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Platooning
2

Communication between vehicles and infrastructure 
enhanced the capabilities of vehicles and enabled the rise of 
Cooperative Intelligent Transport Systems (C-ITS). New 
applications are introduced such as CACC and Platooning

1

2
Platoon-enabled vehicles: have all required hardware, 
software and subscriptions in platooning service. If it is a 
member of platoon and can be either leader or follower.

3 "PlatooningContainer" is added to CAM to carry information 
about vehicle and its ability of platooning.

Platoon modes of operation: Car-following mode and 
maneuver mode. In maneuver mode, Platoon Management 
Protocol (PMP) and its operations will allow platoon 
maneuvers (e.g., middle join and exit)

4
Example of placement of a specific platooning container in CAM [1] 

5 Benefits of platooning: increase road capacity and reduction 
of energy consumption and exhaust emissions.

CAM* / DENM**

 *CAM (Cooperative Awareness Messages)

**DENM (Decentralized Environmental Notification Message)



Motivation
3

Communication is more effective than distance sensors in terms 
of platoon safety.1

2 Platooning benefits cannot be achieved if the system is vulnerable 
to invalid and malicious behavior.

3
Proactive mechanisms: restrict access to Vehicular 
Communication (VC) network (protect the system from external 
attackers through VPKI).

4
Reactive mechanisms “Misbehavior Detection Scheme (MDS)”: 
detect attacks launched by authenticated vehicles (internal 
attackers).

5
Many proposed MDSs in literature assumes that vehicles in platoon are driving 
in a single straight lane.  Considering all possible attack scenarios (i.e., during 
maneuver) is essential for large deployment of platooning 

Sensing 

Communication (Inter/Intra Vehicle)

Control
Longitudinal or Lateral Control

Vulnerabilities in three layer framework



Research Questions
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By considering PMP, what aspects need to be considered 
while designing MDS deployed in each vehicle?1

2 How to design an MDS that can take into consideration 
different maneuvers in PMP?

3 Can MDS reused for different controllers or a new MDS is 
needed for each controller?

How to design the MDS in a way that enables it to recognize 
the undergoing maneuver and intelligently detect deviations 
from expected behavior?

4

?



Contribution
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A state-of-the-art MDS that can take into consideration dynamic platoon environment is introduced. 
Unlike existing MDSs, proposed  framework  has  the  ability  to discern misbehavior from maneuver 
operation and accordingly, avoid treating a maneuver as a misbehavior. 

1

2 Leveraging machine learning algorithms, the MDS has the ability to recognize the mode of the 
operation of the platoon (car-following or maneuver mode) at early stage and predict the misbehavior. 

3
The whole framework is extendable in terms of maneuvers and controllers. Only platoon controllers 
are considered (e.g., PATH and Flatbed) but the framework can be extended to include Cooperative 
Adaptive Cruise Control (CACC) controllers (e.g., Consensus and Ploeg). 



Adversary Model

Internal attacker is assumed which means it can communicate with platoon members. Both vehicles and RSUs 
are vulnerable to be attacked 1

2 By compromising the vehicle, it's assumed that the attacker has full control of inputs of vehicles and has the 
ability to inject falsified beacons such as manipulating speed, acceleration and position of compromised vehicle.

3 Attacker can compromise either platoon leader or platoon member.

4
Standardized security mechanisms are assumed to be in place: pseudonymous certificates to protect driver's 
privacy and storage of corresponding private keys in a Hardware Security Module (HSM) to protect it against 
tampering. VPKI is available to limit validity of of pseudonyms (countermeasure for Sybil attack)

6



Methodology (Hidden Markov Model)
Introduction
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Each state corresponds to 
one section of the sequence

Observations

Hidden States

Hidden Markov Model (HMM)  has  been  widely  used  
to  model  driving  behavior  due  to its  powerful ability 
to describe dynamic processes.  

1

2
Two stochastic processes:  an observable process 
which represents the sequence of observations of the 
system and hidden process which can be indirectly 
inferred by analyzing the the sequence of observations. 

3
In the context of driver intention recognition, Example 
of Discrete HMM (DHMM): classify the current driver as 
sporty or defensive. Example of Continuous HMM 
(CHMM) is advanced driver assistant systems

Main requirement for the MDS is to recognize the 
platoon behavior at early stage and not to wait till the 
behavior is completed.

4



Methodology (Hidden Markov Model)
Fundamental Concepts
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Observed time series O = o1, o2, …oT N possible states S = s1, s2, …sN Hidden sequence z = z1, z2, …zT

HMM model is represented in compact form as: λ = ( π, A, B )

Initial Probabilities (π) 

πi = P(z1 = si)

Transition Probabilities (A) 

ai,j = P(zt+1 = si | zt= sj)

Emission Probabilities (B) 

If discrete (Observations can belong to a codebook V = (v1, … 
vk)) 

bi(ot) = P(ot = vk | zt= si)


If continuous (Observations follow a specific distribution i.e., 
Gaussian or mixture of Gaussians) 

bi(ot) = ∑Ci,mS(ot)|μi,m,Σi,m
HMM model is represented in compact form as: 

λ = ( π, A, C, μ, Σ)

GMMHMM is HMM with GMM emission probability 
distribution B which means that observation 
probabilities of HMM states are modeled with GMMs

Fr
om

To 

0.8 0.2

0.4 0.6

Transition Probabilities (A)

Initial Probability (𝜋)

0.6 0.4

Fr
om

To 
Emission Probabilities (B)

0.8 0.2

0.4 0.6



Proposed Framework
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Training and Inference Phases
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Baum Welch algorithm used to optimize GMMHMM 
model using training data. BIC criterion to determine 
number of components -> Generate GMMHMM 
models that models nominal behavior

1

2

Determine which GMMHMM model to use based on 
observed sequence and use it for anomaly 
detection. Sliding window of 1 second is used to 
recognize the maneuver and detect anomalies as 
early as possible Platoon Behavior Models

Platoon Behavior
Recognition

Anomaly Detection

Training Phase

Inference Phase

Baum Welch Algorithm
Training
Observation
Sequence of
Platoon Behavior (i)

BIC Algorithm
(Model Selection)

Initial GMMHMM

Final GMMHMM

Actual Observation
Sequence of
Platoon Behavior (i)

Anomalies



Anomaly Detection Approaches
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Results & Performance of Platoon Behavior Recognition
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Performance of Platoon Behavior RecognitionFlatbed Controller

Path Controller



Performance Evaluation
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Comparing Performance of Anomaly Detection Approaches
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Area Under the Curve (AUC) is used to compare the 
performance of Viterbi-based and Forward-based 
anomaly detection approaches

1

2
By repeating the experiment of detecting 
AccInjectionAttack at Speed 50 for 50 times, AUC 
is computed

3
Forward-based algorithm is approaching 1 which 
means that the model has a good performance in 
separating the positive class (e.g., misbehavior) and 
the negative class (e.g., benign behavior).



Results of Anomaly Detection 
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Detection Delay
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window n window n+1 window n+2

Attack
Detection Delay = 0.5s

window n window n+1 window n+2

Attack
Detection Delay = 0.9s

The proposed MDS works in a sliding window. Ten 
observation samples (1 second) are defined as a 
sliding window.

1

2
Detection delay is calculated by adding processing 
delay (0.4s) and time between attack and end of 
sliding window. Detection delay varies between 
0.5s to 1.3s.

3
Worst case scenario in terms of detection delay 
would happen if the attack is launched at the 
beginning of the sliding window



Conclusion
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The framework is able to recognize a set of driving maneuvers at an early stage 
even if only a limited set of input signals are used (small window of 1 second). the 
framework is generic and can be extended to consider other maneuvers  

Platoon Behavior Recognition

Two approaches are proposed to detect 21 different attacks. Forward-based 
algorithm showed better and consistent performance comparing to Viterbi-based 
algorithm. It has been shown that a single run is enough for learning the normal 
behavior. The detector is very sensitive and accordingly it’s able to detect very 
small deviations. This high sensitivity may introduce false alarms for jerkiness 
scenarios.

Anomaly Detection

Overall performance of maneuver recognition and anomaly detection shows 
excellent results in terms of performance metrics such as accuracy, recall, 
precision, f1 score and detection delay. Detection delay varies between 0.9s to 1.3s

Overall Performance



Future Work
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Investigate if ML features can be re-engineered in way that makes 
GMMHMM model independent of platoon speed1

2
Run the framework on all vehicles and compare results to see if 
sharing misbehavior reports between vehicles will make the the 
framework more robust

3
Sharing misbehavior reports with other vehicles opens the issue of 
fake reports. Cooperative schemes assume that reports from other 
vehicles are trustworthy if they carry correct signatures. Validation 
of received misbehavior reports need to be investigated.
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Platoon Controllers 

Table taken from [3]

Car-following mode -> longitudinal controller only used.

Platoon  maneuver mode -> combined lateral and 
longitudinal controller alongside PMP are needed.

1

2 PATH and Flatbed are using CVS (Constant Vehicle Spacing) 
policy.  

3 These controllers are relying on both sensors and V2V for 
sharing information.

PATH is susceptible to fake beacons due to its dependence 
on multiple variables while Flatbed is susceptible to speed 
falsification perpetrated by the leader (it simply require all 
members to share a common speed value)

4

20

Constant-Time Gap (CTG) = Constant Time Headway (CTH)  

Constant Distance Gap (CDG) = Constant Vehicle Spacing (CVS)

Upper Controller

Lower Controller

Target Inter Vehicle Distance

Input

Desired 
Acceleration

Throttle Brakes

Fault Messages

CAN

Sensors

WSU

A basic architecture of a driving control system



Example of Normal Behavior
Different Maneuvers, Different Speeds, Same Controller (i.e. Flatbed)
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Example of Normal Behavior
Same Maneuver, Different Controllers
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Limitation of Existing Solutions
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Rule-based mechanisms [2]:

Multiple rules to do plausibility checks or create a trust 
score in a reputation system

1

2

ML-based mechanisms [8], [9]:

Any linear ML model that relies on linear function for its 
prediction function cannot be applied if system 
dynamics and observation models are non-linear.

SP-VLC Protocol [4]:

VLC may not work reliably under adverse weather 
conditions (e.g. rain and fog). In addition, the road 
surface may impact VLC system performance [6]

1

2 Pre-Approval Protocol [5]:

RSUs are assumed to be trusted while RSUs are usually 
distributed outside and vulnerable to be compromised 
by attackers.

Securing CACC and VANET Securing Platoon During Maneuvers

3

Kalman Filter [3]:

It has been used in the context of CACC to detect 
injection attack by detecting increase of deviation of 
received measurements through V2V from Kalman Filter 
estimations

3 Kalman Filter [7]:

It has been attempted to use Kalman Filter during 
middle join and exit maneuvers. Results have shown 
that Kalman Filter detected two vehicles as malicious 
during the normal operation.



Existing Solutions
Securing Platoon During Maneuvers

24

Proposal: new hybrid security protocol (SP-VLC) 
which combines both IEEE 802.11p and Visible 
light communication (VLC).

1

2
Road side attacker is assumed to transmit either 
fake maneuver request packet or a fake 
maneuver response packet.

3
VLC is used for secret key establishment to 
construct the initial secret key securely between 
each pair of consecutive platoon members.

A mechanism to switch to either transmission 
over both IEEE 802.11p and VLC or VLC only 
according to conducted attack.

4

Proposal: send maneuvers requests to RSUs 
which in turn will verify it with relevant 
information. If all checks are verified, maneuver 
approval will be sent to requestor.

1

2 Attacker attempt to exploit the functionality of the 
PMP implementation

3
During validation process, platoon will be 
switched to safe mode where it moves within the 
safety speed limit, i.e 20 mph.

If rejection is received from RSU, maneuver will 
be aborted.4

SP-VLC Protocol [4]  Pre-Approval Protocol [5]

VLC may not work reliably under adverse weather conditions 
(e.g. rain and fog). In addition, the road surface may impact 
VLC system performance [6]

RSUs are assumed to be trusted while RSUs are usually 
distributed outside and vulnerable to be compromised by 
attackers.



Attacks
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Attack Attack Value Attack Position Maneuver Controller

PosInjectionAttack [3, 5, 7, 9, 11] m [0, 2] Car-following, Middle Join, Exit Path, Flatbed

SpeedInjectionAttack [-50, 0, 50, 100, 150] km/h [0, 2] Car-following, Middle Join, Exit Path, Flatbed

AccInjectionAttack [-30, -10, 0, 10, 30] m/s2 [0, 2] Car-following, Middle Join, Exit Path, Flatbed

GradualPosFalsificationAttack [-10,40] m [0, 2] Car-following, Middle Join, Exit Path, Flatbed

GradualSpeedFalsificationAttack [-10,17] m/s [0, 2] Car-following, Middle Join, Exit Path, Flatbed

GradualAccFalsificationAttack [-10,10] m/s2 m [0, 2] Car-following, Middle Join, Exit Path, Flatbed

SmartPosFalsificationAttack [-10,10] m [0, 2] Car-following, Middle Join, Exit Path, Flatbed

SmartSpeedFalsificationAttack [-10,10] m/s [0, 2] Car-following, Middle Join, Exit Path, Flatbed

SmartAccFalsificationAttack [-10,10] m/s2 [0, 2] Car-following, Middle Join, Exit Path, Flatbed

21 attacks for 2 controllers, 2 attacker positions and 3 maneuvers considering 4 speed scenarios: 
Total of 1008 tests

Table taken from [7]



Results of Anomaly Detection 
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CACC vs Platooning

Cooperative Adaptive Cruise Control (CACC) is a term that has 
been used loosely in recent years and is often mistakenly 
assumed to be synonymous with platooning. 

1

2

A

Important distinctions between CACC systems and automated 
truck platooning systems:

Truck platooning systems relies on a Constant Distance Gap (CDG) 
control strategy “separation between vehicles remains unchanged 
with speed”. The CACC control strategy is based on a Constant-Time 
Gap (CTG) “distance between vehicles is proportional to the speed”.

B

For CACC, only truck speed control will be automated (usually 
addresses only longitudinal control). The drivers will still be 
responsible for actively steering the vehicle, lane keeping, and 
monitoring roadway and traffic conditions.

CACC Platooning {
27

Picture taken from [10]



Methodology (Hidden Markov Model)
Fundamental Concepts
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Each state corresponds to 
one section of the sequence

Markov Model: Stochastic model for changing systems. 
Markov property assumes that future state depends on 
current state

1

2
Hidden Markov Model (HMM) is statistical Markov 
Model in which the system being modeled is assumed 
to be a Markov process with unobserved (i.e. hidden) 
states.

3 Hidden Markov Models application include Automatic 
Speech Recognition (ASR), gesture recognition, …etc.

Fr
om

To 

0.8 0.2

0.4 0.6

Transition Probabilities (A)

Initial Probability (𝜋)

Hidden States: left lane and right lane

Observables: speed (Discrete: high speed, low speed)

How to infer lane from speed?

4

0.6 0.4

Fr
om

To 
Emission Probabilities (B)

0.8 0.2

0.4 0.6

Observations

Hidden States



29

Three Main Tasks for HMM

Evaluation/Scoring: Given a HMM model M and x, 
estimate the probability of observation: Find P(x|M). -> 
forward-backward algorithm

1

2
Decoding: Given a HMM model M and observed 
sequence x, compute the hidden sequence that best 
models the observations: Find z. -> Viterbi Algorithm

3
Learning: Given the observed sequence x, estimate the 
most likely HMM model M using the maximum 
likelihood method: Find M. -> Maximum Likelihood 
Estimation or Estimation Maximization

 Given the model parameters and observed data (sequence of speed 
observations), what is the most likely underlying lane sequence?

𝜋

Given the model parameters and observed data (sequence of speed 
observations) , calculate the model likelihood (what is the most likely 
current lane?)

𝜋

Probability of path 
and sequence 
given a model 

Best path 
(estimate the 

optimal sequence 
of hidden states)

(argmaxλP(Otrain|λ)
Supervised Learning: Some observation sequences 
(Speed) and their associated states (lane) have been 
included in training dataset (MLE)


Unsupervised Learning: In case it is not possible to 
sample from hidden states (EM)



Model Selection
Bayesian Information Criterion (BIC)

30

One problem during training of HMM model is the assumption of knowing HMM 
topology beforehand which is not a realistic assumption in real-world 
applications. Previous example was simple, e.g. 2 states (left lane and right lane). 

1

2
Bayesian Information Criterion (BIC) is a criterion to select models among a finite 
set of models. It’s based on likelihood function. BIC is a commonly used criterion 
to balance between likelihood of data and number of free parameters.

3
When fitting models, it’s possible to increase the likelihood by adding parameters 
but that would result in overfitting. BIC resolves this problem by introducing a 
penalty for the number of parameters in the model.


