
Scaling Pseudonymous Authentication for Large Mobile Systems
Mohammad Khodaei

Networked Systems Security Group

Stockholm, Sweden

khodaei@kth.se

Hamid Noroozi

Networked Systems Security Group

Stockholm, Sweden

hnoroozi@kth.se

Panos Papadimitratos

Networked Systems Security Group

Stockholm, Sweden

papadim@kth.se

ABSTRACT
The central building block of secure and privacy-preserving Ve-

hicular Communication (VC) systems is a Vehicular Public-Key

Infrastructure (VPKI), which provides vehicles with multiple ano-

nymized credentials, termed pseudonyms. These pseudonyms are

used to ensure message authenticity and integrity while preserving

vehicle (thus passenger) privacy. In the light of emerging large-

scale multi-domain VC environments, the efficiency of the VPKI

and, more broadly, its scalability are paramount. By the same to-

ken, preventing misuse of the credentials, in particular, Sybil-based

misbehavior, and managing “honest-but-curious” insiders are other
facets of a challenging problem. In this paper, we leverage a state-

of-the-art VPKI system and enhance its functionality towards a

highly-available, dynamically-scalable, and resilient design; this en-

sures that the system remains operational in the presence of benign

failures or resource depletion attacks, and that it dynamically scales
out, or possibly scales in, according to request arrival rates. Our

full-blown implementation on the Google Cloud Platform shows

that deploying large-scale and efficient VPKI can be cost-effective.
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1 INTRODUCTION
In Vehicular Communication (VC) systems, vehicles beacon Coop-

erative Awareness Messages (CAMs) and Decentralized Environ-

mental Notification Messages (DENMs) periodically, at high rates,

to enable transportation safety and efficiency. It has been well-

understood that VC systems are vulnerable to attacks and that the

privacy of their users is at stake. As a result, security and privacy so-

lutions have been developed by standardization bodies (IEEE 1609.2

WG [51] and ETSI [45]), harmonization efforts (C2C-CC [75]), and

projects (SeVeCom [53, 71, 73], PRESERVE [76], and CAMP [2, 88]).

A consensus towards using Public Key Cryptography (PKC) to pro-

tect Vehicle-to-Vehicle (V2V)/Vehicle-to-Infrastructure (V2I) (V2X)

communication is reached: a set of short-lived anonymized certifi-

cates, termed pseudonyms, are issued by a Vehicular Public-Key

Infrastructure (VPKI), e.g., [54, 60, 88], for registered vehicles. Ve-

hicles switch from one pseudonym to a non-previously used one

towards message unlinkability, as pseudonyms are per se inher-

ently unlinkable. Pseudonymity is conditional, in the sense that the

corresponding long-term vehicle identity can be retrieved by the

VPKI when needed, e.g., if vehicles deviating from system policies.

Deploying a VPKI differs from a traditional Public-Key Infra-

structure (PKI), e.g., [6, 13, 15]. One of the most important factors

is the PKI dimension, i.e., the number of registered “users” (vehi-

cles) and the multiplicity of certificates per user. According to the

US Department of Transportation (DoT), a VPKI should be able to

issue pseudonyms for more that 350 million vehicles across the

Nation [1]. Considering the average daily commute time to be 1

hour [1] and a pseudonym lifetime of 5 minutes, the VPKI should

be able to issue at least 1.5×1012 pseudonyms per year, i.e., 5 orders

of magnitude more than the number of credentials the largest cur-

rent PKI issues (10 million certificates per year [88]). Note that this

number could be even greater for the entire envisioned Intelligent

Transport Systems (ITSs) ecosystem, e.g., including pedestrians and

cyclists, Location Based Services (LBSs) [45, 74, 83] and vehicular

social networks [52]. More so, outside the VC realm, there is an

ongoing trend towards leveraging short-lived certificates [85] for

the Internet: web servers request new short-lived certificates, valid

for a few days [85]. This essentially diminishes the vulnerability

window, e.g., if a single Certification Authority (CA) were compro-

mised [85], or if a large fraction of certificates needed to be revoked

after the latest Certificate Revocation List (CRL) was distributed

among all entities [39, 57, 67].

With emerging large-scale multi-domain VC environments [45,

51, 61, 74, 75], the efficiency of the VPKI and, more broadly, its

scalability are paramount. Vehicles could request pseudonyms for a

long period, e.g., 25 years [63]. However, extensive pre-loading with

millions of pseudonyms per vehicle for a long period is computa-

tionally costly and inefficient in terms of utilization [60]. Moreover,

in case of revocation [39, 57, 67], a huge CRL should be distributed

among all vehicles due to long lifespan of the credentials, e.g., [63]:

a sizable portion of the CRL is irrelevant to a receiving vehicle and

can be left unused, i.e., wasting of significant bandwidth for CRL

distribution [57, 84]. Alternatively, each vehicle could interact with

the VPKI regularly, e.g., once or a few times per day, not only to

refill its pseudonym pool but also to fetch the latest revocation

information
1
. However, the performance of a VPKI system can

be drastically degraded under a clogging Denial of Service (DoS)

attack [54, 60], thus, compromising the availability of the VPKI

entities. Moreover, a flash crowd [32], e.g., a surge in pseudonym

acquisition requests during rush hours, could render the VPKI un-

reachable, or drastically decrease its quality of service.

The cost of VPKI unavailability is twofold: security (degradation

of road safety) and privacy. An active malicious entity could prevent

other vehicles from accessing the VPKI to fetch the latest revoca-

tion information. Moreover, signing CAMs with the private keys

corresponding to expired pseudonyms, or the Long Term Certifi-

cate (LTC), is insecure and detrimental to user privacy. Even though

one can refill its pseudonym pool by relying on anonymous au-

thentication primitives, e.g., [35, 36, 56, 72], the performance of the

safety-related applications could be degraded. For example, leverag-

ing anonymous authentication schemes for the majority of vehicles

1
Note that Cellular-V2X provides reliable and low-latency V2X communication with a

wide range of coverage [28, 30, 31]; thus, network connectivity will not be a bottleneck.
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results in causing 30% increase in cryptographic processing over-

head in order to validate CAMs [56]. Thus, it is crucial to provide

a highly-available, scalable, and resilient VPKI design that could

efficiently issue pseudonyms in an on-demand fashion
2
[55, 65].

Considering a multi-domain development of VC systems, with a

multiplicity of service providers, each vehicle could obtain pseudo-

nyms from various service providers. The acquisition of multiple

simultaneously valid (sets of) pseudonyms would enable an adver-

sary to inject multiple erroneous messages, e.g., hazard notifica-

tions, as if they were originated from multiple vehicles, or affect

protocols based on voting, by sending out false, yet authenticated,

information. Even though there are distributed schemes to identify

Sybil [43] nodes, e.g., [47, 90], or mitigate this vulnerability by re-

lying on Hardware Security Modules (HSMs) [71], a VPKI system

should prevent such credentials misuse on the infrastructure side,

e.g., [54, 60]. However, when deploying such a system, e.g., [38, 68],

on the cloud, a malicious vehicle could repeatedly request pseudo-

nyms; in fact, requests might be delivered to different replicas of a

micro-service, releasing multiple simultaneously valid pseudonyms.

Mandating a centralized database, shared among all replicas to en-

sure isolation and consistency of all transactions, would mitigate

such a vulnerability. However, this contradicts highly efficient and

timely pseudonyms provisioning for large-scale mobile systems.

Contributions: In this paper, we leverage and enhance a state-of-
the-art VPKI, and propose a VPKI as a Service (VPKIaaS) system
towards a highly-available, dynamically-scalable, and fault-tolerant

(highly-resilient) design, ensuring the system remains operational

in the presence of benign failures or any resource depletion attack

(clogging a DoS attack). Moreover, our scheme eradicates Sybil-

based misbehavior when deploying such a system on the cloud

with multiple replicas of a micro-service without diminishing the

pseudonym acquisition efficiency. All procedures of deployment

and migration to the cloud, e.g., bootstrapping phase, initializing

the micro-services, pseudonym acquisition process, monitoring

health and load metrics, etc., are fully automated. Through exten-

sive experimental evaluation, we show that the VPKIaaS system

could dynamically scale out, or possibly scale in
3
, based on the

VPKIaaS system workload and the requests’ arrival rate, so that

it can comfortably handle unexpected demanding loads while be-

ing cost-effective by systematically allocating and deallocating re-

sources. Our experimental evaluation shows a 36-fold improvement

over prior work [38]: the processing delay to issue 100 pseudonyms

for [38] is approx. 2010 ms, while it is approx. 56 ms in our sys-

tem. Moreover, the performance of [60] drastically decreases when

there is a surge in the pseudonym request arrival rates; on the

contrary, our VPKIaaS system can comfortably handle demanding

loads request while efficiently issuing batches of pseudonyms.

In the rest of the paper, we describe background and related

work (Sec. 2) and the system model and objectives (Sec. 3). We then

explain the VPKIaaS system, detailing security protocols (Sec. 4),

2
Unlike issuing short-lived certificates [85] for the Internet that responses can be

cached, issuing on-demand pseudonyms cannot be precomputed: each vehicle requests

new certificates with a different public key, important for unlinkability/privacy.

3
In the cloud terminology, scaling in/out, termed horizontal scaling, refers to replicating
a new instance of a service, while scaling up/down, termed vertical scaling, refers to
allocating/deallocating resources for an instance of a given service.

and provide a qualitative analysis (Sec. 5), followed by a quantitative

analysis (Sec. 6), before the conclusion (Sec 7).

2 BACKGROUND AND RELATEDWORK
A VPKI can provide vehicles with valid pseudonyms for a long pe-

riod, e.g., 25 years [63]. However, extensive preloadingwithmillions

of pseudonyms per vehicle for such a long period is computation-

ally costly, inefficient in terms of utilization and cumbersome for

revocation [57, 61]. On the contrary, several proposals suggest more

frequent Vehicle-to-VPKI interactions, namely on-demand schemes,

e.g., [46, 54, 60, 81]. This strategy provides more efficient pseudo-

nym utilization and revocation, thus being effective in fending off

misbehavior. But, for on-demand pseudonym acquisition, one needs

to design (and deploy) an efficient and scalable system while being

resilient against any resource depletion attack. Even though VPKI

systems may handle large-scaled distributed scenarios, e.g., [38],

there is lack of dynamic scalability (i.e., dynamically scale out/in

according to the arrival rates) and resilient to a resource depletion

attack, e.g., a Distributed DoS (DDoS) attack. Beyond a significant

performance improvement over [38], our VPKIaaS implementation

is highly-available, dynamically-scalable, and fault-tolerant.

Sybil-based [43] misbehavior can seriously affect the operation

of VC systems, as multiple fabricated non-existing vehicles could

pollute the network by injecting false information. For example,

an adversary with multiple valid pseudonyms, termed here a Sybil
node, could create an illusion of traffic congestion towards affect-

ing the operation of a traffic monitoring system, or broadcast fake

misbehavior detection votes [77, 78, 80], or disseminate Spam to

other users in a vehicular social network [52]. The idea of enforcing

non-overlapping pseudonym lifetimes was first proposed in [71].

This prevents an adversary from equipping itself with multiple

valid identities, and thus affecting protocols of collection of mul-

tiple inputs, e.g., based on voting, by sending out redundant false,

yet authenticated, information. Even though this idea has been

accepted, a number of proposals, e.g., [63, 88], do not prevent a ve-

hicle from obtaining simultaneously valid pseudonyms via multiple

pseudonym requests. The existence of multiple pseudonym issuers

deteriorate the situation: a vehicle could request pseudonyms from

multiple service providers, while each of them is not aware whether

pseudonyms for the same period were issued by any other service

provider. One can mitigate this vulnerability by relying on an HSM,

ensuring all signatures are generated under a single valid pseudo-

nym at any time. There are also distributed schemes to detect Sybil

nodes based on radio characteristics and triangulation, e.g., [47, 90];

such strategies are application-dependent, e.g., this cannot guaran-

tee the operation of a traffic monitoring system from an adversary

who disseminates multiple traffic congestion messages, each signed

under a distinct “fake” private key.

V-tokens [81] prevents a vehicle from obtaining multiple simul-

taneously valid pseudonyms due to having service providers com-

municating with each other, e.g., a distributed hash table. SEC-

MACE [60] (including its predecessors [54, 55]) prevents Sybil-

based misbehavior on the infrastructure side without the need for

an additional entity, i.e., extra interactions or intra-VPKI comm-

unications. More specifically, it ensures each vehicle has one valid

pseudonym at any time in a multi-domain environment. However,
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when deploying such a system on the cloud, a malicious vehicle

could repeatedly request pseudonyms, hoping that requests are

delivered to different replicas of a micro-service, thus obtaining

multiple simultaneously valid pseudonyms, e.g., [38, 68]. Unlike

such schemes, our VPKIaaS scheme prevents Sybil-based misbe-

havior on the cloud-deployed infrastructure: it ensures that each

vehicle can only have one valid pseudonym at any time in a multi-

domain VC environment; more important, it does not affect timely

issuance of pseudonyms.

The VPKI entities are, often implicitly, assumed to be fully trust-

worthy. Given the experience from recent mobile applications, e.g.,

[48, 64, 66], the adversarial model is extended from fully trustwor-

thy to honest-but-curious VPKI servers, notably in [60, 88]. Such

honest-but-curious entities may subvert the security protocols and

deviate from system policies if gained an advantage without being

identified, e.g., inferring user sensitive information [58, 59, 87, 89].

Outside the VC realm, there are different proposals for PKI to be re-

silient against compromised insiders. Such schemes rely on signing

a certificate by more than a threshold number of CAs, e.g., [44, 62];

however, such schemes cannot be used by VC systems. For exam-

ple, issuing a certificate in [44] takes approximately 2 minutes and

it varies with the number of required CAs. Obviously, this con-

tradicts with on-demand pseudonym acquisition strategies for VC

systems, e.g., [55, 56, 60, 65], which necessitate efficient pseudonym

provisioning.

3 SYSTEM MODEL AND OBJECTIVES
3.1 Overview and Assumptions
A VPKI consists of a set of Certification Authorities (CAs) with dis-

tinct roles: the Root CA (RCA), the highest-level authority, certifies

other lower-level authorities; the Long Term CA (LTCA) is responsi-

ble for the vehicle registration and the Long Term Certificate (LTC)

issuance, and the Pseudonym CA (PCA) issues pseudonyms for the

registered vehicles. Pseudonyms have a lifetime (a validity period),

typically ranging from minutes to hours; in principle, the shorter

the pseudonym lifetime is, the higher the unlinkability and thus

the higher privacy protection can be achieved. We assume that

each vehicle is registered only with its Home-LTCA (H-LTCA), the
policy decision and enforcement point, reachable by the registered

vehicles. Without loss of generality, a domain can be defined as a set
of vehicles in a region, registered with the H-LTCA, subject to the

same administrative regulations and policies [61, 70]. There can be

several PCAs, each active in one or more domains; any legitimate,

i.e., registered, vehicle is able to obtain pseudonyms from any PCA,

the pseudonym provider (as long as there is a trust established be-

tween the two CAs). Trust between two domains can be established

with the help of the RCA, or through cross certification.

Each vehicle interacts with the VPKI entities to obtain a batch

of pseudonyms, each having a corresponding short-term private

key, to sign and disseminate their mobility information, e.g., CAMs

or DENMs, time- and geo-stamped, periodically or when needed as

a response to a specific event. Fig. 1 shows an overview of a VPKI

with three domains, A, B and C . Domains A and B have established

trust with the help of a higher level authority, i.e., the RCA, while

domains B andC have established security association by cross cer-

tification. The vehicles in the figure are labeled with the domains

RSU
3/4/5G

PCA

LTCA

PCA

LTCA

RCA

PCA

LTCA

BAA certi es B

Cross-certi cation

Domain A Domain B Domain C

RA
RA

RA

B

X-Cetify

LDAP LDAP

Message dissemination

 {Msg}(Piv),P
i
v

{Msg}(Piv),Pi
v

Figure 1: A VPKI Overview for Multi-domain VC Systems.

they are affiliated to. A vehicle registered in domain A digitally

signs outgoing messages with the private key, kiv , corresponding to
P iv , which signifies the current valid pseudonym signed by the PCA.

The pseudonym is then attached to the signed messages to enable

verification by any recipient. Upon reception, the pseudonym is

verified before the message itself (signature validation). This pro-

cess ensures communication authenticity, message integrity, and

non-repudiation. Vehicles switch from one pseudonym to another

one (non-previously used) to achieve unlinkability, thus protecting

sender’s privacy as the pseudonyms are inherently unlinkable.

Each vehicle “decides” when to trigger the pseudonym acqui-

sition process based on various factors [55]. Such a scheme re-

quires sparse connectivity to the VPKI, but it facilitates an On-Board

Unit (OBU) to be preloaded with pseudonyms proactively, covering

a longer period, e.g., a week or a month, should the connectivity

be expected heavily intermittent. A universally fixed interval, Γ, is
specified by the H-LTCA and all pseudonyms in that domain are

issued with the lifetime (τP ) aligned with the VPKI clock [60]. As

a result of this policy, at any point in time, all the vehicles trans-

mit using pseudonyms that cannot be distinguished based on their

issuance time thanks to this time alignment.

All vehicles (OBUs) registered are equippedwith HSMs, ensuring

that private keys never leave the HSM. Moreover, we assume that

there is a misbehavior detection system, e.g., [34], that triggers

revocation. The Resolution Authority (RA) can initiate a process to

resolve and revoke all pseudonyms of a misbehaving vehicle [69]:

it interacts with the corresponding PCAs and LTCA (a detailed

protocol description, e.g., in [54, 60]) to resolve and revoke all

credentials issued for a misbehaving vehicle. Consequently, the

misbehaving vehicle can no longer obtain credentials from the VPKI.

The VPKI is responsible for distributing the CRLs and notifying

all legitimate entities about the revocation, e.g., [57]. We further

assume that the cloud service providers are honest and they provide

a service with the desired Service Level Agreement (SLA); in terms

of secret management, we assume that the cloud service providers

are fully trustworthy.
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3.2 Adversarial Model and Requirements
We extend the general adversary model in secure vehicular comm-

unications [60, 70] to include an honest-but-curious service provider,
i.e., a PCA that attempts to gain advantages towards its goal, e.g.,

profiling users. In addition, in the context of this work, malicious

PCAs could try to (i) issue multiple sets of (simultaneously valid)

pseudonyms for a legitimate vehicle, or (ii) issue a set of pseudo-

nyms for a non-existing (illegitimate) vehicle, or (iii) fraudulently

accuse different vehicles (users) during a pseudonym resolution

process. A deviant LTCA could attempt to map a different LTC

during the resolution process, thus misleading the system. In our

adversarial model, we assume that the LTCA does not misbehave

by unlawfully registering illegitimate vehicles, i.e., issuing fake

LTCs, but it could be tempted to issue fake authorization tickets, to
be used during pseudonym acquisition process

4
. The RA can also

continuously initiate pseudonym validation process towards infer-

ring user sensitive information. Our adversarial model considers

multiple VPKI servers collude, i.e., share information that each of

them individually infers with the others, to harm user privacy.

In a multi-PCA environment, malicious (compromised) clients

raise two challenges. First, they could repeatedly request multi-

ple simultaneously valid pseudonyms, thus misbehaving each as

multiple registered legitimate-looking vehicles. Second, they could

degrade the operations of the system by mounting a clogging DoS

attack against the VPKI servers. External adversaries, i.e., unautho-
rized entities, could try to harm the system operations by launching

a DoS (or a DDoS) attack, thus degrading the availability of the sys-

tem. But they are unable to successfully forge messages or ‘crack’

the employed cryptosystems and cryptographic primitives.

Security and privacy requirements for V2X communications

have been extensively specified in [70], and additional requirements

for VPKI entities in [60] and the CRL distribution in [57]. Beyond

the aforementioned requirements, we need to thwart Sybil-based

attacks when deploying VPKIaaS system on the cloud (without

degrading efficient pseudonym issuance). At the same time, we

need to ensure that the VPKIaaS system is highly-available and

dynamically-scalable: the system dynamically scales out, or pos-

sibly scales in, according to the requests’ arrival rate, to handle

any demanding load while being cost-effective by systematically

allocating and deallocating resources. Moreover, we need to ensure

that the scheme is resilient to any resource depletion attack.

4 VPKI SERVICES OVERVIEW & SECURITY
PROTOCOLS

In the registration phase, each H-LTCA registers vehicles within

its domain and maintains their long-term identities. At the boot-

strapping phase, each vehicle needs to discover the VPKI-related

information, e.g., the available PCAs in its home domain, or the

desired Foreign-LTCA (F-LTCA) and PCAs in a foreign domain,

along with their corresponding certificates. To facilitate the overall

intra-domain and multi-domain operations, a vehicle first finds

such information from a Lightweight Directory Access Protocol

4
During the registration process, the H-LTCA registers a vehicle upon receiving a

request from the corresponding Original Equipment Manufacturer (OEM), i.e., to

fraudulently register a vehicle, two entities must collude. But, in order to issue a fake

ticket, the H-LTCA could do it without interacting with any other entity.

(LDAP) [82] server. This is carried out without disclosing the real

identity of the vehicle. We presume connectivity to the VPKI, e.g.,

via Roadside Units (RSUs) or Cellular-V2X; should the connectivity

be intermittent, vehicle, i.e., the OBU, could initiate pseudonym

provisioning proactively based on different parameters, e.g., the

number of remaining valid pseudonyms, the residual trip duration,

and the networking connectivity.

The H-LTCA authenticates and authorizes vehicles over a mu-

tually authenticated Transport Layer Security (TLS) [42] tunnel.

This way the vehicle obtains a native ticket (n-tkt ) from its H-LTCA

while the targeted PCA or the actual pseudonym acquisition pe-

riod is hidden from the H-LTCA; the ticket is anonymized and it

does not reveal its owner’s identity (Protocol 5 and Protocol 6 in

the Appendix). The ticket is then presented to the intended PCA,

over a unidirectional (server-only) authenticated TLS, to obtain

pseudonyms (Protocol 1).

When the vehicle travels in a foreign domain, it should obtain

new pseudonyms from a PCA operating in that domain; otherwise,

the vehicle would stand out and be more easily traceable (linkable).

The vehicle first requests a foreign ticket (f -tkt ) from its H-LTCA

(without revealing its targeted F-LTCA) so that the vehicle can be

authenticated and authorized by the F-LTCA. In turn, the F-LTCA

provides the vehicle with a new ticket (n-tkt ), which is native within
the domain of the F-LTCA to be used for pseudonym acquisition

in that (foreign) domain. The vehicle then interacts with its desired

PCA to obtain pseudonyms. Obtaining an f -tkt is transparent to
the H-LTCA: the H-LTCA cannot distinguish between native and

foreign ticket requests. This way, the PCA in the foreign domain

cannot distinguish native requesters from foreign ones. For liability

attribution, our scheme enables the RA, with the help of the PCA

and the LTCA, to initiate a resolution process, i.e., to resolve a pseu-

donym to its long-term identity. Each vehicle can interact with any

PCA, within its home or a foreign domain, to fetch the CRL [57] and

perform Online Certificate Status Protocol (OCSP) [54] operations,

authenticated with a current valid pseudonym.

4.1 VPKI as a Service (VPKIaaS)
We migrate the VPKI on the Google Cloud Platform (GCP) [22]

for the availability, reliability, and dynamic scalability of the VPKI

system under various circumstances. Fig. 2 illustrates a high-level

abstraction of the VPKIaaS architecture on a managed Kubernetes

cluster [25] on GCP.
5
A set of Pods will be created for each micro-

service, e.g., LTCA or PCA, from their corresponding container

images, facilitating their horizontal scalability. When the rate of

pseudonym requests increases, the Kubernetes master, shown on

the top in Fig. 2, schedules new Pods or kills a running Pod in

case of benign failures, e.g., system faults or crashes, or resource

depletion attacks, e.g., a DoS attack. The Pods could be scaled out

to the number, set in the deployment configuration, or scaled out

to the amount of available resources enabled by Kubernetes nodes.

Each Pod publishes two types of metrics: load and health. The
load metric values are generated by a resource monitoring ser-

vice, which facilitates horizontal scaling of a micro-service: upon

reaching a threshold of a pre-defined load, replication controller

replicates a new instance of the micro-service to ensure a desired

5
Note that the RCA entity is assumed to be off-line, thus not included in this abstraction.
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Figure 2: A High-level Overview of VPKIaaS Architecture.

SLA. The health metric ensures correct operation of a micro-service

by persistently monitoring its status: a faulty Pod is killed and a

new one is created. In our VPKIaaS system, we define CPU usages

as the load metric. In order to monitor the health condition of a

micro-service, dummy requests (dummy tickets for the LTCAmicro-

services and dummy pseudonyms for the PCA micro-services) are

locally queried by each Pod
6
.

4.2 Security Protocols
In this section, we provide the detailed description of pseudonym ac-

quisition processes (Protocol 1) and pseudonym issuance validation

process (Protocol 2) in order to identify misbehaving PCA issuing

fraudulent pseudonym. Furthermore, in order to mitigate Sybil at-

tacks on the side of VPKIaaS system, we propose two protocols

(Protocols 3 and 4): an in-memory key-value Redis database [14] is

shared among all replicas of a micro-service, to facilitate efficient

validation of tickets and pseudonyms requests. Table 1 shows the

notation used in the security protocols.

4.2.1 Pseudonym Acquisition Process (Protocol 1). Each ve-

hicle first requests an anonymous ticket [54, 55] from its H-LTCA,

using it to interact with the desired PCA to obtain pseudonyms; due

to lack of space, we provide the detailed ticket acquisition process

in Appendix. Upon reception of a valid ticket, it generates Certifi-

cate Signing Requests (CSRs) with Elliptic Curve Digital Signature

Algorithm (ECDSA) public/private key pairs [45, 51] and sends

the request to the PCA. Vehicle-LTCA is over mutually authenti-

cated TLS [42] tunnels (or Datagram TLS (DTLS) [79]) while the

vehicle-PCA communication is over a unidirectional (server-only)

authenticated TLS (or DTLS); this ensures that the PCA does not

infer the actual identity of the requester.

Having received a request, the PCA verifies the ticket signed

by the H-LTCA (assuming trust is established between the two)

(steps 1.2–1.3). The PCA then decapsulates the ticket and verifies

the pseudonym provider identity (step 1.4–1.5). Then, the PCA

generates a random number (step 1.6) and initiates a proof-of-

possession protocol to verify the ownership of the corresponding

6
A dummy ticket request is constructed by an LTCA Pod to validate the correctness

of ticket issuance procedure while a dummy pseudonym request is constructed by a

PCA Pod to ensure the correctness of pseudonym issuance procedure. Such dummy

requests cannot be used by a compromised Pod to issue fake pseudonyms (see Sec. 5).

Table 1: Notation used in the protocols

(P iv )pca , P
i
v a pseudonym signed by the PCA

(LKv ,Lkv ) long-term public/private key pairs

(K i
v ,k

i
v ) pseudonymous public/private key pairs

Idr eq , Idr es , Idca request/response/CA unique identifiers

(msд)σv a signed message with the vehicle’s private key

N ,Rnd nonce, a random number

tnow , ts , te fresh/current, starting, and ending timestamps

n-tkt , f -tkt native ticket, foreign ticket

H () hash function

Siдn(Lk ,msд) signing a message with the private key (Lk)

Veri f y (LK ,msд) verifying a message with the public key

τP pseudonym lifetime

Γ interacting interval with the VPKI

IK identifiable key

V vehicle

ζ , χ temporary variables

Protocol 1 Issuing Pseudonyms (by the PCA)

1: procedure IssuePsnyms(Req)
2: Req→(Idr eq ,Rndn-tkt , tktσl tca , {(K

1

v )σ
k1v

, · · · , (Knv )σknv
},N , tnow )

3: Verify(LTCl tca, (tkt )σl tca )

4: tktσl tca → (SN , H (IdPCA ∥Rndtkt ), IKtkt , ts , te , Exptkt )

5: H (Idthis -pca ∥Rndn-tkt )
?

= H (Idpca ∥Rndn-tkt )

6: Rndv ← GenRnd ()
7: for i:=1 to n do
8: Begin

9: Verify(K iv , (K
i
v )σ

kiv
)

10: IKPiv
← H (IKtkt | |K

i
v | |t

i
s | |t

i
e | |H

i (Rndv ))

11: if i = 1 then

12: SN i ← H (IKPiv
| |H i (Rndv ))

13: else

14: SN i ← H (SN i−1 | |H i (Rndv ))

15: end if

16: ζ ← (SN i , K iv , IKPiv
, t is , t

i
e )

17: (P iv )σpca ← Siдn (Lkpca, ζ )

18: End

19: return (Idr es , {(P 1v )σpca , . . . , (P
n
v )σpca }, Rndv , N +1, tnow )

20: end procedure

private keys by the vehicle (step 1.9). Then, it calculates the “iden-
tifiable key”, IK : H (IKtkt | |K

i
v | |t

i
s | |t

i
e | |H

i (Rndv )) (step 1.10). This

essentially prevents a compromised PCA from mapping a different

ticket during resolution process, or identifies a malicious PCA if

issued a pseudonymwithout a valid ticket received. The PCA implic-

itly correlates a batch of pseudonyms belonging to each requester

(steps 1.11–1.15). This essentially enables efficient distribution of

the CRL [57]: the PCA only needs to include one entry per batch

of pseudonyms without compromising their unlinkability. Finally,

the PCA issues the pseudonyms by signing it using its private key

(steps 1.16–1.17) and delivers the response (step 1.19).

4.2.2 Pseudonym Issuance Validation Process (Protocol 2).
Upon receiving a request for misbehavior identification, e.g., multi-

ple suspicious traffic congestion alerts sent to a traffic monitoring

system, an entity could send a request to the RA to validate the pseu-

donym issuance process of a “suspicious” pseudonym (step 2.1– 2.4).

The RA validates the request and interacts with the correspond-

ing PCA that issued the pseudonym, to provide evidence for the
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Protocol 2 Pseudonym Issuance Validation Process

Vj : P iv ← (SN i , K iv , IKPiv
, t is , t

i
e ) (1)

Vj : ζ ← (P iv ) (2)

Vj : (ζ )σv ← Siдn (P jv , ζ ) (3)

Vj → RA : (Idr eq , (ζ )σv , tnow ) (4)

RA : Verify(Pv , (ζ )σv ) (5)

RA : ζ ← (P iv ) (6)

RA : (ζ )σra ← Siдn (Lkra, ζ ) (7)

RA→ PCA : (Idr eq , (ζ )σra , LTCra, N , tnow ) (8)

PCA : Verify(LTCra, (ζ )σra ) (9)

PCA : (tkt, RndIK
Piv

) ← Resolve(P iv ) (10)

PCA : χ ← (SNPi , tktσl tca , RndIKPiv
) (11)

PCA : (χ )σpca ← Siдn (Lkpca, χ ) (12)

PCA→ RA : (Idr es , (χ )σpca , N +1, tnow ) (13)

RA : Verify(LTCpca, χ ) (14)

RA : (SNPi , tktσl tca , RndIKPiv
)←χ (15)

RA : Verify(LTCl tca, tktσl tca ) (16)

RA : (H (IdPCA ∥Rndtkt ), IKtkt , t
i
s , t

i
e , Exptkt )←tkt (17)

RA : H (IKtkt | |K
i
v | |t

i
s | |t

i
e | |RndIKPiv

)
?

= IKPiv
(18)

pseudonym issuance procedure; in fact, this process ensures that

an actual vehicle requested the pseudonym by providing a valid

ticket, also guarantees the PCA did not issue a pseudonym for an

illegitimate vehicle (step 2.5– 2.8).

Upon receiving the request, the PCA validates the request, and

provides the corresponding ticket and RndIKPiv
, used to issue the

pseudonym. The response is signed by the PCA sent back to the

RA (step 2.8– 2.13). Upon receiving the response, the RA verifies it,

facilitates validating the ticket using the public key of the LTCA,

and checksH (IKtkt | |K
i
v | |t

i
s | |t

i
e | |RndIKPiv

)
?

= IKP iv (step 2.14– 2.18).

If the hash calculation results in the same hash values, it confirms

that the pseudonym has been issued based on a valid ticket, i.e.,

properly issued by the LTCA. Moreover, it ensures the PCA could

not have issued the pseudonym for a non-existing vehicle. Note

that upon performing pseudonym issuance validation process, the

actual identity of a vehicle is not disclosed, i.e., user privacy is

strongly protected. Further security and privacy analysis in Sec. 5.

4.3 Mitigating Sybil Attacks on the VPKIaaS
Multiple replicas of a micro-service interact with the same database

to accomplish their operations, e.g., all replicas of LTCAs should

interact with the same database to store information about tickets

they issue. The same way, all replicas of PCAs interact with a single

database to validate an authorization ticket and store information

corresponding to issued pseudonyms. Micro-services could opt in to

utilize their shared MySQL database either synchronously or asyn-

chronously
7
. Asynchronous interaction of the micro-services and

the shared database would result in efficient pseudonyms issuance.

However, a malicious vehicle could repeatedly submit requests. If

7
A synchronous interaction with a database implies enforcing limits on accessing to a

resource by locking it to ensure the consistency of all transactions. An asynchronous

interaction, though, implies that requests are proceeded without waiting to complete

a transaction; the execution will happen later via an asynchronous callback function.

Figure 3: VPKIaaS Memorystore with Redis and MySQL.
the micro-services do not synchronously validate tickets and pseu-

donym requests, one can obtain multiple sets of pseudonyms if the

requests were delivered to different replicas. On the other hand,

synchronous interaction of the micro-services and the shared data-

base would prevent issuing multiple sets of pseudonym for a given

requester, thus, eradicating the Sybil-based misbehavior. However,

it would drastically diminish the performance of the system, no-

tably timely on-demand issuance of pseudonyms. The performance

of the relational database, e.g., MySQL, used in [60], can be highly

degraded by synchronized interactions, e.g., [41]. Moreover, scaling

out the Pods to handle a large volume of workload while relying on

a single shared MySQL database becomes a single point of failure,
questions the practicality of such a scheme (to be highly-available

and dynamically-scalable).

In order to systematically mitigate the aforementioned vulner-

ability, we propose a hybrid design by considering two separate

databases. Fig. 3 shows the Memorystore of the VPKIaaS: an in-

memory key-value database as a service on GCP compatible with

the Redis [14] protocol, and a relational database, e.g., MySQL. Each

Pod of a micro-service synchronously interacts with the Redis data-

base
8
to validate a request towards thwarting Sybil attacks. Upon

validating a request, the tickets and pseudonyms are issued and

the corresponding information are stored in the relational data-

base asynchronously. Such a hybrid design mitigates Sybil attacks

without diminishing the overall performance of the pseudonym

acquisition process: the time-consuming validation through the

rational database is replaced by an efficient validation through the

Redis database.

4.3.1 LTCA Sybil Attack Mitigation (Protocol 3). The LTCA, the

policy decision and enforcement point in a domain, issues tickets

with non-overlapping intervals, i.e., vehicles cannot obtain tickets

with overlapping lifetime. Upon receiving a ticket request, each

LTCA micro-service Pod should check if a ticket was issued to the

requester during that period. Enforcing such a policy ensures that

8
Note that MySQL and Redis could both be single point of failures if not offered as

a highly-available and dynamically-scalable service. However, a distributed cluster

of MySQL will be a bottleneck in our scenario because relational databases are slow

in nature, especially if the setup is synchronous. The Redis cluster, though, is an

in-memory key-value database which offers very fast insertion and query.
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Protocol 3 Ticket Request Validation (by the LTCA using Redis)

1: procedure ValidateTicketReq(SN i
LTC , tkt

i
star t , tkt

i
exp )

2: (value i ) ← RedisQuery(SN i
LTC )

3: if value i == NU LL OR value i <= tkt istar t then
4: RedisUpdate(SN i

LTC , tkt
i
exp )

5: Status ← I ssueT icket (. . . ) ▷ Invoking ticket issuance procedure

6: if Status == False then
7: RedisUpdate(SN i

LTC , value
i ) ▷ Reverting SN i

LTC to value i

8: return (False ) ▷ Ticket issuance failure

9: else
10: return (T rue ) ▷ Ticket issuance success

11: end if
12: else
13: return (False ) ▷ Suspicious to Sybil attacks

14: end if
15: end procedure

no vehicle would obtain more than a single valid ticket towards re-

questing multiple simultaneously valid pseudonyms. Furthermore,

each ticket is implicitly bound to a specific PCA by the vehicle; as a

result, the ticket cannot be used more than once or be used for other

PCAs. Each LTCA micro-service Pod stores the serial number of

the vehicle’s LTC (as the key) and the expiration time of its current

ticket (as the value) on the Redis database. Upon receipt of a new

request for obtaining a ticket, each micro-service creates a Redis

pipeline to validate the ticket (step 3.2). A Redis pipeline entails a

list of commands guaranteed to be executed sequentially without

interruption.

The Redis pipeline checks the existence of the serial number of

an LTC in the database; if it exists, it validates if the request interval

overlaps with the previously recorded entry (step 3.3); the request

is marked to be malicious if the serial number exists in the data-

base and the requested ticket start time (tktstar t ) is less than the

expiration time of the already existed ticket. Otherwise, the Redis

pipeline updates the corresponding entry (or adds a new entry if

not existed) with the new ticket expiration time (step 3.4). Then, the

procedure for ticket issuance will be invoked (step 3.5, i.e., Proto-

col 6 in Appendix). In case of any failure during the ticket issuance,

the ticket expiration value will be rolled back (steps 3.6–3.8). The

Redis pipeline is executed on a single thread and it is guaranteed

to sequentially execute the commands; thus, even if all replicas of

the LTCA received a ticket request from the same vehicle, Redis

ensures that only one ticket request will be served and the rest of

them will be denied.

4.3.2 PCA Sybil Attack Mitigation (Protocol 4). The PCA issues

pseudonyms with non-overlapping lifetimes in order to ensure

that no vehicle is provided with more than one valid pseudonym

at any given point in time. However, in order to fully eradicate

Sybil-based misbehavior, the PCA micro-service should ensure that

each ticket is used only once to issue a set of pseudonyms for a

requester. In other words, the VPKIaaS system should ensure that

different replicas of the PCA micro-service never issue more than

a set of pseudonyms for a ticket. All replicas of the PCA share a

Redis Memorystore with the ticket serial number (as the key) and

a boolean data type (as the value). If the ticket serial number does

not exist, or if it exists with a boolean data type value of false, the

ticket was not used.

Protocol 4 PseudonymRequest Validation(by the PCA using Redis)

1: procedure ValidatePseudonymReq(SN i
tkt )

2: (value i ) ← RedisQuery(SN i
tkt )

3: if value i == NU LL OR value i == False then
4: RedisUpdate(SN i

tkt , T rue )
5: Status ← I ssuePsnyms (. . . ) ▷ Invoking pseudonym issuance

6: if Status == False then
7: RedisUpdate(SN i

tkt , False ) ▷ Reverting SN i
tkt to False

8: return (False ) ▷ Pseudonym issuance failure

9: else
10: return (T rue ) ▷ Pseudonym issuance success

11: end if
12: else
13: return (False ) ▷ Suspicious to Sybil attacks

14: end if
15: end procedure

Upon receipt of a pseudonym acquisition request, each Pod of

the PCAmicro-service creates a Redis pipeline to validate the ticket

(step 4.2). If the key (SNtkt ) does not exist or the value is false

(step 4.3), Redis updates the database with the value of true and the

procedure for issuing pseudonyms will be invoked (step 4.5, i.e.,

Protocol 1). In case of failure during the pseudonym acquisition

process, the corresponding value for the ticket will be set to false in

the Redis database, i.e., rolling back the transaction, to ensure the

consistency of the pseudonym issuance procedure (steps 4.6–4.8).

If the value corresponding to the key (SNtkt ) is true, the request

for obtaining a set of pseudonyms should be denied (step 4.13).

5 QUALITATIVE ANALYSIS
A detailed security and privacy analysis on the requirements for

VPKI entities can be found in [57, 60]. Here, we compile security and

privacy analysis for deploying a VPKIaaS system on the cloud, and

we discuss additional facts of the problem. A detailed description

on secret management in the cloud can be found in Appendix.

5.1 Security and Privacy Analysis
Sybil-based misbehavior: A malicious vehicle could attempt to re-

peatedly request to obtain multiple tickets from the LTCA, and/or

aggressively request multiple sets of pseudonyms from the PCA.

However, all replicas of a micro-service share a Redis Memorystore

to validate every request. Thus, any suspicious request can be in-
stantaneously validated through the Redis Memorystore (without

interacting with the MySQL, which would be relatively more time-

consuming). Redis is executed on a single thread and the pipeline

is guaranteed to sequentially execute the commands; thus, even if

all replicas of a micro-service, e.g., the PCA, received a pseudonym

request from one vehicle at the same time, the VPKIaaS system

would serve only one pseudonym request and the rest of them

would be denied. Therefore, the VPKIaaS ensures an efficient ticket

and pseudonym provisioning while preventing any vehicle from

obtaining multiple tickets or sets of pseudonyms towards a Sybil-

based misbehavior. The ramification of the Redis service failure

depends on the action taken after the failure, i.e., fail open or fail
close. In case of fail open, Sybil attacks would be possible, as the

VPKIaaS system would provide vehicles with spurious pseudonyms.

Later, it invalidates the erroneously issued credentials by adding
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them to the CRL. In case of fail close, the VPKIaaS system stops

issuing credentials until the failure gets resolved.

Alternatively, a single deviant PCA could issue multiple simulta-

neously valid pseudonyms for a given vehicle, or issue pseudonyms

for an entity without any valid ticket issued by the LTCA. However,

upon performing pseudonym validation process, the RA requests

the corresponding PCA to validate a pseudonym. Each pseudonym

requires to have a valid pseudonym identifiable key (IKP iv ). Thus,

a malicious PCA can be identified and would then be evicted from

the VPKI system if it issued a pseudonym without a valid ticket

provided. Note that when performing the pseudonym issuance

validation process, the actual identity of the pseudonym owner is

not disclosed to the PCA or the RA, i.e., user privacy is preserved.

Moreover, no entity can infer user sensitive information by contin-

uously conducting pseudonym issuance validation process towards

harming user privacy. We emphasize here that our VPKIaaS scheme

does not prevent a malicious PCA from issuing multiple sets of fake

pseudonyms; rather, our scheme facilitates efficient identification of

a misbehaving PCA by cross-checking the pseudonym issuance pro-

cedure in a privacy-preserving manner. To ensure correct operation

of a micro-service, each Pod frequently requests a dummy ticket or

pseudonym. Since such operations are executed in isolation within

the Pod, the issued dummy tickets and pseudonyms cannot leave

the Pod. Moreover, each issued pseudonym can be cross-checked

towards identifying suspicious compromised entity.

DDoS attacks on the VPKIaaS system: Compromised internal enti-

ties or external adversaries could try to harm the system operations

by launching a DoS (or a DDoS) attack, thus degrading the avail-

ability of the system. A rate limiting mechanism prevents them

from compromising the availability of the system; moreover, the

system flags misbehaving users, thus evicting them from the system.

External adversaries could launch a DDoS attack by clogging the

LTCA with fake certificates, or the PCA with bogus tickets. In fact,

such misbehaving entities attempt to compromise the availability

of the VPKI entities by mandating them to excessively validate the

signature of fake LTCs or bogus tickets, i.e., performing a signature

flooding attack [50].

We achieve high-availability and fault-tolerance in the face of

a benign failure by exploiting the Kubernetes master to kill the

running (faulty) Pod, e.g., in case of system faults or crashes, and

create a new Pod. In case of resource depletion attacks, the Ku-

bernetes master scales out the Pods to handle such demanding

loads. At the same time, a puzzle technique, e.g., [29, 33], can be em-

ployed as a mitigation approach, e.g., [60]: each vehicle is mandated

to visit a pre-defined set of Pods, in a pre-determined sequential

order to solve a puzzle. As a result, the power of an attacker is de-

graded to the power of a legitimate client, thus, an adversary cannot

send high-rate spurious requests to the VPKI. On the side of the

infrastructure, there are DDoS mitigation techniques at different

network layers, provided by various cloud service providers.

Synchronization among the VPKI entities: Lack of synchroniza-

tion between the LTCA and the PCA could affect the pseudonym

issuance process, e.g., a PCA would not issue pseudonyms for a

seemingly ‘expired’ ticket. However, mildly drifting clocks of the

VPKI entities can hardly affect the operation, because the pseudo-

nym lifetimes and periods for pseudonym refills (Γ) are in the order

of minutes, typically. It suffices to have VPKI entities periodically

synchronizing their clocks. For example, if the accuracy of an Real

Time Clock (RTC) is 50 parts-per-million (ppm), i.e., 50 × 10−6, and

the maximum accepted error in timestamp is 50 ms, then each entity

should synchronize its clock every 16 minutes (
50×10−3sec
50×10−6ppm ).

6 QUANTITATIVE ANALYSIS
Experimental setup: We leveraged a state-of-the-art VPKI sys-

tem [60] and restructured its source code to fit in a micro-services

architecture, e.g., through containerization, automation, bootstrap-

ping of services.We further added health and loadmetric publishing

features, to be used by an orchestration service to scale in/out ac-

cordingly. We built and pushed Docker images for LTCA, PCA,

RA, MySQL, and Locust [18], an open source load testing tool, to
the Google Container Registry [9]. Isolated namespaces and de-

ployment configuration files are defined before Google Kubernetes

Engine (GKE) v1.10.11 [10] cluster runs the workload. We config-

ured a cluster of five Virtual Machines (VMs) (n1-highcpu-32), each

with 32 vCPUs and 28.8GB of memory. The implementation is in

C++ and we use FastCGI [49] to interface Apache web-server. We

use XML-RPC [16] to execute a remote procedure call on the cloud.

The VPKIaaS interface is language-neutral and platform-neutral, as

we use Protocol Buffers [11] for serializing and de-serializing struc-

tured data. For the cryptographic protocols and primitives (ECDSA

and TLS), we use OpenSSL with ECDSA-256 key pairs according to

the ETSI (TR-102-638) [45] and IEEE 1609.2 [51] standards; other

algorithms and key sizes are compatible in our implementation.

To facilitate the deployment of the VPKIaaS, we created all

VPKIaaS configuration in YAML language [17], applicable to deploy

on any cloud provider which offers Kubernetes As A Service, e.g.,
GCP [22] and Amazon Web Service (AWS) (aws.amazon.com). For

our experiments, we deployed our VPKIaaS on the GKE. We also

used other GCP services: Memorystore [20], Prometheus [26], and
Grafana [23]. The Memorystore service is a Redis-compatible [14]

service which acts as in-memory key-value data store (see Fig. 3).

Prometheus is a feature-rich metric service which collects all the

metrics of the Kubernetes cluster and the applications running

on it into a time-series database. We use Grafana to visualize the

metrics collected by Prometheus and monitor the system under test.
Prometheus and Grafana are deployed as prepared applications

from the GCP marketplace [27] on the Kubernetes cluster. More-

over, we leveraged Locust [18], deployed on the Kubernetes cluster,

to synthetically generate a large volume of pseudonym requests.

Metrics: To evaluate the performance of our VPKIaaS system,

we measure the latency to obtain pseudonyms under different sce-

narios and configurations for a large-scale mobile environment.

More specifically, we evaluate the performance of the system with

(and without) flash crowds to illustrate its high-availability, ro-
bustness, reliability, and dynamic-scalability. We demonstrate the

performance of our VPKIaaS system by emulating a large volume

of synthetic workload. Table 2 shows the configurations used in

our experiments, with Config-1 referring to a ‘normal’ vehicle ar-
rival rate and Config-2 for a flash crowd scenario. Experiments with

Config-1 indicates that every 1-5 seconds, a new vehicle joins the

system and requests a batch of 100-500 pseudonyms. To emulate a

flash crowd scenario, i.e., Config-2, beyond having vehicles joining
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Table 2: Experiment Parameters.

Parameters Config-1 Config-2

total number of vehicles 1000 100, 50,000

hatch rate 1 1, 100

interval between requests 1000-5000 ms 1000-5000 ms

pseudonyms per request 100, 200, 300, 400, 500 100, 200, 500

LTCA memory request 128 MiB 128 MiB

LTCA memory limit 256 MiB 256 MiB

LTCA CPU request 500 m 500 m

LTCA CPU limit 1000 m 1000 m

LTCA HPA 1-40; CPU 60% 1-40; CPU 60%

PCA memory request 128 MiB 128 MiB

PCA memory limit 256 MiB 256 MiB

PCA CPU request 700 m 700 m

PCA CPU limit 1000 m 1000 m

PCA HPA 1-120; CPU 60% 1-120; CPU 60%

the system based on Config-1, 100 new vehicles join the system

every 1-5 seconds and request a batch of 100-200 pseudonyms.

Remark: Assuming the pseudonyms are issued with non-over-

lapping intervals (important to mitigate Sybil-based misbehavior),

obtaining 100 and 500 pseudonyms per day implies pseudonyms

lifetimes of 14.4 minutes (τP = 14.4 min.) or 3 minutes (τP =172.8
sec), respectively. According to actual large-scale urban vehicular

mobility dataset, e.g., Tapas-Cologne [86] or LuST [40], the average

trip duration is within 10-30 minutes. Moreover, according to the

US DoT, the average daily commute time in the US is around 1

hour [1]. Thus, requesting 100 pseudonyms per day would cover

24 hours trip duration with each pseudonym lifetime of approx.

15 minutes. We evaluate the performance of our VPKIaaS system

under such seemingly extreme configurations.

6.1 Large-scale Pseudonym Acquisition
Fig. 4.a illustrates the Cumulative Distribution Function (CDF) of

the single ticket issuance processing delay (executed based on

Config-1 in Table 2); as illustrated, 99.9% of ticket requests are

served within 24 ms: Fx (t = 24ms ) = 0.999, i.e., Pr {t ≤ 24ms} =
0.999. Fig. 4.b shows the CDF of processing latency for issuing

pseudonyms with different batches of pseudonyms per request as

a parameter. For example, with a batch of 100 pseudonyms per

request, 99.9% of the vehicles are served within less than 77 ms

(Fx (t = 77ms ) = 0.999). Even with a batch of 500 pseudonyms

per request, the VPKIaaS system can efficiently issue pseudonyms:

Fx (t = 388 ms ) = 0.999. The results confirm that the VPKIaaS

scheme is efficient and scalable: the pseudonym acquisition pro-

cess incurs low latency and it efficiently issues pseudonyms for the

requesters.

6.2 VPKIaaS with Flash Crowd Load Pattern
Fig. 5 shows the performance of the VPKIaaS when a surge in

pseudonym acquisition requests happens to the VPKIaaS (executed

based on Config-2 in Table 2, with 100 pseudonyms per request

for Fig. 5.a). We assess CPU utilization of the LTCA and the PCA

Pods (Fig. 5.a top) and the total number of pseudonyms requests per

second (Fig. 5.a bottom). When the number of requests per second

increases, the average CPU utilization would rise; however, when
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Figure 4: (a) CDF of end-to-end latency to issue a ticket.
(b) CDFof end-to-end processing delay to issue pseudonyms.
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Figure 5: VPKIaaS system in a flash crowd load situation. (a)
CPU utilization and the number of requests per second. (b)
CDF of processing latency to issue tickets and pseudonyms.

CPU utilization hits 60% threshold, defined in the Horizontal Pod

Autoscalers (HPAs) [24], the LTCA and the PCA deployment would

horizontally scale to handle demanding loads, thus the average CPU

utilization drops upon scaling out.

Fig. 5.b shows the end-to-end processing latency to obtain tickets

and a batch of 100 or 200 pseudonyms in a flash crowd situation. The

processing latency to issue a single ticket is: Fx (t = 87ms ) = 0.999;

to issue a batch of 100 pseudonyms per request, the processing

latency is: Fx (t = 192ms ) = 0.999. In comparison with processing

delay under ‘normal’ conditions (Fig. 4), the processing latency of

issuing a single ticket increases from 24 ms to 87 ms; the processing

latency to issue a batch of 100 pseudonyms increased from 77 ms

to 192 ms. Thus, even under such a highly demanding request rate,

the VPKIaaS system issues credentials efficiently.
9

Fig. 6.a shows the latency for each system component to obtain

different batches of pseudonyms per request (Config-2 in Table 2).

Our VPKIaaS system outperforms prior work [38]: the processing

delay to issue 100 pseudonym for [38] is approx. 2010 ms, while it is

approx. 56 ms in our system, i.e., achieving a 36-fold improvement

over prior work [38]. Fig. 6.b illustrates the average end-to-end

latency to obtain pseudonyms, observed by clients. As we can see,

during a surge of requests, all vehicles obtained a batch of 100

pseudonyms within less than 4,900 ms (including the networking

latency). Obviously, the shorter the pseudonym lifetime, the higher

the workload on the VPKI, thus the higher the end-to-end latency.

9
The total number of vehicles requesting 100 pseudonyms (under Config-2 in Table 2) is

398,870 and the VPKIaaS system issued approximately 40 millions pseudonyms within

2,500 seconds; with such an arrival rate, the VPKIaaS system would issue 0.5 × 1012

pseudonyms per year. Obviously, this number is lower that the one mentioned in

Sec. 1, i.e., 1.5 × 1012 . Note that this is a proof of concept of the implementation and

evaluation of the VPKIaaS system; by allocating more resources and increasing the

pseudonym request rates, the VPKIaaS system would issue even further pseudonyms.

9
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Figure 6: VPKIaaS system with flash crowd load pattern. (a)
Average end-to-end latency to obtain pseudonyms. (b) CDF
of end-to-end latency, observed by clients.

Note that serving requests under a flash crowd scenario at this

rate (Config-2 in Table 2) implies that our VPKIaaS system would

serve 720,000 vehicles joining the system within an hour. Thus,

even under such flash crowd load pattern, our VPKIaaS system can

comfortably handle such a high demand of requests.

6.3 Dynamic-scalability of the VPKIaaS
In this scenario, we demonstrate the performance of our VPKIaaS

system, notably its reliability and dynamic scalability. To emulate a

large volume of workload, we generated synthetic workload using

30 containers, each with 1 vCPU and 1GB of memory (executed

based on Config-2 in Table 2). Fig. 7.a shows the average CPU

utilizations of the LTCA and PCA Pods (observed by HPA) as well

as the total number of requests per second. Fig. 7.b shows how our

VPKIaaS system dynamically scales out or scales in according to

the rate of pseudonyms requests. The numbers next to the arrows

show the number of LTCA and PCA Pod replicas at any specific

system time. As illustrated, the number of PCA Pods starts from 1

and it gradually increases; at system time 1500, there is a surge in

pseudonym requests, thus the number of PCA Pods increased to 80.

Note that issuing a ticket is more efficient than issuing pseudonyms;

thus, the LTCA micro-service scaled out only up to 4 Pod replicas.

6.4 VPKIaaS Performance Comparison
We compare our VPKIaaS scheme with a baseline scheme [38],

which implements a VPKI according to the ETSI architecture. More

precisely, each vehicle requests pseudonyms from an authorization

authority; the request is forwarded to the enrollment authority to

check and validate the request. Upon a successful validation, the

authorization authority issues the pseudonyms and sends them

back to the vehicle. Using the similar setup to have a meaningful

and direct comparison, we achieve a 36-fold improvement over the

baseline scheme: under normal conditions, the processing delay

to issue 100 pseudonyms for the baseline scheme is approx. 2010

ms, while it is approx. 56 ms in our VPKIaaS system. Even under a

flash crowd scenario (based on Config-2), the processing delay to

issue 100 pseudonyms is approx. 71 ms, i.e., 28-fold improvement.

Furthermore, unlike the VPKI system in [38], our implementation

supports dynamic scalability, i.e., the VPKI scales out, or scales is,

based on the arrival rate of pseudonyms requests.

Moreover, in order to handle a large volume of workload, SEC-

MACE [60] requires to statically allocate resources to the VPKI. In

case of an unpredictable surge in the arrival rates or being under

a DDoS attack, the performance of SECMACE would drastically
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Figure 7: Each vehicle requests 500 pseudonyms (CPU uti-
lization observed byHPA). (a) Number of active vehicles and
CPU utilization. (b) Dynamic scalability of VPKIaaS system.

decrease. Furthermore, when deploying SECMACE on the cloud, a

malicious vehicle could repeatedly request to obtain pseudonyms

towards performing Sybil-based misbehavior. On the contrary, our

VPKIaaS system can comfortably handle requests with unexpected

arrival rate while being efficient in issuing pseudonyms, being re-
silient against Sybil and resource depletion attacks, and being cost-

effective by systematically allocating and deallocating resources.

7 CONCLUSION
Paving theway for the deployment of a secure and privacy-preserving

VC system relies on deploying a special-purpose VPKI. However,

its success requires extensive experimental evaluation, to ensure

viability (in terms of performance and cost). We leverage a state-

of-the-art VPKI, enhance its functionality, and migrate it into the

GCP to illustrate its availability, resiliency, and scalability towards

a cost-effective VPKI deployment. Through extensive security and

privacy analysis, we show that the VPKIaaS system fully eradicates

Sybil-based misbehavior without compromising the efficiency of

the pseudonym acquisition process. All these investigations would

catalyze the deployment of the central building block of secure and

privacy-preserving VC systems.
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APPENDIX
Protocol 5 Ticket Request from the LTCA (by the vehicle)

1: procedure ReqTicket(ts , te )
2: Rndtkt ← GenRnd ()
3: ζ ← (Idr eq, H (IdPCA ∥Rndtkt ), ts , te )
4: (msд)σv ← Siдn (Lkv , ζ )
5: return ((msд)σv , LTCv , N , tnow )
6: end procedure

Protocol 6 Issuing a Ticket (by the LTCA)

1: procedure IssueTicket((msд)σv , LTCv , N , tnow )

2: Verify(LTCv , (msд)σv )
3: RndIKtkt ← GenRnd ()
4: IKtkt ← H (LTCv | |ts | |te | |RndIKtkt )
5: ζ ← (SN , H (IdPCA ∥Rndtkt ), IKtkt , ts , te , Exptkt )
6: (tkt )σl tca ← Siдn (Lkl tca, ζ )
7: return (Idr es , (tkt )σl tca , RndIKtkt , N + 1, tnow )

8: end procedure

Ticket Acquisition Process (Protocols 5 and 6). Assume the

OBU decides to obtain pseudonyms from a specific PCA. It first
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interacts with its H-LTCA to obtain a valid ticket. To conceal the

actual identity of its desired PCA from the LTCA, it calculates

the hash value of the concatenation of the specific PCA identity

with a random number
10

(steps 5.1–5.2). The vehicle prepares the

request and signs it under the private key corresponding to its LTC

(step 5.3–5.4) before returning the ticket request (step 5.5). It will

then interact with the LTCA over a bidirectional authenticated TLS.

Upon reception of the ticket request, the LTCA verifies the

LTC (thus authenticating and authorizing the requester) and the

signed message (step 6.2). The LTCA generates a random number

(RndIKtkt ) and calculates the “ticket identifiable key” (IKtkt ) to bind
the ticket to the LTC as: H (LTCv | |ts | |te | |RndIKtkt ) (steps 6.3–6.4);
this prevents a compromised LTCA from mapping a different LTC

during the resolution process. The LTCA then encapsulates (step

6.5), signs (step 6.6), and delivers the response (step 6.7).

Secret Management
Secret management is a concern towards deploying services in the

cloud. Passwords, secret keys, and private keys cannot be simply

integrated (hard-coded) into the services, e.g., the source code or

the configuration files. Having services deployed on the cloud,

each service fetches the needed secrets according to role-based

access control. In this section, we review best practices, provided by

cloud service providers. Note that deploying services on the cloud

typically implies trusting cloud service providers, notably in terms

of secret management.

Amazon Web Service (AWS): AWS offers several services regard-

ing secret management on the cloud. The most common service is

Key Management Service (KMS), which offers a key management

service on FIPS 140-2 validated HSMs [19] as the way to create,

import, store, and rotate keys within AWS. The KMS of the AWS

only supports Advanced Encryption Standard (AES)-256. Through

role-based access control policies for key management, one can be

ensured that the secret key is only accessible by the authorized ser-

vice, which initiated the process. As the applications and services

will fetch the secrets from the KMS whenever they need, changing

the secret key will not affect the operations of the services because

they will fetch a new secret in the next iteration. The KMS provides

automatic secret rotation, which can be enabled by the service. KMS

can also be integrated with CloudTrail [4], logging access to the

secret keys. CloudTrail logs must be configured with proper actions,

besides raising an alarm in case of suspicious activities, e.g., rotating

the key if illegitimate access to the secret key. Beyond KMS, there

are other services for secret management, specifically designed to

hold secret strings for the use in Relational Database Service (RDS)

services of AWS. AWS also offers AWS Certificate Manager (ACM),

providing a traditional certificate management [3].

Google Cloud Platform (GCP): GCP offers a key management ser-

vice similar to AWS. Unlike AWS, GCP supports various cryptogra-

phic algorithms and primitives, e.g., AES-256, RSA-2048, RSA-3072,

RSA-4096, Elliptic Curve Cryptography (ECC)-P256, and ECC-P384.

In order to protect the secrets according to compliance standards,

e.g., Federal Information Processing Standard (FIPS) 140-2, the KMS

can be integrated with the HSM [21] service provided by the cloud

10
The storage cost for these random numbers is reasonably cheap, e.g., 264 million

vehicles with average trip duration of 1 hour require 32 GB per day (25$ per month).

service provider according to the FIPS 140-2 Level 3 [7, 37]. Ac-

cessing the secret keys can be restricted using Identity & Access

Management (IAM) policies [5]. The cloud IAM service facilitates

fine-grained access control to a service, e.g., defining a role to enable

encryption using a certain KMS service and assigning the role to a

specific (authorized) micro-service. Thus, the system ensures that

only the specified micro-service can access the KMS instance with-

out being able to access other cryptographic materials. Similar to

CloudTrail in AWS, the GCP provides an Audit Logging Service [8]

in order to monitor activities, e.g., accessing the data, as well as

logging the system events for auditing purposes.

Kubernetes: Kubernetes is an orchestration service, responsible

for orchestrating micro-services. Secret management in Kubernetes

is different from the ones that cloud providers would offer. Kuber-

netes offers a secret management system for micro-services. Thus,

a micro-service can leverage only the secret management system

within the Kubernetes, or alternatively, it can interact with the

secret management services offered by the cloud service provider,

in which the Kubernetes instances operate.

Secret Management in VPKIaaS: In order to offer a cloud agnostic

solution for the VPKIaaS system, the Kubernetes secret volume

suits our solution the best. However, the contents of the volume

are encrypted using the KMS of the cloud service provider. During

the bootstrapping phase, each Pod of a micro-service fetches its

encrypted private key from its local volume; it then queries the

KMS of the cloud provider to decrypt the private key (according

to role-based access control). To protect the secrets, i.e., the key-

pairs used by the VPKI entities, each micro-service leverages its

own secret volume in its own namespace [12]. A namespace is an

isolated environment with all classes of elements operating in it.

However, to protect the secret volumes, the keys can be encrypted

using the KMS of the cloud service provider, depending on the

choice of deployment.

12


	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Model and Objectives
	3.1 Overview and Assumptions
	3.2 Adversarial Model and Requirements

	4 VPKI Services Overview & Security Protocols
	4.1 VPKI as a Service (VPKIaaS)
	4.2 Security Protocols
	4.3 Mitigating Sybil Attacks on the VPKIaaS

	5 Qualitative Analysis
	5.1 Security and Privacy Analysis

	6 Quantitative Analysis
	6.1 Large-scale Pseudonym Acquisition
	6.2 VPKIaaS with Flash Crowd Load Pattern
	6.3 Dynamic-scalability of the VPKIaaS
	6.4 VPKIaaS Performance Comparison

	7 Conclusion
	References

