
Mix-Zones Everywhere: A Dynamic Cooperative Location Privacy Protection Scheme Access

Mohammad Khodaei and Panos Papadimitratos Networked Systems Security Group KTH Royal Institute of Technology, Sweden www.ee.kth.se/nss

Vehicular Communication (VC) Systems $\{\mathsf{Msg}\}_{(\mathsf{P^i}_{\mathsf{V}})},\mathsf{P^i}_{\mathsf{V}}$

SECMACE Overview

Figure 3: Pseudonym Acquisition Overview in Home and Foreign Domains [5, 10].

Security System Entities

Architecture [5, 7].

• Vehicles registered with one (home) **Long** Term Certification Authority (LTCA)

Figure 1: Vehicular Public-Key Infrastructure (VPKI)

- Pseudonym Certification Authority (PCA) servers in one or multiple domains
- Vehicles can obtain pseudonyms from any **PCA** (in home or foreign domains)
- Trust across domains with the help of a **Root** CA (RCA) or cross-certification

Security & Privacy Requirements

- Authentication and communication integrity
- Authorization and access control
- Non-repudiation, accountability and eviction
- Conditional anonymity & unlinkability

Mitigating Timing-based Inferences

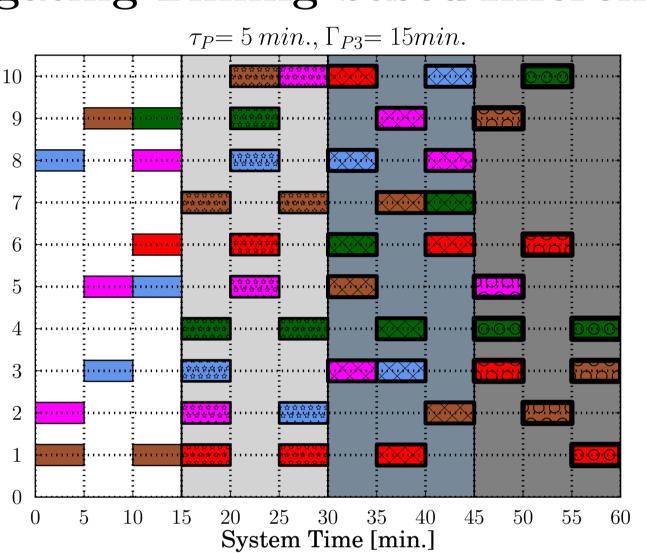


Figure 4: Universally Fixed Policy [5, 7, 10]

- Achieving highest level of privacy: anonymity set equals to the number of active vehicles
- Preventing a single honest-but-curious VPKI entity from linking pseudonyms

Adversarial Model

- Honest-but-curious VPKI entities
- Roadside Units (RSUs), as honest-but-curious system entities, capture messages within their coverage range and aggregate the information

Mix-zones Everywhere

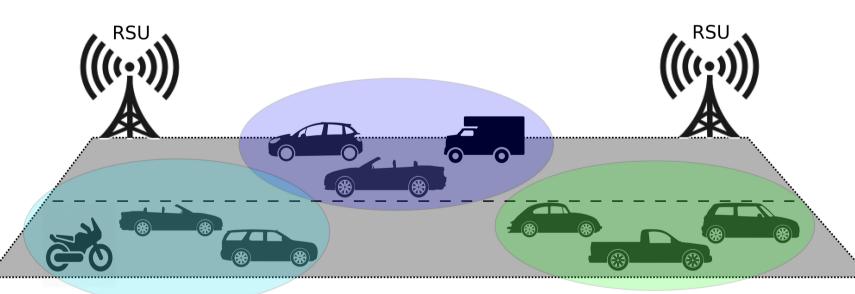


Figure 5: Dynamic construction of Mix-zones.

- A dynamic mix-zone formation upon reaching a pseudonym transition process, initiated by a vehicle
- All Cooperative Awareness Messages (CAMs) within each mix-zone are encrypted using a distinct symmetric session key

Pseudonym Acquisition Policy

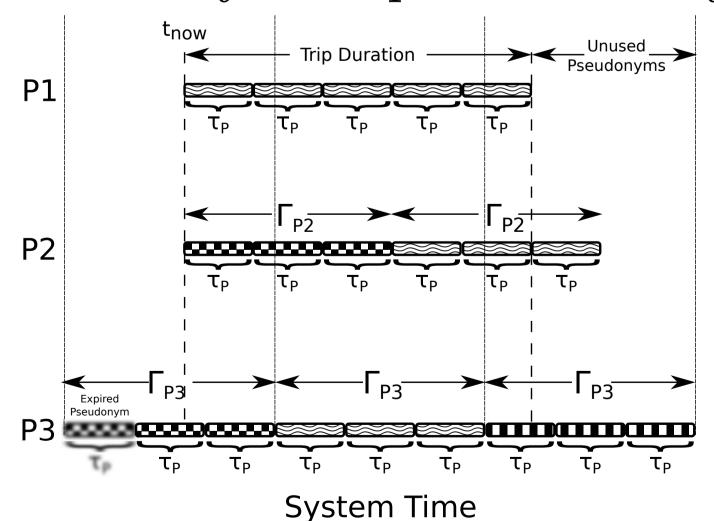


Figure 2: A Schematic Comparison of P1, P2, and P3 [7].

- P1: User-controlled (user-defined) policy
- P2: Oblivious policy
- P3: Universally fixed policy

Inferring User-sensitive Information

- Syntactically and semantically (i.e., time and velocity) linking messages
- Linking based on times of pseudonym changes (cannot be obfuscated)

Mix-Zone Initiation Protocol

Protocol 1: Mix-Zone Initiation Protocol		
1: procedure Initiate-MixZone()		
2:	$Flag_{INIT-MIX} \leftarrow True$	▶ Initializing Mix-zone flag to true
3:	$CAM \leftarrow \{Fields, Flag_{INIT-MIX}\}$	$\{t_{now}\}$ $ ightharpoonup$ Encapsulating a CAM
4:	$(CAM)_{\sigma_{k_v}} \leftarrow \operatorname{Sign}(CAM, K_v)$	▷ Signing the CAM
5:	$broadcast((CAM)_{\sigma_{k_n}})$	▶ Broadcasting a CAM with Mix-zone initiation
6:	Generate (SK)	▷ Generating a symmetric key SK
7:	for i:=1 to n do	> n: number of neighboring vehicles
8:	Begin	
9:	$SK_{\sigma_{K_v^i}} \leftarrow \text{Encrypt}(K_v^i, SK)$	▷ Encrypting SK with a neighbor's public key
10:		$(K_v, K_v^i, t_{now}) riangleright$ Encapsulating the msg
11:	$\zeta_{\sigma_{k_v}} \leftarrow Sign(k_v, \zeta)$	▷ Signing the message with it's private key
12:	$broadcast({\zeta_{\sigma}}_{k_{N}})$	
13:	End	
14: end procedure		

Security and Privacy Analysis

- Fully eradicating Sybil-based misbehavior
- Strongly protecting user privacy by issuing fully-unlinkable pseudonyms (by the VPKI entities)
- Mitigating syntactic and semantic linking attacks
- Preventing malicious internal vehicles from degrading down the anonymity set by terminating the protocol at any time, or by ignoring changing their pseudonyms
- No user-sensitive information is disclosed to harm user privacy: dynamic formation of mix-zones combined with the fully-unlinkable pseudonyms issuance process hinder harming user privacy by colluding entities (e.g., malicious internal vehicles with an RSU or a VPKI entity)

Remaining Challenges

- Efficient, scalable, and resilient group authentication to initiate dynamic formation of mix-zones
- Evaluating the performance of the *mix-zones* everywhere scheme in simulation
- Gauging the achieved privacy protection in comparison with other schemes

References

- [1] C. Vaas, M. Khodaei, P. Papadimitratos, and M. Ivan, "Nowhere to hide? Mix-Zones for Private Pseudonym Change using Chaff Vehicles," in IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, Dec. 2018.
- [2] M. Khodaei and P. Papadimitratos, "Efficient, Scalable, and Resilient Vehicle-Centric Certificate Revocation List Distribution in VANETs," in ACM WiSec, Stockholm, Sweden, June 2018, pp. 172–183.
- [3] H. Noroozi, M. Khodaei, and P. Papadimitratos, "DEMO: VPKIaaS: A Highly-Available and Dynamically-Scalable Vehicular Public-Key Infrastructure," in ACM WiSec, Stockholm, Sweden, June 2018, pp. 302–304.
- Preservation through Uniformity," in ACM WiSec, Stockholm, Sweden, June 2018, pp. 279–280. [5] M. Khodaei, H. Jin, and P. Papadimitratos, "SECMACE: Scalable and

[4] M. Khodaei, H. Noroozi, and P. Papadimitratos, "POSTER: Privacy

- Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems," in IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 5, 1430–1444, May 2018.
- [6] M. Khodaei, A. Messing, and P. Papadimitratos. 2017. "RHyTHM: A Randomized Hybrid Scheme To Hide in the Mobile Crowd," in IEEE Vehicular Networking Conference (VNC), Torino, Italy, Nov. 2017.
- [7] M. Khodaei and P. Papadimitratos, "Evaluating On-demand Pseudonym Acquisition Policies in Vehicular Communication Systems," in Proceedings of the First International Workshop on Internet of Vehicles and Vehicles of Internet, Paderborn, Germany, pp. 7–12, July 2016.
- [8] H. Jin, M. Khodaei, and P. Papadimitratos, "Security and Privacy in Vehicular Social Networks," in Vehicular Social Networks. Taylor & Francis Group, 2016.
- [9] M. Khodaei and P. Papadimitratos, "The Key to Intelligent Transportation: Identity and Credential Management in Vehicular Communication Systems," in IEEE Vehicular Technology Magazine, vol. 10, no. 4, pp. 63–69, Dec. 2015.
- [10] M. Khodaei, H. Jin, and P. Papadimitratos. "Towards Deploying a Scalable & Robust Vehicular Identity and Credential Management Infrastructure," in IEEE Vehicular Networking Conference (VNC), Paderborn, Germany, Dec. 2014.

Swedish Foundation for Strategic Research