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Abstract

Vehicle communication using sensors and wireless channels plays an important
role to allow exchanging information. Adding more components to allow
exchanging more information with infrastructure enhanced the capabilities of
vehicles and enabled the rise of Cooperative Intelligent Transport
Systems (C-ITS). Leveraging such capabilities, more applications such as
Cooperative Adaptive Cruise Control (CACC) and platooning were introduced.
CACC is an enhancement of Adaptive Cruise Control (ACC). It enables
longitudinal automated vehicle control and follows the Constant Time
Gap (CTG) strategy where, distance between vehicles is proportional to the
speed. Platooning is different in terms of addressing both longitudinal and
lateral control. In addition, it adopts the Constant Distance Gap (CDG)
control strategy, with separation between vehicles unchanged with speed.
Platooning requires close coupling and accordingly achieves goals of increased
lane throughput and reduced energy consumption. When a longitudinal
controller only is used, platooning operates in car-following mode and no
Platoon Management Protocol (PMP) is used. On the other hand, when both
longitudinal and lateral controllers are used, platooning operates in maneuver
mode and coordination between vehicles is needed to perform maneuvers.
Exchanging information allows the platoon to make real time maneuvering
decisions. However, all the aforementioned benefits of platooning cannot be
achieved if the system is vulnerable to misbehavior (i.e., the platoon is behaving
incorrectly). Most of work in the literature attributes this misbehavior to
malicious actors where an attacker injects malicious messages. Standards made
efforts to develop security services to authenticate and authorize the sender.
However, authenticated users equipped with cryptographic primitives can
mount attacks (i.e., falsification attacks) and accordingly they cannot be
detected by standard services such as cryptographic signatures. Misbehavior
can disturb platoon behavior or even cause collision. Many Misbehavior
Detection Schemes (MDSs) are proposed in the literature in the context of
Vehicular ad hoc network (VANET) and CACC. These MDSs apply algorithms
or rules to detect sudden or gradual changes of kinematic information
disseminated by other vehicles. Reusing these MDSs directly during maneuvers
can lead to false positives when they treat changes in kinematic information
during the maneuver as an attack. This thesis addresses this gap by designing a
new modular framework that has the capability to discern maneuvering process
from misbehavior by leveraging platoon behavior recognition, that is, the
platoon mode of operation (e.g., car-following mode or maneuver mode). In
addition, it has the ability to recognize the undergoing maneuver (e.g., middle
join or exit). Based on the platoon behavior recognition module, the anomaly

3



detection module detects deviations from expected behavior. Unsupervised
machine learning, notably Hidden Markov Model with Gaussian Mixture Model
emission (GMMHMM), is used to learn the nominal behavior of the platoon
during different modes and maneuvers. This is used later by the platoon
behavior recognition and anomaly detection modules. GMMHMM is trained
with nominal behavior of platoon using multivariate time series representing
kinematic characteristics of the vehicles. Different models are used to detect
attacks in different scenarios (e.g., different speeds). Two approaches for
anomaly detection are investigated, Viterbi algorithm based anomaly detection
and Forward algorithm based anomaly detection. The proposed framework
managed to detect misbehavior whether the compromised vehicle is a platoon
leader or follower. Empirical results show very high performance, with the
platoon behavior recognition module reaching 100% in terms of accuracy. In
addition, it can predict ongoing platoon behavior at early stages and
accordingly, use the correct model representing the nominal behavior. Forward
algorithm based anomaly detection, which rely on computing likelihood, showed
better performance reaching 98% with slight variations in terms of accuracy,
precision, recall and F1 score. Different platooning controllers can be resilient to
some attacks and accordingly, the attack can result in slight deviation from
nominal behavior. However, The anomaly detection module was able to detect
this deviation.

Keywords: MDS, GMMHMM, PMP, Machine Learning, Bayesian information
Criterion (BIC), Platoon Behavior Recognition
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Sammanfattning

Kommunikation mellan fordon som använder sensorer och radiokommunikation
spelar en viktig roll för att kunna möjliggöra informationsutbyte. Genom att
lägga till fler komponenter för infrastrukturkommunikation förbättras fordonens
generella kommunikationskapacitet och möjliggör C-ITS. Det möjliggör ocks̊a
för att introducera ytterligare applikationer, exempelvis CACC samt
plutonering. CACC är en förbättring av ACC -konceptet. Denna teknik
möjliggör longitudinell automatiserad fordonskontroll och följer en CTG
-strategi där avst̊andet mellan fordon är proportionellt mot hastigheten.
Plutonering är annorlunda med avseende p̊a att hantera longitudinell och lateral
kontroll. Dessutom antar den en kontrollstrategi för CDG där avst̊andet mellan
fordon förblir oförändrat med hastighet. Plutonering kräver en nära koppling
mellan fordon för att uppn̊a m̊alet med ökad filgenomströmning och reducerad
energikonsumtion. När enbart longitudinell kontroll är aktiverad, fungerar
plutonering i bilföljande läge och funktionen PMP används inte. När b̊ade
longitudinella och laterala kontroller används, arbetar plutonen istället i
manöverläge och samordning mellan fordon behövs för att utföra olika manövrar.
Informationsutbytet möjliggör att plutonen kan man manövrera i realtid. Alla
ovan nämnda fördelar med plutonering kan emellertid inte uppn̊as om systemet
är s̊arbart för felbeteende, det vill säga att plutonen beter sig fel. I litteraturen
kopplas detta missförh̊allande till skadliga aktörer där en angripare injicerar
skadliga meddelanden. I standardiseringsarbeten har man försökt utveckla
säkerhetstjänster för att autentisera och auktorisera avsändaren. Trots detta
kan autentiserade användare utrustade med kryptografiska primitiv upprätta
förfalskningsattacker som inte detekteras av standardtjänster som kryptografiska
signaturer. Felaktigt handhavande kan orsaka störningar i plutonens beteende
eller till och med orsaka kollisioner och följaktligen p̊averka tillförlitligheten. Det
finns manga MDSs beskrivna i litteraturen i relation till VANET och CACC.
MDSs använder algoritmer eller regler för att detektera snabba eller l̊angsamma
förändringar kinematisk information som sprids av andra fordon. Direkt
använding av MDSs under manövrar kan leda till falska positiva resultat
eftersom de kommer att behandla förändringar i kinematisk information under
manövern som en attack. Denna avhandling adresserar detta gap genom
utformningen av ett modulärt ramverk som kan urskilja manöverprocessen fr̊an
misskötsamhet genom att utnyttja plutonens beteendeigenkänningsmodul för
att intelligent känna igen plutonläget (t.ex. bilföljande läge eller manöverläge).
Ramverket har vidare egenskapen att känna igen p̊ag̊aende manövrar
(frikoppling eller växelbyte) och avvikelser fr̊an förväntat beteende. Modulen
använder en oövervakad maskininlärningssmodell, GMMHMM, för att lära en
plutons normala beteende under olika lägen och manövrar som sedan används
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för plutonbeteendeigenkänning och avvikelsedetektion. GMMHMM tränas p̊a
data fr̊an plutoneringens normalbeteende i form av multivariata tidsserier som
representerar fordonets kinematiska karakteristik. Olika modeller används för
att upptäcka attacker i olika scenarier (t.ex. olika hastigheter). Tv̊a
tillvägag̊angssätt för avvikelsedetektion undersöks, Viterbi-algoritmen samt
Forward-algoritmen. Det föreslagna systemet lyckas upptäcka det felaktiga
beteendet oavsett om det komprometterade fordonet är en plutonledare eller
följare. Empiriska resultat visar mycket hög prestanda för
beteendeigenkänningsmodulen som n̊ar 100%. Dessutom kan den känna igen
plutonens beteende i ett tidigt skede. Resultat med Forward- algoritmen för
avvikelsedetektion visar p̊a en prestanda p̊a 98% med sm̊a variationer med
avseende p̊a m̊atten accuracy, precision, recall och F1-score.
Avvikelsedetektionsmodulen kan även upptäcka sm̊a avvikelser i beteende.

Nyckelord: MDS, GMMHMM, PMP, Maskininlärnings, BIC,
Plutonbeteendeigenkänning
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Chapter 1

Introduction

The aim of this chapter is to provide an overview of cooperative intelligent
transport systems. This overview will be used as a foundation for the introduction
of the research questions addressed in this thesis and problem statement.

1.1 Background

Technology development in areas such as wireless communication, comput-
ing systems and remote sensing enabled advancement of Intelligent Transport
Systems (ITS). Appropriate Vehicular Communication (VC) architecture al-
lowed exchanging information between vehicles and other components in the
system such as Road Side Units (RSUs) [2]. Future automated vehicles will
rely on Vehicle to Everything (V2X) communication to enhance road safety and
efficiency. V2X communications include Vehicle to Vehicle (V2V), Vehicle to
Infrastructure (V2I), Vehicle to Pedestrian (V2P) and Vehicle to Cloud (V2C).
Applying Mobile ad hoc network (MANET) principles to vehicles resulted in
the introduction of Vehicular ad hoc network (VANET). VANET became a key
part of ITS framework to allow vehicles to communicate with each other using
messages that could contain information about road conditions such as traffic
congestion and accidents. These benefits can be achieved if these road related
messages are genuine and reliable. Main characteristics of VANET are high node
mobility and reliance on message contents, including position information. Re-
cently, more vehicles will be equipped with GPS and WiFi devices which enable
V2X communication and form a VANET. The goal of VANET architecture is
to allow the communication among surrounding vehicles and between vehicles
and infrastructure. Two message types used in European model: periodic based
message called Cooperative Awareness Messages (CAM) [3] and event-driven
one called Decentralized Environmental Notification Message (DENM) [4]. In
US model, two-part message called Basic Safety Messages (BSM) [5] is used.

The term Cyber Physical Systemss (CPSs) has been used to describe life-
critical systems that are characterized by large-scale and geographically dispersed
deployment of networked devices equipped with sensors, actuators, control and
networking components [6]. Accordingly, VANET system can be considered as
CPS. Vehicular Cyber Physical Systems (VCPS) is an example of CPS in which
vehicles communicate via vehicular networking. This system consists of other
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components that vehicles interact with such as RSUs and back-end systems. One
application of such system is platoon based VCPS in which vehicles are driven in
a platoon-based pattern, with a closed feedback loop between the cyber plane and
physical plane. The cyber plane describes the computing and communications
aspects of the vehicle while physical plane describes vehicle’s physical dynamics
(e.g., mobility) considering traffic environment. Tight integration between the
two planes is required to achieve the stability and efficiency of platoon-based
VCPS.

In practice, a platoon is formed by grouping consecutive vehicles with close
space and moving in the same direction. Platoon-based VCPS can guarantee
improved road safety, while increasing the infrastructure usage and reducing fuel
consumption. Reduction of distance headways between vehicles will contribute
to increase road capacity. On the other hand, reduction of unnecessary velocity
changes and aerodynamic drag on following vehicles will contribute to reduction
of energy consumption and exhaust emissions. It is expected to have different
types of vehicles in highways (e.g., Platoon-enabled vehicle and other vehicles
which don’t have the capability of platooning). Platoon-enabled vehicles have
all required hardware, software and subscriptions in platooning service. Platoon-
enabled vehicle can be either platooned or non platooned. A platooned vehicle is
a member of platoon and can be either leader or follower. While the platoon drive
on the highway, a maneuver can start at any point taking into consideration that
only one maneuver can be conducted at a time to avoid complex coordination.
Platoon Management Protocol (PMP) and its operations are discussed in [7] to
allow platoon maneuvers. A basic functionality in platoon-based VCPS involves
platoon formation, merging and splitting, etc., [8]. According to platoon pre-
standardization [9], CAM can be used to indicate the presence of platoon-enabled
vehicle. A new container called ”PlatooningContainer” is added to CAM to carry
information about vehicle and its ability of platooning. The standard can allow
backward compatibility with legacy CAM which means that platoon-enabled
vehicles can read this container while other vehicles can ignore it.

1.2 Motivation

Attacks in platoon-based VCPS can have huge impact as they can be tailored
to cause real-world harm or loss of life. Accordingly, it is crucial to secure
these systems and thus ensure safe operation of these systems. Authors in [10]
illustrated vulnerabilities in a three layer framework (sensing, communication
and control). Sensing includes all types of threats that will impact the func-
tionality of vehicle sensors. Communication includes both intra-veihcle and
inter-vehicle communications which can be vulnerable to attacks either from
sensing layer targeting the internal vehicle network, such as Controller Area
Network (CAN), Local Interconnect Network (LIN), etc., or external networks,
i.e., V2X communication. Threats to both the sensing and communication layers
can affect the control layer. Accordingly, security solutions must work together
at all layers down to hardware to ensure secure operation of the system. Authors
in [11] concluded that communication is more effective than distance sensors in
terms of platoon safety. Moreover, information contained in event data such as
drivers’ braking events can be more effective for platoon management than some
traditional information such as distance and vehicle speed. One of the security

16



challenges in platoon-based VCPS is to ensure the correctness of exchanged
information in inter-vehicle communication.

Many mechanisms and approaches are proposed which can be categorized into
proactive and reactive mechanisms based on their primary mode of operation [12].
Proactive mechanisms are aiming to apply preventive mechanisms to restrict
access to platoon-based VCPS. These mechanisms are aiming to protect the
system from external attackers by enforcing security policies such as integrity
and authenticity checks through the use of a Vehicular Public Key Infrastructure
(VPKI), e.g., [13], [14], [15], [16], [17], [18], [19]. If any vehicle disseminated
messages with non-valid cryptographic signatures, it will be excluded from the
system. However, if the attacker managed to obtain a valid signature, attacks
will be successful. Therefore, reactive mechanisms are essential since they aim
to detect and react to attacks which are not captured or prevented by proactive
mechanisms (i.e., misbehavior). These mechanisms are aiming to detect internal
attackers which are authenticated vehicles that can communicate with other
vehicles [20], [21].

In [22], authors clarified that misbehavior includes both malicious participants
and faulty nodes. Although both are introducing incorrect and inaccurate
data, malicious nodes are doing this intentionally. Moreover, they derived
three categories of Misbehavior Detection Schemes (MDSs) in terms of scope
of detection: local, cooperative and global. Local MDS measures correctness
of messages by checking internal consistency and optionally vehicles’ sensors.
Cooperative MDS relies on cooperation between vehicles and possibly RSUs
to detect a misbehavior. Global MDS relies, at least partially, on back-end
systems. In this thesis, only malicious nodes are considered as a source of
introduction of incorrect data. Furthermore, local MDS as a reactive mechanism
is used for detecting these malicious nodes. In existing work, [23], [24], [25] and
[26] proposed MDSs assume that all vehicles in platoon are driving in a single
straight lane and evaluate interactions between platoon members to ensure that
all vehicles behave according to prescribed control laws and within expected
performance bounds. In order to enable large deployment of platooning, it’s
essential that all possible attack scenarios (e.g., attacks during maneuver) are
also considered.

1.3 Problem Statement

Inter-vehicle communications play an important role in platoon-based VCPS.
Accordingly, interest in research increased to secure it against malicious messages
that can threaten the safe operations of these systems [27]. Adopting existing
solutions will not lead to the correct detection of misbehavior when PMP is
considered. The main challenge lies in correctly identifying the misbehavior
during platoon operations (e.g., car-following mode and maneuver mode) by
equipping the MDS with capabilities to distinguish between normal operation of
platoon and misbehavior. This thesis is concerned with the following high level
research questions.

RQ1: By considering PMP that controls platooning operations and maneu-
vers, what aspects need to be considered while designing a local MDS deployed
in each vehicle? This is the primary research question of this thesis, asking what
extra design requirements beyond car-following mode that need to be considered
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in order to avoid degrading the performance of local MDS which is not designed
to consider platooning management operations.

RQ2: How to design an MDS that can take into consideration different
maneuvers in PMP?

RQ3: Can MDS be reused for different platooning controllers or new MDS
is needed for each controller?

RQ4: How to design the MDS in a way that enables it to recognize the
undergoing maneuver and intelligently detect deviations from expected behavior?

1.4 Contributions

A state-of-the-art MDS that can take into consideration the dynamic en-
vironment in the decision making is introduced. Leveraging machine learning
algorithms, the MDS has the ability to recognize the mode of the operation
of the platoon (car-following or maneuver mode) at early stage and predict
the misbehavior. Unlike existing MDSs, proposed framework has the ability to
discern misbehavior from maneuver operation and accordingly, avoid treating a
maneuver as a misbehavior. In addition, the framework is extensible in terms of
maneuvers and controllers. In this thesis, only platooning controllers are consid-
ered (e.g., PATH and Flatbed) but the framework can be extended to include
Cooperative Adaptive Cruise Control (CACC) controllers (e.g., Consensus and
Ploeg). In addition, only middle join and exit maneuvers are considered but the
framework can be extended to include other maneuvers (e.g., tail join).

1.5 Thesis Structure

The thesis is structured as follows, Chapter 2 reviews related work with
explanation of technical background of platooning. In addition, survey of
related standards are outlined. Chapter 3 is dedicated to describe the system
model, threat model and attacks used for evaluating the proposed framework.
Chapter 4 provides deeper explanation of the methodology and description of
the implementation of the methodology. Results are presented and discussed in
Chapter 5. The last chapter, Chapter 6, is dedicated to outline conclusions from
obtained results and possible future work and development.
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Chapter 2

Related Work

This chapter introduces the concept of platooning, highlighting the difference
between platoon and CACC, followed by a detailed description of platooning
system model. Assumptions regarding existing security architecture based on
existing standards are highlighted. Existing platooning attacker models are
reviewed alongside existing misbehavior detection mechanisms. In addition,
evaluation of existing detectors limitations in literature are discussed.

2.1 Platooning System Model

In this section, an overview about platooning is introduced. In addition,
platooning controllers as well as key enabling standards for Cooperative Intelligent
Transport Systems (C-ITS) and platooning are outlined.

2.1.1 Platooning Overview

Cruise Control (CC) systems are available commercially in many vehicles
to regulate vehicle speed. Recently, Adaptive Cruise Control (ACC) systems
became commercially available in high-end vehicles to maintain a preset following
gap to the preceding vehicle. ACC system uses radar or Light Detection and
Ranging (LiDAR) sensors to sense the relative distance to preceding vehicles
and use it to generate throttle or break command to maintain the gap [28]. As
an evolution to ACC, Cooperative Adaptive Cruise Control (CACC) system
incorporates exchanging information between vehicles using V2V communication
taking advantage of the development in wireless communication technology
such as Dedicated Short Range Communication (DSRC). In ACC and CACC,
vehicles uses longitudinal control to control the throttle and break based on
received information from other vehicles. However, lateral control which is the
steering of the vehicle is the responsibility of the driver. The term CACC has
been used loosely in literature and is often mistakenly assumed to be synonymous
with platooning [29]. European Telecommunications Standards Institute (ETSI)
platooning pre-standardization, (ETSI TR 103 298) [9], distinguished between
the two terms in two ways. First, only vehicle speed control will be automated
in CACC addressing longitudinal control while platooning is addressing both
longitudinal and lateral control. In other words, CACC represents automation
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level 1 of automation in Society of Automotive Engineers (SAE) while platooning
represents at least automation level 2. Second difference is the reliance of
platooning systems on Constant Distance Gap (CDG) control strategy where
separation between vehicles remains unchanged with speed while CACC control
strategy is based on a Constant Time Gap (CTG) where distance between
vehicles is proportional to the speed [30]. An aspect that is common between
platooning and CACC, both are enabled by leveraging V2X communication and
accordingly if V2X communication is not present, platooning and CACC cannot
work.

2.1.2 Controllers

Each vehicle contains two-layer controller. The upper level controller is
responsible for maintaining stability during platooning through computing the
desired acceleration. However, acceleration is not used as a control input and
accordingly lower level controller is used to control the actuation to track
the desired acceleration through the a throttle or brake actions. Upper level
controller contains both ACC and CACC control functions. To enable platooning
formation and maneuvers, lateral-longitudinal control systems are needed to
execute desired trajectories. Combined lateral and longitudinal controller has
different implementations and it is easily accessed by attackers through either
sensors or Wireless Safety Unit (WSU). Four main cooperative algorithms for
upper-level controllers are discussed in [25], namely, PATH, Consensus [31],
Flatbed [32] and Ploeg [33]. PATH and Flatbed are using Constant Vehicle
Spacing (CVS) policy which is equivalent to CDG strategy. Due time limitation,
only CVS based controllers are considered in this thesis. These controllers are
relying on both sensors and V2V for sharing information. For PATH, both speed
and acceleration forgery can impact its operation and cause in most situations
a crash. PATH depends on multiple variables and accordingly, it could be
impacted by forged beacons. For speed falsification, PATH showed that it will
crash regardless the speed or position of attacker. On the other hand, Flatbed
showed low sensitivity to the speed falsification. It requires all platoon members
to share a common speed value which shared by a leader. Accordingly, it is
expected that attacks from compromised leader will have more severe impact [1].

2.1.3 C-ITS Key Enabling Standards

This section briefly outlines the most relevant standardization activities.
C-ITS relies on both V2V and V2I communication to exchange information.
Institute of Electrical and Electronics Engineers (IEEE) 802.11p is proposed
and provided amendments and enhancements to existing IEEE 802.11 standard
which implies small modifications to achieve a robust connection and a fast
setup for moving vehicles. IEEE 802.11p standard allows the use of 5.9 GHz
licensed band to enable both V2V and V2I communication with a communication
range that is typically between 100 and 500 meters in ad-hoc basis, i.e., a
direct communication between nodes without intermediate base station. It
defines only the specifications for the basic physical and medium access control
layers. IEEE 1609 is defined for higher layers (above the IEEE 802.11p physical
and medium access control layers). The combination of the IEEE 802.11p
and IEEE 1609 standards is generally known as Wireless Access in Vehicular
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Environments (WAVE) [34]. Similar standardization activities are driven by
the ETSI where it defines a reference architecture for cooperative vehicular
communications including six main layers: application layer, facilities layer,
networking and transport layer including GeoNetworking, medium access layer,
management entity and security entity. Two types of messages are communicated
between vehicles in European model, namely, cooperative awareness message
CAM [3] and event-driven decentralized environmental notification message
DENM [4]. A corresponding message to these messages in US is BSM [35] which
consists of two parts. First part of BSM is sent periodically similar to CAM
while second part is similar to DENM which is only transmitted when a specific
event occurs.

2.1.4 Platooning Pre-standardization

ETSI initiated an attempt to define V2X protocol for realizing platooning
in ETSI TR 103 298 [9]. It proposes the use of CAM standard to include
PatooningContainer in CamParameters to carry information about vehicles and
their capability of platooning. CAMs with PatooningContainer is prerequisite for
Join or merge maneuver to happen. This doesn’t violate backward compatibility
to legacy CAM since only vehicles interested in reading PatooningContainer
will read it while other vehicles will just ignore it. Join procedure is initiated
by sending JOIN REQUEST to join the vehicle/platoon in front of it. Once a
JOIN RESPONSE is received, the vehicle will transmit PLATOON CONTROL
MESSAGE (PCM) and moves to PLATOON mode. JOIN RESPONSE contains
an encryption key for encryption of PCMs. Joining procedure can take 30-50
ms and up to 1 second. During PLATOON mode, PCMs are sent every 50 ms
and absence of them for a certain period of time means that platoon need to be
dissolved and re-initiated again. Then the vehicle intends to leave the platoon
will indicate in PCMs that it has the intention to leave.

2.2 C-ITS Security Architecture

In this section, the baseline of standardized security measures and a brief
overview of security credential management and privacy considerations are
outlined. Two main standards are proposed to specify how certificates are used
to secure the authenticity and integrity of the data. These standards are ETSI
TS 103 097 standard [9] in Europe and the IEEE 1609.2 standard [36] in the US.
Each exchanged message is signed with sender’s secret key. The secret key and
certificate will be attached to the message to enable the receiver to check the
authenticity of the message. Both standards suggest the use of Elliptic Curve
Digital Signature Algorithm (ECDSA) cryptographic algorithm. Signature and
certificate will ensure sender authenticity and message integrity. In addition,
they will offer protection against attackers that transmit messages without key
and certificate. However, this process will not ensure message correctness. If
attacker managed to get access to key and certificate (e.g., extracting them from
flash or hard disk of old communication unit), he can transfer it to other device
and use to exchange messages with correct signature. In order to solve this
problem, SAVECOM project [37] outlined basic principles and architecture for
VC systems. Authors in [38] and [39] proposed an implementation of SAVECOM
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including the use of trusted hardware, named, Hardware Security Module (HSM)
to protect key material against outside access. HSM protects key material and
offer cryptographic operations to applications. In order to sign a message, it
needs to be sent to HSM and signature is provided in return and accordingly
key material never leave HSM. This prevents the attacker from acquiring key
material and use it to sign fabricated messages. However, attacker can send
fabricated messages to HSM to be signed since HSM cannot distinguish if the
provided message is genuine or manipulated [40]. In addition, attacker can either
manipulate sensor readings, modify sensors hardware or even inject false readings
in CAN bus. This put requirements to protect the system from correctly signed
messages with invalid content [20], [21].

Another aspect that need to be considered is related to certificate management
which require infrastructure to manage certificates in C-ITS. These certificates
shall be provided by trusted third party mainly Enrollment Authority and
Authorization Authority [41]. Enrollment is the main access control to C-ITS
which authenticates vehicles and grant them access to C-ITS. Authorization
Authority provides vehicles valid certificates to gain authorization to use other
services in C-ITS. A standard VPKI [18], [19] has the responsibility to manage
the creation, distribution, revocation and administration of certificates. A
problem can raise if these certificates have long validity date since attackers can
track individual vehicles by tracing received messages with attached location
information. This results in raising privacy problem. Accordingly, long term
certificates are replaced with short term identifiers called pseudonyms. Having
multiple short lived pseudonyms opens other type of attacks called Sybil attacks
where the attacker can possess multiple pseudonyms and use them to conduct
different types of attacks. Different schemes proposed to tackle this issue such as
VPKI in [18], [42] and [43] where on demand approach is used to issue unlinkable
pseudonyms and offer Sybil free environment as claimed by authors. In addition,
pre-standardization work in ETSI started (TR 103415) [44] for pseudonym change
management. As a part of security management, misbehaving vehicles shall
be evicted from the system and their certificates will be included in Certificate
Revocation List (CRL) and distributed from root Certificate Authority (CA) to
subordinate CAs [45], [46].

2.3 Misbehavior in Platooning

2.3.1 Studied Attacker Models in Literature

In [47], a Security Credentials Management System (SCMS) is assumed
to be used. Certificate-Based Authentication system that uses a Public Key
Infrastructure for certificate management is used. Pseudonym Certificates (PCs)
are used to protect the privacy of vehicles. Vehicles can obtain PCs for a
short period of time and is used for BSM authentication. SCMS signs each
message sent by vehicles with a certificate and accordingly prevents attacker from
falsifying messages from other vehicles but it cannot prevent malicious actor from
obtaining a certificate and misbehave (e.g., through injecting fabricated data).
In other words, attacker can authenticate himself to SCMS as a regular vehicle
and then apply attacks on application level. Only application level exploitation is
considered in the threat model and accordingly, attacks such as jamming, physical
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attacks on sensors or controllers, Denial of Service (DoS) attacks and software
bugs whether in the infrastructure or vehicles are not considered. It is assumed
that the attacker is aware of the application logic and how to craft actions to
manipulate that logic. In some attacks, it is assumed that the attacker is able to
use radios that allow him to reach vehicles beyond typical vehicular radios. In
[48], security infrastructure and security standard protocol are assumed to be in
place. In addition, security solutions such as certificates and cryptographic keys
are use to provide privacy and confidentiality, respectively. Both are assumed to
be stored in HSM to protect them from tampering. However, an attacker can
hack HSM either by physical manipulation of the vehicle during manufacturing
or maintenance or by doing reverse engineering of old HSM. Attacks such as
jamming, packet injection and channel overhearing are considered. Attackers
are assumed to be either road side attackers or part of VANET but not part of
the platoon itself. The attacker aims to destabilize the platoon without being
affected. Attacker is assumed to be insider attackers and a member of the
platoon.

2.4 Existing Solutions in Literature

Misbehavior detection has been studied in the context of VANET and C-ITS.
In VANET context, MDS classification is provided in [49] based on the used
approach for detection. Two dimensions are used to distinguish MDS approaches
which resulted in four classes. First dimension is whether the focus on the data
contained in the messages sent by vehicles or on the nodes sending these messages.
The first is called data-centric MDSs while the latter is called node-centric MDSs.
The second dimension is based on the analysis of messages whether from a single
vehicle (autonomous) or multiple vehicles (collaborative). These two dimensions
resulted into four classes of MDSs: behavioral, trust-based, consistency and
plausibility.

In the context of securing platoon during maneuvers, less work has been
done in this area. In [48], a new hybrid security protocol is proposed, namely
SP-VLC, aiming to secure platoon maneuvers under different attacks including
platoon maneuver attacks. The protocol combines both IEEE 802.11p and
Visible light communication (VLC). IEEE 802.11p is used to ensure sufficient
transmission coverage in case of unavailability of VLC while VLC is used to
ensure successful data transmission during jamming attacks. In this work, road
side attacker is assumed to transmit either fake maneuver request packet or a
fake maneuver response packet. In SP-VLC hybrid protocol, VLC is used for
secret key establishment to construct the initial secret key securely between each
pair of consecutive platoon members. To ensure that the messages is sent by
platoon member, authentication using Message Authentication Code (MAC) to
encrypt the unique identifiers of vehicle and platoon, and packet sequence number
with the secret key. Finally, a mechanism to switch to either transmission over
both IEEE 802.11p and VLC or VLC only according to conducted attack. In
[47], authors presented attacks that attempt to exploit the functionality of the
PMP implementation. The attacker is participating in the protocol in a way
that will allow passing certificate based authentication and the application logic.
The defense mechanism relies on sending maneuvers requests to RSUs which in
turn will verify it with relevant information. If all checks are verified, maneuver
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approval will be sent to requestor. During validation process, platoon will be
switched to safe mode where it moves within the safety speed limit, i.e., 20 mph.
If rejection is received from a RSU, the maneuver will be aborted.

2.4.1 Evaluating Existing Detectors Limitations

Machine Learning (ML) models have been used in VC systems to detect
misbehaving vehicles. Techniques relying on supervised learning [50], semi-
supervised learning and unsupervised learning [51] have been adopted. Any
linear ML model that relies on linear function for its prediction function cannot
be applied if system dynamics and observation models are non-linear. Linear
ML models are simple while non-linear ML models imply more computational
complexity. An example is the application of non-linear activation functions such
as sigmoid or ReLU functions in artificial neurons in neural networks. Authors
in [52] adopted both techniques based on neural networks such as Multi-Layer
Perceptron (MLP) and Long Short-Term Memory (LSTM) classifiers but these
techniques have not been tested in platooning context. Kalman Filter [53] is
another solution which is used widely as a state estimator from noisy sensors
information. When it is employed, fusion of data from different sensors are used
to produce an accurate estimation of the system state. Similar to ML models,
Kalman Filter can be used when system dynamics and observation models are
linear since it has the ability to compute Minimum Mean Squared Error (MMSE)
estimate. Kalman Filter has been used in the context of CACC to detect injection
attack by detecting increase of deviation of received measurements through V2V
from Kalman Filter estimations [25]. Furthermore, [1] attempted to use Kalman
Filter during middle join and exit maneuvers. Results have shown that Kalman
Filter detected two vehicles as malicious during the normal operation of middle
join maneuver. Similar behavior has been indicated for exit maneuver where
benign vehicles have been detected as malicious by Kalman Filter. Application of
Kalman Filter to non-linear systems is difficult and accordingly, certain extensions
need to be done. Extended Kalman Filter (EKF) was proposed to solve the
problem of estimating non linear systems by linearizing non linear models and
accordingly, traditional Kalman filter equations can be used. In practice, this
approach has two main drawbacks. First, if assumptions of local linearity is
violated, unstable filters can be produced due to linearization. Second, in many
applications it is difficult to derive Jacobian metrics and accordingly, it can lead
to significant implementation difficulties [54]. In this thesis, Gaussian Mixture
Model (GMM) is used to model the probability density of non linearity of vehicles’
and platooning dynamics. Furthermore, probability calculated by GMM is used
as observation probability in Hidden Markov Model (HMM). Then, Viterbi
algorithm is used for decision according to observation probabilities calculated
by GMM. Forward algorithm is also used as an alternative to Viterbi algorithm.
More details are provided in Chapter 4.
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Chapter 3

Attacker Model and System
Model

3.1 Attacker Model

In this thesis, internal attacker is assumed which implies that the attacker is
an authenticated member of the VC network that can communicate with platoon
members. The attacker has malicious intentions and aims to either cause a crash
within the platoon as a primary goal or destabilize the platoon as a secondary
goal. Attacker is active and generate signals or inject packets to perform the
attack. Local attacks are considered which means that attacker can conduct
an attack in small geographical area such as a highway. Attacker can be a sole
attacker or conduct the attack in collaborated fashion. Attacker can compromise
either platoon leader or platoon member. However, Sybil attacks where attacker
can obtain multiple pseudonyms (certified key pairs) are assumed to be handled
by standardized methods which discussed in section 2.2. Standardized security
mechanisms are assumed to be in place such as pseudonymous certificates to
protect driver’s privacy and storage of corresponding private keys in a HSM to
protect it against tampering. Countermeasure on certificate level for Sybil attack
such as VPKI based model [18] where it can limit the validity of pseudonyms
is assumed. By compromising the vehicle, it is assumed that the attacker has
full control of inputs of vehicles and has the ability to inject falsified beacons
such as manipulating speed, acceleration and position of compromised vehicle.
RSUs which can monitor and transmit vehicles’ speed and position to platoon
members are not assumed to be available or trusted since their physical location
on side roads make them vulnerable for tampering.

3.2 System Model

Platoon-based VCPS consists of platoon leader which is the front vehicle
of the platoon and followers that follow the leader. Platoon is assumed to
drive only in highways. Impact on the platoon due to traversing steep uphill
or downhill is not considered. System model is build under the assumption
that platoon speed (e.g., leader speed) is constant and will not change during
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the maneuver. Communication exchange in platooning is enabled by equipping
each vehicle with On Board Unit (OBU). Vehicles within the platoon consume
data received through IEEE 802.11p and sensors. Sensors transmission range is
limited to two consecutive vehicles while vehicles communicate wirelessly using
IEEE 802.11p to allow transmission over bigger range and accordingly, enabling
scenarios such as transmitting data from platoon leader to other vehicles. To
enable stable platooning operation and to support efficient maneuver operations
of platooning, performance requirements should be met. In 3rd Generation
Partnership Project (3GPP) TS 22.186 [55], such performance requirements
for platooning are specified in terms of end to end latency, reliability and
communication range. Both car-following and maneuvers modes are supported.
Only two maneuver operations are supported, namely, middle join and exit.
Platoon followers must inform platoon leader regarding their intent to perform
a maneuver. Platoon leader coordinates all maneuvers of platooning. Only
one maneuver is allowed at a certain time. Vehicles are equipped with other
supporting systems that can help during maneuver operations. Radar is an
example of such systems where wavelengths are used to perceive objects and
movements. Platooning formation is based on common criteria (e.g., final
destination or route) in order to reduce number of maneuvers. It is assumed
that RSUs broadcast list of possible target platoons that vehicles can join.
Detailed description of supported platooning maneuver operations are provided
in following section.

3.2.1 Supported Platooning Maneuver Operations

Basic car-following mode relies on the longitudinal controller only. However, in
order to perform maneuvers such as middle join and exit maneuvers, coordination
between longitudinal and lateral controllers is required. Description of these
maneuvers is provided according to [56], [9] and [1]

Middle Join Maneuver

When a vehicle intend to join a platoon, it sends a join request to platoon
leader. Platoon leader grant permission to joiner if a set of requirements are met
such as maximum number of vehicles in the platoon is not violated, joiner is in
the communication range of the platoon and both joiner and platoon are moving
in the same direction. Platoon leader informs the vehicle behind joining position
to do a split and create a space. Split operation will let vehicle behind joining
position suspend the use of radar information while the joiner do a lane change.
Split operation is done by longitudinal controller. Once the space is created,
vehicle behind joining position informs platoon leader. Then, platoon leader
instructs the joiner to do a lane change. Joiner perform lane change using lateral
controller, set correct ID in the platoon and and change its operation mode.
In platooning pre-standardization, this action corresponds to setting the flag
isJoinable to False. When the join maneuver is completed successfully, platoon
leader informs other vehicles in platoon and vehicles behind joiner to increment
their IDs and ensure that spacing imposed by controller is fulfilled.
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Exit Maneuver

When a follower vehicle decides to exit the platoon, it will send a leave request
to platoon leader. Platoon leader grant permission to that vehicle to leave the
platoon if no other vehicle sent any other maneuver request. Platoon leader
will instruct the follower vehicle of leaver to split. This is an important step
because the vehicle behind the leaver must suspend the use of radar information
while the leaver do a lane change. When leaver and the vehicle behind it finish
splitting operation, the platoon leader grant permission to leaver to do lane
change and change its operation mode. This action corresponds to setting the
flag isJoinable to True. When the leaver perform the exit maneuver successfully,
platoon leader informs other vehicles in platoon and vehicles behind leaver to
decrement their IDs and accelerate to fulfill spacing imposed by controller.
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Chapter 4

Misbehavior Detection for
Platooning

This chapter provides an overview of VePMAD, the proposed framework
which its functionality is centered around research questions outlined in Chapter
1.3. First, fundamental concepts of HMM and Hidden Markov Model with
Gaussian Mixture Model emission (GMMHMM), modelling approach on which
VePMAD’s architecture is built, are introduced. Then, architecture components
are introduced and discussed in details.

4.1 Fundamental Concepts of HMM and GMM-
HMM

HMM has been widely used to model driving behavior due its powerful
ability to describe dynamic processes. It is based on two stochastic processes: an
observable process which represents the sequence of observations of the system
and hidden process which can be indirectly inferred by analyzing the the sequence
of observations. The latter process can be either modeled as a Discrete Hidden
Markov Model (DHMM) to associate a continuous feature vector to a discrete
random state or a Continuous Hidden Markov Model (CHMM) to model the
observation distributions for the feature vectors by either a single Gaussian or
mixture of Gaussians. In both cases, observations depends on hidden states.
In driver intention recognition context, discrete recognizer is used to model
each maneuver as a Markov model trained by a set of samples of a complete
maneuver. Such recognizer can be used as a classifier of maneuver after it has
been completed (i.e. to classify the current driver as sporty or defensive). On
the other hand, continuous recognizer is used in more advanced driver assistant
systems to identify the maneuver at early stage.

HMM is determined by number of N possible states S = 1, 2, . . . ,N and
can be written in a compact form as:

λ = (π,A,B) (4.1)

The initial transition vector, π, is a vector containing the probability for the
state of being the first state of the sequence. The state transition probabilities,
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A,is a matrix consisting of the probabilities of transitioning from state Si to
state Sj. Observation probability distribution, B, represent the probability of
observation being generated from the state Si. HMM provide algorithms to solve
three types of problems [57].

• Problem 1: given a sequence of observations O and HMM model (λ),
compute the probability that the observed sequence is represented by
HMM model (λ). It is an evaluation problem where scoring is used to
determine how well a model is matching the observation sequence. It
is useful in scenarios where a model need to be chosen among several
competing models to best match observations. In the context of this thesis,
it is used in platoon behavior recognition. Maximum likelihood method is
used to solve this problem.

• Problem 2: given the observation sequence O and model (λ), compute the
optimal state sequence that best explains a given observed sequence. Here,
the attempt is to uncover the optimal hidden states sequence that best
models the observations. This problem is solved using Viterbi algorithm
[58].

• Problem 3: find parameters of HMM model (λ) = (A, B, π) to maximize
the fit to an observed sequence (i.e., maximize P (O | λ). It is a training
problem where observations are used to adjust model parameters and adapt
them to these observations which called training data to create a model for
observed behavior. This problem is solved using Baum-Welch algorithm
[59]. It is an iterative algorithm for non-convex problems that aims for
finding local maximum depending on initial parameters which need to be
chosen appropriately.

In this thesis, CHMM is used by observing continuous signals such as position,
velocity, and acceleration to be able to recognize the platoon behavior at early
stage and accordingly detect misbehavior as early as possible. Given time series
O = {o1, o2, ...oT } and hidden sequence {z = z1, z2, ..., zT }, initial probabilities
πi are expressed as:

πi = P (z1 = si), i = 1, ..., N (4.2)

and ai,j , the state transition probability distribution is expressed as:

ai,j = P (zt+1 = si|zt = sj) (4.3)

where si, sj ∈ S, and i, j ∈ {1, ..., N}. The probability of the observations can
be discrete or continuous. In discrete distributions, observations can belong to
codebook V = {v1, ..., vk} and the probability is defined as:

bi(ot) = P (ot = vk|zt = si) (4.4)

where 1 ≤ i ≤ N, t = 1, ..., T. In continuous distribution, observations follow
a specific distribution, e.g., a Gaussian distribution or a mixture of multiple
Gaussians. GMMHMM is HMM with GMM emission probability distribution
B = {bi(·)} which means that observation probabilities of HMM states are
modelled with GMMs (e.g., represent the emission distribution as a mixture of
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multiple multivariate Gaussian densities). The emission probabilities are defined
as:

bi(ot) =

M∑
m=1

Ci,mS(ot)|µi,m,Σi,m (4.5)

where 1 ≤ i ≤ N, M is the number of Gaussians, µ is the mean, Σ is the covariance
and Ci,m is the mixture coefficient where

∑M
m=1 Ci,m = 1. If M is large enough,

a mixture of M Gaussian densities can effectively model any probability density
function. Large enough M can result in restricting the covariance metrices and
get a good approximation of any probability density function and reduce number
of parameters that need to be updated during Baum-Welch. The compact form
in equation 4.1 can be written as:

λ = (π,A,C, µ,Σ) (4.6)

One problem during training of HMM model is the assumption of knowing
HMM topology beforehand which is not a realistic assumption in real-world
applications. For instant, in weather prediction application, three hidden states
can be assumed (i.e., hot, mild or cold). However, in more complex applications
such as platooning it is more difficult to determine number of hidden states
for HMM or number of components in GMMHMM. Accordingly, a criterion is
needed to choose a configuration among many possible mixture of configurations.
Bayesian information Criterion (BIC) [60] is a commonly used criterion to balance
between likelihood of data and number of free parameters.

GMMHMM is used in platoon behavior modelling by defining the appropriate
hidden states for HMM. In the latent space, sequence of observations that
represent each platoon behavior will be modelled and accordingly, each unique
sequence of hidden states should map to a sequence of a specific platoon behavior
(e.g., maneuver). In the context of modelling platoon behavior, equation 4.5 is
used. The aim is to understand the difference between different platoon behavior
(e.g., car-following mode and different maneuvers). Each platoon behavior
will have a GMMHMM model (λ) trained separately based on observations of
each behavior. During training process, model parameters will be optimized to
represent the platoon behavior accurately. Let λ = f(π,A,C, µ,Σ) represent
GMMHMM model with its complete parameters set, the likelihood of an observed
sequence O can be computed as:

P (O|λ) =
∑
allz

P (O|z, λ)P (z|λ) (4.7)

For platoon behavior recognition, at each instant t, the likelihood estimation
of observations is calculated for each GMMHMM model (λ) using the forward
algorithm. Then, the most likely GMMHMM model (λ) is selected as the right

label (λ̂) as expressed in 4.8:

λ̂(t) = argmax
λ

P (O | λi) (4.8)

4.2 VePMAD: Vehicular Platoon Management
Anomaly Detection Framework

High level description of main principles of the proposed framework is shown
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Figure 4.1: VePMAD Framework

in Figure 4.1. GMMHMMs are used to model the platoon behavior during
car-following mode, middle join maneuver and exit maneuver. GMM is used to
model the dependent relationship between kinematic information of vehicle (e.g.,
speed, acceleration and position) to describe the vehicle’s behavior. Then, HMM
is used to estimate the intended behavior of each vehicle in different modes (i.e.,
car-following or maneuver) based on the trained GMM. An example of middle
join maneuver is shown in the figure where platoon behavior recognition module
is employed to estimate the behavior in online manner. The observed sequence
is evaluated by GMMHMM models. Forward algorithm is used to calculate
the conditional probabilities. The intention corresponding to the largest value
will be considered as platoon’s intended behavior (i.e., middle join maneuver).
The second underlying principle is that the anomaly detection module will use
the model resulted from platoon behavior recognition module to estimate the
normal behavior and compare it with actual behavior. Two approaches are
used considering either comparing the hidden states named Viterbi-based, or
comparing likelihood named forward-based. Any deviation from expected normal
behavior will be reported as a misbehavior.

Details of creating GMMHMM models and using them in detecting misbe-
havior are shown in Figure 4.2. Two phases are indicated: training phase and
inference phase. In training phase, GMMHMM models are trained offline in two
steps. During first step, Baum-Welch algorithm is used to update the parameters
by estimating GMM distribution parameters. One problem during training of
HMM model is the assumption of knowing HMM topology beforehand which is
not a realistic assumption in real-world applications. BIC is a criterion to select
models among a finite set of models. It is based on likelihood function. BIC is a
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commonly used criterion to balance between likelihood of data and number of
free parameters. When fitting models, it is possible to increase the likelihood
by adding parameters but that would result in overfitting. BIC resolves this
problem by introducing a penalty for the number of parameters in the model. In
the second step BIC is repeated many times until the model parameters converge.

4.2.1 HMM and GMMHMM for Platoon Behavior Mod-
elling

The goal platoon behavior modelling is to find the probability of sequence of
observations in terms of acceleration, speed and position. During training, differ-
ent data sets have been used representing each platoon behavior. Furthermore,
it has been realized that controller behavior differs for the same maneuver and
accordingly, a model per maneuver and per controller need to be trained. HMM
need to be trained with labeled samples to determine model parameters (i.e.,
model grammar) to be used for two purposes, intention recognition and anomaly
detection. The separate training process allows choosing number of states or
components for each of the maneuver. Accordingly, observed features and their
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Figure 4.3: Viterbi-based Anomaly Detection

temporal dependencies will be used for fine-grained modelling which enhances the
accuracy of mapping between the model’s emissions and the observed features,
especially when using Gaussian mixture distributions.

4.2.2 Anomaly Detection Approaches

Two approaches has been considered for anomaly detection. The first ap-
proach shown in Figure 4.3 is based on the interpretation of HMM as a method
to find underlying sequence in latent space called hidden states which thought
of as cause of the observations. Hence, observation sequence is replaced with a
sequence of hidden states which makes it less complex and easier to compute
with. After recognizing the undergoing maneuver, a sliding window is applied on
both intended normal behavior and actual behavior. Then, Viterbi algorithm is
applied on each sliding window and corresponding hidden states are determined.
By comparing the hidden states sequence of normal behavior and hidden states
sequence of attack, anomaly is computed.

The second approach shown in Figure 4.4 relies on adopting the same approach

33



Intended
Normal
Behavior

Platoon Behavior Recognition

Middle Join Scenario

Sliding Window

Anomaly Detection

Forward Algorithm Forward Algorithm

LNormal ≠ LAttack

Normal Behavior Misbehavior

Warning

Log Likelihood
LNormal

Log Likelihood
LAttack

Sliding Window

GMMHMMs for Normal Behavior

Platoon Behavior Models

Maximum
Likelihood Actual

Behavior

GMMHMM for
Middle Join 
Maneuver

No Yes

Figure 4.4: Forward-based Anomaly Detection

of applying same sliding window for both intended normal behavior and actual
observations. Then, instead of determining the hidden states corresponding
to each observations sequence, the likelihood of observation sequence of the
attack is compared with likelihood of observation sequence of normal behavior.
If any deviation is detected it will be counted as anomaly. Thus, probability
distributions of two sequences representing normal behavior and attack are
computed and two vectors of probability distributions are created for each
GMMHMM. If these vectors are different, it is likely that their original event
sequences are different indicating a misbehavior.
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Chapter 5

Evaluation

This chapter describes the applied evaluation methodology. Both evaluation
strategy and evaluation metrics are described in details. The performance of
platoon behavior recognition and misbehavior detection components described
in Chapter 4.2.1 and Chapter 4.2.2 are evaluated and discussed.

5.1 Metrics of Evaluation

In this section, evaluation metrics of proposed MDS are illustrated. Existing
metrics in literature are reused such as accuracy and confusion matrix using False
Positive (FP), False Negative (FN), True Positive (TP) and True Negative (TN).
Detection accuracy is defined as the number of correct classifications (TP + TN)
over all classifications (TP + FP + TN + FN). Other metrics such as precision
which quantifies the relevance of detection events (TP/(TP + FP)) and recall
which quantifies what rate of positives is actually detected (TP/(TP + FN)).
Precision metric determines how precise and accurate the model is. In other
words, it evaluates how many of these predicted positives are actually positive.
It is a good metric to use if cost of false positives is high (e.g., non anomalous
point is detected as anomaly). On the other hand, recall determines how many
of actual positives the model managed to label them as true positives. Recall is
a good metric to use if the cost of false negative is high (e.g., anomaly point is
not detected). An optimal detector thus has a precision and a recall of 1. F1
score is also used and it represents the weighted average of precision and recall
which means that it takes both false positives and false negatives into account. A
good F1 score indicates that both false positives and false negatives are low and
accordingly, real threats are correctly identified and MDS is not disturbed by false
alarms. Area Under the Curve and Receiver Operator Characteristic (AUC-ROC)
is used to measure the ability of classifier to distinguish between classes. The
higher the Area Under the Curve (AUC), the better the performance of model
at distinguishing positive and negative classes. Delay of detection is defined as
the difference between detection time and time of attack.
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5.2 Simulation Setup

Attacks and maneuvers implemented in [1] are leveraged to design and test
the proposed framework. Plexe simulator (version 2.1) [61] is used which is based
on VEINS [62] and extends SUMO [63]. Maneuvers included in Plexe have been
extended to include middle join and exit maneuver for four controllers (Path,
Consensus, Ploeg and Flatbed). In addition, Plexe is extended to include attacks.
In this thesis, only CVS controllers are considered, namely, Path and Flatbed
due to time limitation. List of considered attacks and attacks parameters are
shown in 5.1.

Attack Attack Values Attack Position Mode Controller
PosInjectionAttack [3, 5, 7, 9, 11] m [0,2] [Car-following,Middle Join,Exit] Path, Flatbed

SpeedInjectionAttack [-50, 0, 50, 100, 150] km/h [0,2] [Car-following,Middle Join,Exit] Path, Flatbed
AccInjectionAttack [-30, -10, 0, 10, 30] m/s2 [0,2] [Car-following,Middle Join,Exit] Path, Flatbed

GradualPosFalsificationAttack [-10,40] m [0,2] [Car-following,Middle Join,Exit] Path, Flatbed
GradualSpeedFalsificationAttack [-10,17] m/s [0,2] [Car-following,Middle Join,Exit] Path, Flatbed
GradualAccFalsificationAttack [-10,10] m/s2 m [0,2] [Car-following,Middle Join,Exit] Path, Flatbed
SmartPosFalsificationAttack [-10,10] m [0,2] [Car-following,Middle Join,Exit] Path, Flatbed

SmartSpeedFalsificationAttack [-10,10] m/s [0,2] [Car-following,Middle Join,Exit] Path, Flatbed
SmartAccFalsificationAttack [-10,10] m/s2 [0,2] [Car-following,Middle Join,Exit] Path, Flatbed

Table 5.1: List of Attacks and Simulation Parameters [Source: [1]]

Table 5.2 summarizes the most relevant simulation parameters related to
platoon configuration that controls the motion pattern generation. Leader
speeds are applied for both controllers. Realistic sensors are used to reflect
small inaccuracies in the simulations where small deviations randomly selected
with uniform distribution. εRAD represents errors in radar sensors while εV 2V

represent errors in wireless communication. Warm up period is used to eliminate
inaccuracies that can be induced by starting parameters. Default parameters
are used for the presence of thermal noise. Delays in both physical and network
layers are set to true.

Parameter Values
Controller PATH and Flatbed
Spacing 5m for both PATH an Flatbed controllers

Platoon Length 6 vehicles / 7 vehicles for middle join maneuver
Leader speed 50, 80, 100, 150 km/h

Sensor Uncertainties εV 2V
p = 1m, εV 2V

s = 0.1m/s, εV 2V
a = 0.01m/s2, εRADp = 0.1m, εRADs = 0.01m/s

Simulation duration 120s
Warm-Up Period 30s
Beacon frequency 10 Hz
Carrier Frequency 5.89 GHz

Max TX Power 100mW
Physical Layer Bitrate 6 Mbps

Sensitivity -94dBm
Thermal Noise -95dBm

Physical Layer Propagation Delay True
Network Layer Propagation Delay True

Table 5.2: Main Simulation Parameters [Source: [1]]

By considering listed twenty one attacks in table 5.1 for four speed scenarios
and considering both PATH and Flatbed controllers during three maneuvers and
two attacker positions, a total of thousand and eight tests have been executed.
The method for platoon behavior recognition and anomaly detection has been
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implemented using hmmlearn Python package which is a Python implementation
of HMMs.

5.3 Results

In this section, experimental results from framework described in chapter
4 are presented. The first result that can be shown is the ability of proposed
method to track the observations using a specified time window and determine the
ongoing platoon behavior. It is an evaluation problem where a model which best
matches the observations is chosen among several competing models representing
each platoon behavior. Each platoon behavior has a label and the platoon
behavior representing that label is printed out. As indicated earlier, number of
components for each model representing a platoon behavior is learned using BIC
criterion to select best model parameters for each Gaussian mixture. Number of
components for car-following mode, middle join maneuver and exit maneuver are
10, 9 and 7 respectively. Models grammar for both platoon behavior recognition
and anomaly detection are the same. After determining the ongoing platoon
behavior and selecting the correct model, incoming observations with the same
window size is used to detect anomalous observations. Window size of 10 samples
which is equivalent to 1 sec is selected to enhance detection time. Detection
results for each platoon behavior are presented in following subsections.

5.3.1 Platoon Behavior Recognition Performance

The main goal of the trained platoon behavior recognition component is to
distinguish different maneuvers and normal lane following, named, car-following
mode. The used signals are speed, acceleration and position. Results show that
early recognition of the ongoing platoon behavior is possible with good accuracy.
Evaluation data set consists of a separate driving sequences including 21 attack
sequences for each platoon behavior considering two scenarios e.g., leader attack
and follower attack.

Platoon behavior recognition is realized by splitting training data for each
class representing a different platoon behavior. Each GMMHMM model repre-
senting the platoon behavior is trained with corresponding training data using
Baum-Welch algorithm. Then, logarithmic likelihood of each model is calculated
for the undergoing observations and model with maximum likelihood is chosen
to recognize the platoon behavior. Log likelihood for both Path and Flatbed
controllers are shown in Figure 5.1 and Figure 5.2 respectively.
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Figure 5.1: Log Likelihood of each Maneuver for Path Controller
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Figure 5.2: Log Likelihood of each Maneuver for Flatbed Controller

For car-following mode, middle join maneuver and exit maneuver, the best
model was found to be a trained GMMHMM with seven, nine and seven com-
ponents respectively. By plotting logarithmic likelihood, we can observe the
different likelihood for each platoon behavior and the platoon behavior recognizer
is expected to distinguish between different platoon behaviors.

As can be read from confusion matrix in Figure 5.3, the sensitivity of the
platoon behavior recognition of all platoon behaviors are 100%.
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5.3.2 Anomaly Detection Performance

Results of different experiments carried out on normal and anomalous data
are displayed in order to assess the performance of anomaly detection component.
Only small set of tests are illustrated to help in drawing conclusions. Results for
each platoon behavior are shown separately. Evaluation metrics explained in this
chapter such as accuracy, precision, recall and F1 score are used to evaluate the
performance of MDS. In addition, detection delay is used to evaluate time taken
to detect misbehavior. Results are shown for each platoon behavior separately
considering both controllers, Path and Flatbed.

Detection Delay

The proposed MDS works in a sliding window. Ten observation samples (1
second) are defined as a sliding window. Detection delay is calculated by adding
processing delay (0.4s) and time between attack and end of sliding window.
The results show that detection delay varies between 0.5s to 1.3s. It must be
noted that if the attack occurred at the end of sliding window (i.e., last beacon),
anomaly will be reported at the end of the sliding window which means after
0.1s. Accordingly, worst case scenario in terms of detection delay would happen
if the attack is launched at the beginning of the sliding window as shown in
Figure 5.4.

Comparing Performance of Anomaly Detection Approaches

Comparison between Viterbi-based and Forward-based anomaly detection is
shown in Figure 5.5. AUC is used to compare the performance of these MDSs
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Figure 5.4: Detection Delay

by running the experiment 50 times for one attack. Figures 5.5(a) and 5.5(b)
show the performance comparison for Flatbed controller for different attacker
positions. It can be seen that Forward-based algorithm is approaching 1 which
means that the model has a good performance in separating the positive class
(e.g., misbehavior) and the negative class (e.g., benign behavior). On the other
hand, Viterbi-based algorithm shows lower model performance with AUC less
than 0.6. Performance for Path controller is shown in Figures 5.5(c) and 5.5(d).
In these figures, more acceptable performance is witnessed for Viterbi-based
algorithm with AUC more than 0.6 and may reach 0.7. However, Forward-
based algorithm shows a consistent performance reaching 1 similar to Flatbed
controller results. For both controllers, the performance show that for small False
Positive Rate (FPR) values, the AUC curves for Viterbi-based algorithm and
Forward-based algorithm exhibit essential differences. Based on these results,
Forward-based approach is adopted and its performance is shown solely in the
following sections.
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Figure 5.5: ROC Curve for Viterbi-based Algorithm and Forward-based Algorithm
(Acceleration Injection Attack at Speed = 50)

Anomaly Detection During Middle Join Maneuver

Results for middle join maneuver are shown in this section. Figure 5.6
shows detected anomalies of smart acceleration falsification attack when the
platoon drive with speed 50 km/h. Black line represents the normal behavior
of acceleration of attacked vehicle while red dots represent detected anomalies
by the MDS. Vertical blue line indicates the time of attack as configured in
the simulations. A common observation is the accurate detection of the attack.
It can be seen also that the impact is clearer when the attack is conducted by
leader and accordingly, it can be easily detected by MDS. When the attack is
conducted by follower vehicle, the attack can be detected but it can be noticed
that detected anomalies are close to normal behavior for flatbed controller. This
was a driver for adopting sensitive MDS.
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Figure 5.6: Smart Acceleration Falsification Attack During Middle Join Maneuver at
Speed = 50

Figure 5.7 shows detected anomalies of gradual speed falsification attack
when the platoon drive with speed 80 km/h. It can be seen that impact on both
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controllers varies from causing a crash to destabilizing the platoon. Figure 5.7(b)
indicate that a crash happened and simulation stopped. This shows the value of
ability to detect anomaly as early as possible and react to it before crash. On
the other hand, Figure 5.7(a) shows that if attack is conducted by a follower, it
has less impact since the controller relies on speed information received by leader.
Impact of this attack on PATH is high in terms of platoon destabilization as
shown in Figure 5.7(c) and Figure 5.7(d). MDS was able to detect all deviations
resulted from this attack accurately.
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Figure 5.7: Gradual Speed Falsification Attack During Middle Join Maneuver at
Speed = 80

Similar results are shown in Figure 5.8 for speed injection attack with platoon
speed of 100 km/h. PATH results are similar with high divergence from nominal
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behavior whether the attack is initiated from platoon leader or a follower in
the platoon as illustrated in Figure 5.8(c) and Figure 5.8(d). Similarly, Flatbed
controller is impacted and result in crash with high speed in malicious leader
scenario while impact is less if the attack is conducted by follower vehicle.
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Figure 5.8: Speed Injection Attack During Middle Join Maneuver at Speed = 100

Figure 5.9 shows smart position falsification attack with platoon speed of 150
km/h. it is an interesting attack because both Flatbed and PATH are resilient
to position attacks since position information are not used as an input to these
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controllers. However, since this attack changes other variables (e.g., speed and
acceleration) according to kinematic model, impact can be seen as more severe
and actually results in a crash for both controllers. PATH controller also resulted
in a severe crash as shown in Figure 5.9(d).
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Figure 5.9: Smart Position Falsification Attack During Middle Join Maneuver at
Speed = 150
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Anomaly Detection During Exit Maneuver

Results for exit maneuver are shown in this section. Figure 5.10 shows
detected anomalies of smart acceleration falsification attack when the platoon
drive with speed 50 km/h. As illustrated in Figure 5.10(a) and Figure 5.10(b),
impact on Flatbed controller is different comparing to middle join maneuver.
Slight deviation can be seen for both malicious follower and malicious leader
scenarios. Sensitive MDS help in such scenario since it was able to detect minor
deviations from nominal behavior. Although the impact would not be severe,
it is important to detect that a malicious actor is part of platoon, report him
and evict him from platooning formation to prevent him from conducting other
attacks that could have more severe impact.
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Figure 5.10: Smart Acceleration Falsification Attack During Exit Maneuver at Speed
= 50

Gradual speed attack during exit maneuver with speed 80 km/h is shown in
Figure 5.11. Impact on Flatbed controller is similar to impact during middle join
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maneuver when initiated by leader as shown in Figure 5.11(b). However, when
attack is initiated by follower, impact is less in terms of severity when compared
with middle join as shown in Figure 5.11(a). Nevertheless, small deviations
are detected accurately and correctly. On the other hand, impact on PATH
controller is similar to impact during middle join.
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Figure 5.11: Gradual Speed Falsification Attack During Exit Maneuver at Speed =
80

Results for speed injection attack with platoon speed of 100 km/h are shown in
Figure 5.12. Figure 5.12(a) and Figure 5.12(b) show different impact on Flatbed
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controller when compared with middle join with slight impact in malicious
follower scenario while more severe impact in malicious leader. Path controller is
also impacted similar to join maneuver but it is not the exact impact as shown
in Figure 5.12(c) and Figure 5.12(d).
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Figure 5.12: Speed Injection Attack During Exit Maneuver at Speed = 100

According to Figure 5.13, impact of smart position falsification attack during
exit maneuver is almost similar to impact of same attack during middle join
maneuver. All position falsification attempts have been accurately spotted.

54



0 10 20 30 40 50
Time

8

6

4

2

0

2
Ac

ce
lea

rti
on

Normal Anomaly

(a) Follower, F latbedController

0 10 20 30 40 50
Time

8

6

4

2

0

2

Ac
ce

lea
rti

on

Normal Anomaly

(b) Leader, F latbedController

0 10 20 30 40 50
Time

8

6

4

2

0

2

Ac
ce

lea
rti

on

Normal Anomaly

(c) Follower, PathController

0 10 20 30 40 50
Time

8

6

4

2

0

2

Ac
ce

lea
rti

on

Normal Anomaly

(d) Leader, PathController

Figure 5.13: Smart Position Falsification Attack During Exit Maneuver at Speed =
150
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Anomaly Detection During Car-following Mode

Results of performance of MDS for smart position falsification attack with
platoon speed of 50 km/h are shown in Figure 5.14. Slight impact on Flatbed
controller during car-following mode similar to exit maneuver as shown in
Figure 5.14(a) and Figure 5.14(b). MDS was able to detect this slight deviation
accurately. Impact on PATH controller is almost similar to impact during middle
join and exit maneuvers. Deviation was obvious and MDS was able to detect
the misbehavior easily as shown in Figure 5.14(c) and Figure 5.14(d).
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Figure 5.14: Smart Acceleration Falsification Attack During Car-following Mode at
Speed = 50

Results of impact and detection for smart acceleration falsification attack
during car-following mode when the platoon is moving with speed 80 km/h is
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shown in Figure 5.15. For Flatbed controller, slight impact on behavior is shown
in Figure 5.15(a) and Figure 5.15(b) similar to middle join and exit maneuvers
whether the attack is initiated by follower or leader. For PATH controller, small
deviation is indicated at the beginning of the attack then the deviation become
more clearer and easier to detect as shown in Figure 5.15(c) and Figure 5.15(d).
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Figure 5.15: Gradual Speed Falsification Attack During Car-following Mode at Speed
= 80

MDS performance under speed injection attack during car-following mode
with platoon driving at 100 km/h is shown in Figure 5.16. Impact is almost
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similar to exit maneuver. It is also similar to impact during middle join maneuver
for PATH controller as shown in Figure 5.16(c) and Figure 5.16(d). On the other
hand, it differs for Flatbed controller when compared with middle join maneuver
as shown in Figure 5.16(a) and Figure 5.16(b).
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Figure 5.16: Speed Injection Attack During Car-following Mode at Speed = 100

Similarly, MDS performance under smart position falsification attack during
car-following mode with platoon driving at 150 km/h is shown in Figure 5.17.
Impact on both Flatbed and PATH controllers is similar to exit maneuver.
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Impact on PATH and Flatbed is also similar to middle join maneuver if the
attack is initiated by leader as shown in Figure 5.17(b) and Figure 5.17(d).
However, difference can be seen in impact when compared with middle join if
the attack is initiated by follower as shown in Figure 5.17(a) and Figure 5.17(c).
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Figure 5.17: Smart Position Falsification Attack During Car-following Mode at Speed
= 150
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Chapter 6

Conclusion and Future
Work

6.1 Conclusion

In this thesis, nominal behavior of platoon behavior is investigated in order
to have a better understanding of factors that need to be considered in modelling
this behavior. It has been noticed that three dimensions need to be considered.
These dimensions are the undergoing platoon behavior itself, the speed during
the platoon behavior and the platooning controller. These aspects will affect
the distribution of data and need to be considered while modeling the nominal
behavior and accordingly the design of local MDS in each vehicle. Since local
MDS must be aware of undergoing platoon behavior, platoon behavior recogni-
tion component is added to the framework to recognize the undergoing platoon
behavior and intelligently select the model representing the nominal behavior.
The selected model will be used to detect any deviation from nominal behavior.
platoon behavior recognition was able to recognize a set of driving platoon
behaviors at an early stage even if only a limited set of input signals are used
(small window of 1 second). The performance of platoon behavior recognition
showed excellent performance by predicting undergoing platoon behavior cor-
rectly. Different approaches can be used for anomaly detection. Two approached
are covered in this thesis to detect twenty one different attacks. One approach is
to use Viterbi algorithm to decode and compute the hidden states corresponding
to observation sequence for both nominal behavior and attack and compare the
to detect differences and report them as anomalies. Another approach is to use
forward-backward algorithm to estimate the probability/likelihood of observation
sequence. Second approach showed better and consistent performance in terms of
performance metrics such as accuracy, precision, recall and f1 score. It has been
shown that a single run is enough for learning the normal behavior. The MDS
is very sensitive and accordingly they are able to detect very small deviations.
This high sensitivity can introduce false alarms for jerkiness scenarios.
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6.2 Future Work

Proposed new framework showed promising results in detecting misbehavior
during platooning management. However, some important limitations apply for
this framework which can be addressed by future work.

6.2.1 Used ML Features Challenges

Used ML features are obvious to use since they are reflecting kinematic model.
However, this choice raise the challenge of the need for building a model for
each speed. An improvement in this area is to re-engineer the ML features in a
way that will contribute to the to achieve better generalization of the ML model
without impacting the performance of the MDS.

6.2.2 Misbehavior Reports Sharing Challenges

It is expected that a local MDS will be deployed in each vehicle. More
investigations needed by running the framework on all vehicles and compare
results to see if sharing misbehavior reports between vehicles will make the the
framework more robust. Sharing misbehavior reports with other vehicles opens
the issue of fake reports. Cooperative schemes assume that reports from other
vehicles are trustworthy if they carry correct signatures. Validation of received
misbehavior reports need to be investigated.

6.2.3 Meeting 3GPP Requirements for Platooning Appli-
cation

3GPP put tight end to end latency requirements for platooning reaching 10 ms.
Accordingly, reducing sliding window for both platoon behavior recognition and
anomaly detection without impacting the performance need to be investigated.

6.2.4 Deployment in Vehicles and Real Time Performance

A local MDS shall be deployed in vehicles and accordingly it needs to consider
real time characteristics and feed of information in streaming fashion. In addition,
hardware requirements need to be considered. Other aspects such as secure
storage of ML models in ML model repository which will be located in each
vehicles need to be investigated. Other aspect need to be considered is best
location to deploy MDS. MDS can be deployed before controller and accordingly
detect all attackers and have the ability exclude the attacker from platooning
formation. However, disturbances that could occur due to driving over hilly
terrain will be treated as misbehavior. On the other hand, if an MDS is deployed
after the controller, these changes will be accommodated by the controller and
MDS will not detect these deviations as misbehavior. However, if the controller
is resilient to a certain attacks, these attacks will not be captured by a local
MDS which will raise the risk of having attacker as a part of the platoon for
longer time. Accordingly, these options need to be investigated further.
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6.2.5 New Approaches to Measure Dissimilarity with Nor-
mal Behavior

Any deviation from normal behavior was considered as an anomaly and
accordingly, the framework was able to detect slight deviations from nominal
behavior. However, this sensitivity can result in having false positives in case of
jerky behavior (i.e., sudden acceleration changes). Although it is considered as
a safety risk, this behavior can be conducted by a vehicle outside the platoon
but the result of this jerk behavior will impact the platoon. This would result
in detecting this behavior as an attack and accordingly, dissolving the platoon
unnecessarily. Some techniques are investigated in the context of the thesis
but not thoroughly due to time limitation such as Hellinger distance, Kullback
Leibler Divergence and other techniques. These approaches can be investigated
further in future work.
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