE Communications Magazine, vol. 47, no. 11,
pp. 84–95, Nov. 2009. doi: 10.1109/MCOM.2009.5307471

[6] P. Papadimitratos, V. Gligor, and J.-P. Hubaux, “Securing Vehicular
Communications-Assumptions, Requirements, and Principles,” in
ESCAR, Berlin, Germany, Nov. 2006, pp. 5–14. [Online]. Available:
http://infoscience.epfl.ch/record/94375

[7] IEEE, “IEEE Standard for Wireless Access in Vehicular Environments
(WAVE)–Certificate Management Interfaces for End Entities,” IEEE Std
1609.2.1-2020, pp. 1–287, 2020.

[8] R. Ward and B. Beyer, “Beyondcorp: A New Approach to Enterprise
Security,” login, vol. 29, pp. 5–11, Dec. 2014.

https://www.einride.tech/
http://infoscience.epfl.ch/record/94375

68 | REFERENCES

[9] S. McConnell, “Gauging Software Readiness with Defect Tracking,”
IEEE Software, vol. 14, no. 3, p. 136, Jun. 1997. doi: 10.1109/52.589257

[10] D. Eastlake, J. Reagle, D. Solo, F. Hirsch, and T. Roessler, “XML-
signature Syntax and Processing,” W3C recommendation, vol. 12, Feb.
2002. doi: 10.17487/RFC3075

[11] ISO, “ASN.1 Encoding Rules: Specification of Packed Encoding Rules
(PER),” International Organization for Standardization, Geneva, CH,
Standard, Feb. 2021.

[12] ——, “Abstract Syntax Notation One (ASN.1): Specification of basic
notation,” International Organization for Standardization, Geneva, CH,
Standard, Feb. 2021.

[13] V. Kumar and W. Whyte, “Performance Analysis of Existing 1609.2
Encodings v ASN.1,” SAE International Journal of Passenger Cars-
Electronic and Electrical Systems, vol. 8, no. 2015-01-0288, pp. 356–
363, Apr. 2015. doi: 10.4271/2015-01-0288

[14] A. Bibeka, P. Songchitruksa, and Y. Zhang, “Assessing Environmental
Impacts of Ad-hoc Truck Platooning on Multilane Freeways,” Journal
of Intelligent Transportation Systems, vol. 25, no. 3, pp. 281–292,
2021. doi: 10.1080/15472450.2019.1608441. [Online]. Available:
https://doi.org/10.1080/15472450.2019.1608441

[15] S. G. Stubblebine and V. D. Gligor, “On Message Integrity in
Cryptographic Protocols,” in Proceedings 1992 IEEE Computer Society
Symposium on Research in Security and Privacy. IEEE Computer
Society, May 1992. doi: 10.1109/RISP.1992.213268 pp. 85–104.

[16] R. Perlman, C. Kaufman, and M. Speciner, Network security: Private
Communication in a Public World, ser. Radia Perlman Series in
Computer Networking and Security. Pearson Education, 2002. ISBN
9780132797160. [Online]. Available: https://books.google.de/books?
id=wxMqaz4JMb0C

[17] H. Krawczyk, M. Bellare, and R. Canetti, “RFC2104: HMAC: Keyed-
hashing for Message Authentication,” Feb. 1997.

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Commun. ACM,

https://doi.org/10.1080/15472450.2019.1608441
https://books.google.de/books?id=wxMqaz4JMb0C
https://books.google.de/books?id=wxMqaz4JMb0C

REFERENCES | 69

vol. 21, no. 2, p. 120–126, Feb. 1978. doi: 10.1145/359340.359342.
[Online]. Available: https://doi.org/10.1145/359340.359342

[19] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve
Digital Signature Algorithm (ECDSA),” International journal of
information security, vol. 1, no. 1, pp. 36–63, Aug. 2001. doi:
https://doi.org/10.1007/s102070100002

[20] J. Alwen, S. Coretti, and Y. Dodis, “The Double Ratchet: Security
Notions, Proofs, and Modularization for the Signal Protocol,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer. Springer International Publishing,
Apr 2019. doi: 10.1007/978-3-030-17653-2_5 pp. 129–158, https:
//eprint.iacr.org/2018/1037. [Online]. Available: https://eprint.iacr.org/
2018/1037

[21] T. Perrin and M. Marlinspike, “The double ratchet algorithm,” GitHub
wiki, 2016.

[22] B. A. Forouzan, TCP/IP Protocol Suite. McGraw-Hill Higher
Education, Jul. 2002.

[23] R. A. Uzcátegui, A. J. De Sucre, and G. Acosta-Marum, “Wave: A
tutorial,” IEEE Communications magazine, vol. 47, no. 5, pp. 126–133,
May. 2009. doi: 10.1109/MCOM.2009.4939288

[24] “User Datagram Protocol,” RFC 768, Aug. 1980. [Online]. Available:
https://www.rfc-editor.org/info/rfc768

[25] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight
Communications and Marshalling,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010. doi:
10.1109/IROS.2010.5649358 pp. 4057–4062.

[26] I. Llatser, T. Michalke, M. Dolgov, F. Wildschütte, and H. Fuchs,
“Cooperative Automated Driving Use Cases for 5G V2X
Communication,” in 2019 IEEE 2nd 5G World Forum (5GWF),
Sept. 2019. doi: 10.1109/5GWF.2019.8911628 pp. 120–125.

[27] S. Jafarnejad, L. Codeca, W. Bronzi, R. Frank, and T. Engel, “A Car
Hacking Experiment: When Connectivity Meets Vulnerability,” in 2015
IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, Dec.
2015. doi: 10.1109/GLOCOMW.2015.7413993 pp. 1–6.

https://doi.org/10.1145/359340.359342
https://eprint.iacr.org/2018/1037
https://eprint.iacr.org/2018/1037
https://eprint.iacr.org/2018/1037
https://eprint.iacr.org/2018/1037
https://www.rfc-editor.org/info/rfc768

70 | REFERENCES

[28] ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Definitions,” ETSI Tech. TR-102-638, Jun.
2009.

[29] PKI-Memo, “C2C-CC,” http://www.car-2-car.org/, Feb. 2011.

[30] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger,
M. Raya, Z. Ma, F. Kargl, A. Kung, and J.-P. Hubaux, “Secure
Vehicular Communication Systems: Design and Architecture,” IEEE
Communications Magazine, vol. 46, no. 11, pp. 100–109, Nov. 2008.
doi: 10.1109/MCOM.2008.4689252

[31] A. Kung., “Security Architecture and Mechanisms for V2V/V2I,
SeVeCom,” https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.
1_v3.0.pdf, Feb. 2008.

[32] P. Papadimitratos, L. Buttyan, J.-P. Hubaux, F. Kargl, A. Kung,
and M. Raya, “Architecture for Secure and Private Vehicular
Communications,” in IEEE ITST, Sophia Antipolis, Jun. 2007.
doi: 10.1109/ITST.2007.4295890 pp. 1–6.

[33] PRESERVE-Project, www.preserve-project.eu/, Jun. 2015.

[34] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A Security
Credential Management System for V2V Communications,” in
2013 IEEE Vehicular Networking Conference, Dec. 2013. doi:
10.1109/VNC.2013.6737583 pp. 1–8.

[35] “Vehicle Safety Communications Security Studies: Technical Design of
the Security Credential Management System,” https://www.regulations.
gov/document?D=NHTSA-2015-0060-0004, July 2016.

[36] M. Khodaei and P. Papadimitratos, “The Key to Intelligent
Transportation: Identity and Credential Management in Vehicular
Communication Systems,” IEEE Vehicular Technology Magazine,
vol. 10, no. 4, pp. 63–69, Dec. 2015. doi: 10.1109/MVT.2015.2479367

[37] M. Khodaei, H. Jin, and P. Papadimitratos, “SECMACE: Scalable
and Robust Identity and Credential Management Infrastructure in
Vehicular Communication Systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 5, pp. 1430–1444, May 2018. doi:
10.1109/TITS.2017.2722688

http://www.car-2-car.org/
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
www.preserve-project.eu/
https://www.regulations.gov/document?D=NHTSA-2015-0060-0004
https://www.regulations.gov/document?D=NHTSA-2015-0060-0004

REFERENCES | 71

[38] ETSI, “Intelligent Transport Systems (ITS); Security; Security Services
and Architecture,” ETSI Standard TS 102 731, Sept. 2010.

[39] ISO, “Intelligent Transport Systems — Dedicated Short Range
Communication (DSRC) — DSRC Application Layer,” International
Organization for Standardization, Standard, Nov. 2020.

[40] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The Architectural Implications of Autonomous Driving:
Constraints and Acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: Association for Computing Machinery, Mar. 2018.
doi: 10.1145/3173162.3173191. ISBN 9781450349116 p. 751–766.
[Online]. Available: https://doi.org/10.1145/3173162.3173191

[41] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth-a
Simple, Backward Compatible Broadcast Authentication Protocol for
CAN Bus,” in ECRYPT Workshop on Lightweight Cryptography, vol.
2011, 01 2011, p. 20.

[42] Black, J. and Halevi, S. and Krawczyk, H. and Krovetz, T. and Rogaway,
P., “UMAC: Fast and Secure Message Authentication,” in Advances
in Cryptology — CRYPTO 99, M. Wiener, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, Dec 1999. doi: 10.1007/3-540-48405-1_14
pp. 216–233.

[43] N. Ristanovic, P. Papadimitratos, G. Theodorakopoulos, and J.-P.
Hubaux, “FAMIC-Fast Authentication and Message Integrity Check,”
Security and Cooperation in Wireless networks, Lausanne, 2007.

[44] A. Paverd, A. Martin, and I. Brown, “Modelling and Automatically
Analysing Privacy Properties for Honest-but-curious Adversaries,” Tech.
Rep, 2014.

[45] H. Jin and P. Papadimitratos, “DoS-resilient Cooperative
Beacon Verification for Vehicular Communication Systems,”
Elsevier Ad Hoc Networks, vol. 90, p. 101775, July 2019. doi:
https://doi.org/10.1016/j.adhoc.2018.10.003

[46] F. Arena, G. Pau, and A. Severino, “A Review on IEEE 802.11p for
Intelligent Transportation Systems,” Journal of Sensor and Actuator

https://doi.org/10.1145/3173162.3173191

72 | REFERENCES

Networks, vol. 9, no. 2, Apr. 2020. doi: 10.3390/jsan9020022. [Online].
Available: https://www.mdpi.com/2224-2708/9/2/22

[47] J. B. Kenney, “Dedicated Short-range Communications (DSRC)
Standards in the United States,” Proceedings of the IEEE, vol. 99, no. 7,
pp. 1162–1182, Jun. 2011. doi: 10.1109/JPROC.2011.2132790

[48] S. International, “Dedicated Short Range Communications (DSRC)
Message Set Dictionary™.” [Online]. Available: https://doi.org/10.
4271/j2735_201603

[49] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, “Simple Object Access Protocol
(SOAP) 1.1,” May. 2000.

[50] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker,
J. Klein, B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama
et al., “Web services security (WS-Security),” Specification, Microsoft
Corporation, Apr. 2002.

[51] D. Püllen, N. A. Anagnostopoulos, T. Arul, and S. Katzenbeisser, “Using
Implicit Certification to Efficiently Establish Authenticated Group
Keys for In-vehicle Networks,” in 2019 IEEE Vehicular Networking
Conference (VNC), Dec. 2019. doi: 10.1109/VNC48660.2019.9062785
pp. 1–8.

[52] A. Everspaugh, K. Paterson, T. Ristenpart, and S. Scott, “Key Rotation
for Authenticated Encryption,” in Annual International Cryptology
Conference, Springer. Springer International Publishing, Aug. 2017.
doi: 10.1007/978-3-319-63697-9_4. ISBN 978-3-319-63697-9 pp. 98–
129.

[53] G. Kaur and M. M. Fuad, “An Evaluation of Protocol Buffer,” in
Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), 2010. doi:
10.1109/SECON.2010.5453828 pp. 459–462.

[54] “Encoding Protocol Buffers Google Developers,” https://developers.
google.com/protocol-buffers/docs/encoding.

[55] E. Syriani, L. Luhunu, and H. Sahraoui, “Systematic Mapping Study
of Template-based Code Generation,” Computer Languages, Systems &
Structures, vol. 52, pp. 43–62, Jun. 2018. doi: 10.1016/j.cl.2017.11.003.

https://www.mdpi.com/2224-2708/9/2/22
https://doi.org/10.4271/j2735_201603
https://doi.org/10.4271/j2735_201603
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding

REFERENCES | 73

[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1477842417301239

[56] P. Louridas, “Static Code Analysis,” IEEE Software, vol. 23, no. 4, pp.
58–61, Jul. 2006. doi: 10.1109/MS.2006.114

[57] A. I. Sotirov, “Automatic Vulnerability Detection Using Static Source
Code Analysis,” Ph.D. dissertation, Citeseer, 2005.

[58] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux journal, vol. 2014, no. 239, p. 2,
May 2014.

[59] H. E. Pearson, “Open Source Licences: Open Source—the Death of
Proprietary Systems?” Computer Law & Security Review, vol. 16,
no. 3, pp. 151–156, 2000. doi: 10.1016/S0267-3649(00)88906-2.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0267364900889062

[60] M. Khodaei, H. Noroozi, and P. Papadimitratos, “Scaling Pseudonymous
Authentication for Large Mobile Systems,” in Proceedings of the
12th Conference on Security and Privacy in Wireless and Mobile
Networks, ser. WiSec ’19. New York, NY, USA: Association for
Computing Machinery, 2019. doi: 10.1145/3317549.3323410. ISBN
9781450367264 p. 174–184. [Online]. Available: https://doi.org/10.
1145/3317549.3323410

https://www.sciencedirect.com/science/article/pii/S1477842417301239
https://www.sciencedirect.com/science/article/pii/S1477842417301239
https://www.sciencedirect.com/science/article/pii/S0267364900889062
https://www.sciencedirect.com/science/article/pii/S0267364900889062
https://doi.org/10.1145/3317549.3323410
https://doi.org/10.1145/3317549.3323410

TRITA-EECS-EX-2023:117

www.kth.se

	Introduction
	Background
	Problem
	Original Problem and Definition
	Scientific and Engineering Issues

	Purpose
	Research Methodology
	Delimitations
	Structure of the Thesis

	Background
	Security Requirement Definitions
	Integrity
	Authentication
	Non-repudiation

	Symmetric Cryptographic Primitives
	Hash-based Message Authentication Code

	Asymmetric Cryptographic Primitives
	Rivest–Shamir–Adleman
	Digital Signature Algorithm
	Elliptic Curve Digital Signature Algorithm
	Ephemeral Keys

	Network Protocols & Encoding Formats
	TCP
	UDP
	WSMP
	Lightweight Communication and Marshalling

	Networked Vehicular Systems
	Heterogeneous Real Time Systems
	Micro-service Architecture in Vehicular Systems
	Intra-vehicle Communication Authentication

	Security in Vehicular Communication Systems
	Security and Privacy Risks
	Vehicular Communication Security Standards
	Wireless Access in Vehicular Environments
	Vehicular Public-Key Infrastructure
	Institute of Electrical and Electronics Engineers 1609.2 WG

	Signatures in Data interchange formats
	Message Integrity Verification for XML
	Implicit Signatures
	Protocol Buffers
	Protobuf Encoding
	gRPC

	Code Generation
	Static Code Analysis
	Summary

	Method
	Research Process
	Research Paradigm
	Data Collection
	Experimental Design / Planned Measurements
	Test Environment
	Hardware/Software to be Used

	Assessing Reliability and Validity of the Data Collected
	Validity of Method and Data

	Planned Data Analysis
	Data Analysis Technique
	Software Tools

	Evaluation Framework
	System Documentation

	Design & Implementation
	Protocol Buffer Transpiler Plugin
	Linter

	User Flow of SecProtobuf
	Implementation
	Protocol Buffer Interface and Code Generation

	Results and Analysis
	Major Results
	Payload Size Increase
	Analysis of Wire Representation
	Time Performance of integrity-lint
	Qualitative Comparison
	Reliability Analysis
	Validity Analysis

	Discussion
	Research Question One
	Research Question Two
	Research Question Three

	Summary of Original Work
	Conclusions and Future work
	Conclusions
	Limitations
	Future Work
	Reflections

	References

