Efficient, Scalable, and Resilient Vehicle-Centric Certificate Revocation List Distribution in VANETs

Mohammad Khodaei and Panos Papadimitratos

Networked Systems Security Group (NSS) www.ee.kth.se/nss

Royal Institute of Technology (KTH) Stockholm, Sweden

June 20, 2018

M. Khodaei and P. Papadimitratos (KTH)

ACM WiSec'18, Stockholm

Secure Vehicular Communication (VC) Systems

- Vehicular Public-Key Infrastructure (VPKI)
- Root CA (RCA)
- Long Term CA (LTCA)
- Pseudonym CA (PCA)
- Resolution Authority (RA)
- Lightweight Directory Access
 Protocol (LDAP)
- Roadside Unit (RSU)
- Trust established with RCA, or through cross certification

Traditional PKI vs. Vehicular PKI

- Dimensions (5 orders of magnitude more credentials)
- Balancing act: security, privacy, and efficiency
 - Honest-but-curious VPKI entities
 - Performance constraints: safety- and time-critical operations (rates of 10 safety beacons per second)
- Mechanics of revocation:
 - Highly dynamic environment with intermittent connectivity
 - Short-lived pseudonyms, multiple per entity
 - Resource constraints

Revocation challenges:

- Efficient and timely distribution of Certificate Revocation Lists (CRLs) to every legitimate vehicle in the system
- Strong privacy for vehicles prior to revocation events to every vehicle
- Computation and communication constraints of On-Board Units (OBUs) with intermittent connectivity to the infrastructure
- Peer-to-peer distribution is a double-edged sword: abusive peers could "pollute" the process, thus degrading the timely CRL distribution

System Model and Assumptions

Figure: Pseudonym acquisition overview in the home and foreign domains.

Figure: Pseudonym Acquisition Policies.

M. Khodaei, H. Jin, and P. Papadimitratos. IEEE T-ITS, vol. 19, no. 5, pp. 1430-1444, May 2018.

Vehicle-Centric CRL Distribution

Figure: CRL as a Stream:

 V_1 subscribes to $\{\Gamma_{CRI}^i, \Gamma_{CRI}^{i+1}, \Gamma_{CRI}^{i+2}\};$ $V_2: \{\Gamma^i_{CRI}, \Gamma^{i+1}_{CRI}\};$ $V_3: \{\Gamma_{CRI}^{i+2}\};$ $V_4: \{\Gamma_{CBI}^{i+3}\};$ $V_5: \{\Gamma_{CRI}^{i+4}\}.$

Figure: A vehicle-centric approach: each vehicle only subscribes for pieces of CRLs corresponding to its trip duration.

24

 $-\Gamma^1_{CRI} \longrightarrow -\Gamma^2_{CRI} \longrightarrow -\Gamma^3_{CRI}$

Vehicle-Centric CRL Distribution (cont'd)

Figure: CRL piece & fingerprint construction by the PCA.

CRL Fingerprint:

- A signed fingerprint is broadcasted by RSUs
- Also integrated in a subset of recently issued pseudonyms
- A notification about a new CRL-update (revocation) event

Pseudonym Acquisition Process

CRL Publish/Subscribe

M. Khodaei and P. Papadimitratos (KTH)

June 20, 2018 9 / 22

Qualitative Analysis

- ✓ Fine-grained authentication, integrity, and non-repudiation: signed fingerprints
- ✓ Unlinkability (perfect-forward-privacy): multi-session pseudonym requests, timely-aligned pseudonym lifetime, utilization of hash chains
- \checkmark Availability: leveraging RSUs and car-to-car epidemic distribution
- ✓ Efficiency: Efficient construction of fingerprints, fast validation per piece, and implicitly binding of a batch
- ✓ Explicit and/or implicit notification on revocation events: Broadcasting signed fingerprints, also integrated into a subset of recently issued pseudonyms

- BF trades off communication overhead for false positive rate
- BF size increases linearly as the false positive rate decreases

An adversary targeting the Bloom Filter (BF) false positive rate:

- Excluding revoked pseudonym serial numbers from a CRL
- Adding valid pseudonyms by forging a fake CRL (piece)

With Antminer-S9 (14TH/s,\$3,000), $\Gamma_{CRL} = 1$ hour and $p = 10^{-20}$ (K = 67): • 132,936 Antminer-S9 (\$400M) to generate a bogus piece in 1 hour ($\frac{10^{20} \times 67}{14 \times 10^{12}}$)

With AntPool (1,604,608 TH/s): 70 minutes to generate a fake piece!

• With
$$p = 10^{-22}$$
 (K = 73): 5 days $\left(\frac{10^{22} \times 73}{1.6 \times 10^{18}} = 126h\right)$
• With $p = 10^{-23}$ (K = 76): 55 days $\left(\frac{10^{22} \times 76}{1.6 \times 10^{18}} = 1,319h\right)$

(a) CRL size comparison (b) C^2RL [9] as a factor of false positive rate Figure: (a) CRL size comparison for C^2RL and vehicle-centric scheme (10,000 revoked vehicles). (b) Achieving vehicle-centric comparable CRL size for the C^2RL scheme.

- $m_{BF} = -\frac{N \times M \times \ln p}{(\ln 2)^2}$, N is the total number of compromised vehicles, M is the average number of revoked pseudonyms per vehicle per Γ_{CRL} .
- Significant improvement over C²RL, e.g., 2.6x reduction in CRL size when M = 10 and $p = 10^{-30}$.

Quantitative Analysis

- OMNET++ & Veins framework using SUMO
- Cryptographic protocols and primitives (OpenSSL): Elliptic Curve Digital Signature Algorithm (ECDSA)-256 and SHA-256 as per IEEE 1609.2 and ETSI standards
- V2X communication over IEEE 802.11p
- Placement of the RSUs: "highly-visited" intersections with non-overlapping radio ranges
- Comparison with the baseline scheme [8]: under the same assumptions and configuration with the same parameters
- Evaluation of:
 - Efficiency (latency)
 - Resilience (to pollution/DoS attacks)
 - Resource consumption (computation/communication)

Figure: The LuST dataset, a full-day realistic mobility pattern in the city of Luxembourg (50KM × 50KM) [Codeca et al. (2015)].

12 / 22

June 20, 2018

Figure: (a) Average end-to-end delay to download CRLs. (b) Dissemination of CRL fingerprints.

- Total number of pseudonyms is 1.7M ($\tau_P = 60s$).
- Signed fingerprint of CRL pieces periodically broadcasted only by RSUs [11], or broadcasted by RSUs (365 bytes with TX = 5s) and, in addition, integrated into a subset of pseudonyms with 36 bytes of extra overhead ($p = 10^{-30}$, $\mathbb{R} = 0.5\%$).

Converging more than 40 times faster than the state-of-the-art:

- Baseline scheme: $F_x(t = 626s) = 0.95$
- Vehicle-centric scheme: $F_{\chi}(t = 15s) = 0.95$

(a) Baseline scheme (\mathbb{B} =50 KB/s) (b) Vehicle-centric scheme (\mathbb{B} =50 KB/s)

Figure: Cognizant vehicles with different revocation rates.

- \mathbb{T} : the total number of pseudonyms; \mathbb{R} : the revocation rate.
- Size of CRLs for the Baseline scheme: $\mathbb{T} \times \mathbb{R}$, linearly increases with \mathbb{R}
- Size of an *effective CRL* for vehicle-centric scheme: $\frac{\mathbb{T} \times \mathbb{R}}{|\Gamma_{CRL}|}$, where $|\Gamma_{CRL}|$ is the number of intervals in a day, e.g., $|\Gamma_{CRL}|$ is 24 when $\Gamma_{CRL} = 1$ hour.

Figure: Resilience comparison against pollution and DDoS attacks.

- Attackers periodically broadcast fake CRL pieces once every 0.5 second.
- The resilience to pollution and DDoS attacks stems from three factors:
 - A huge reduction of the CRL size
 - Efficient verification of CRL pieces
 - Integrating the fingerprint of CRL pieces in a subset of pseudonyms

Figure: (a) Computation latency comparison. (b) Security overhead comparison, averaged every 30s ($\mathbb{R}=1\%$, $\mathbb{B}=50$ KB/s).

- Cryptographic protocols and primitives were executed on a VM (dual-core 2.0 GHz).
- Signed fingerprint broadcasted every 5s via RSUs (365 bytes long), also integrated into a subset of pseudonyms (36 bytes extra overhead, $p = 10^{-30}$).

Conclusions

- A practical framework to effectively distribute CRLs in VC systems
- Highly efficient, scalable, and resilient design
- Viable solution towards catalyzing the deployment of the secure and privacy-protecting VC systems

Future Work

- Investigating an optimal interval for Γ_{CRL}
- Evaluating with different revocation event models and investigating their impact on CRL distribution

Bibliography I

- M. Khodaei and P. Papadimitratos, "The Key to Intelligent Transportation: Identity and Credential Management in Vehicular Communication Systems," *IEEE VT Magazine*, vol. 10, no. 4, pp. 63--69, Dec. 2015.
- [2] M. Khodaei, H. Jin, and P. Papadimitratos, "SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems," *IEEE T-ITS*, vol. 19, no. 5, pp. 1430–1444, May 2018.
- [3] -----, "Towards Deploying a Scalable & Robust Vehicular Identity and Credential Management Infrastructure," in IEEE VNC, Paderborn, Germany, Dec. 2014.
- M. Khodaei and P. Papadimitratos, "Evaluating On-demand Pseudonym Acquisition Policies in Vehicular Communication Systems," in *IoV/Vol*, Paderborn, Germany, July 2016.
- [5] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, "A Security Credential Management System for V2V Communications," in *IEEE VNC*, Boston, MA, Dec. 2013.
- V. Kumar and et al, "Binary Hash Tree based Certificate Access Management for Connected Vehicles," in ACM WiSec, Boston, USA, July 2017.
- P. Papadimitratos and et al, "Certificate Revocation List Distribution in Vehicular Communication Systems," in ACM VANET, San Francisco, CA, Sep 2008.
- [8] J.-J. Haas, Y.-C. Hu, and K.-P. Laberteaux, "Efficient Certificate Revocation List Organization and Distribution," IEEE JSAC, vol. 29, no. 3, pp. 595--604, 2011.
- [9] M. Raya and et al, "Certificate Revocation in Vehicular Networks," Technical Report, EPFL, Switzerland, 2006.
- [10] S. Tarkoma and et al, "Theory and Practice of Bloom Filters for Distributed Systems," IEEE Communications Surveys & Tutorials, vol. 14, no. 1, pp. 131--155, Apr. 2011.
- V.-T. Nguyen and et al, "Secure Content Distribution in Vehicular Networks," arXiv preprint arXiv:1601.06181, Jan. 2016, Accessed Date: 30-July-2017.
- [12] L. Fischer and et al, "Secure Revocable Anonymous Authenticated Inter-vehicle Communication (SRAAC)," in ESCA Berlin, Germany, Nov. 2006.

< ロト < 同ト < ヨト < ヨト

- [13] F. Stumpf and et al, "Trust, Security and Privacy in VANETs a Multilayered Security Architecture for C2C-Communication," Automotive Security, Nov. 2007.
- [14] K.-P. Laberteaux and et al, "Security Certificate Revocation List Distribution for VANET," in ACM VehiculAr Inter-NETworking, New York, NY, USA, Sep. 2008.
- [15] J.-J. Haas and et al, "Design and Analysis of a Lightweight Certificate Revocation Mechanism for VANET," in ACM Vehicular Internetworking, NY, USA, Sep. 2009.
- [16] M. Raya and et al, "Eviction of Misbehaving and Faulty Nodes in Vehicular Networks," IEEE JSAC, pp. 1557--1568, Oct. 2007.
- [17] T. Moore and et al, "Fast Exclusion of Errant Devices from Vehicular Networks," in IEEE SECON, San Francisco, CA, Jun. 2008.
- [18] A. Wasef and X. Shen, "EDR: Efficient Decentralized Revocation Protocol for Vehicular Ad hoc Networks," IEEE TVT, vol. 58, no. 9, pp. 5214--5224, 2009.
- [19] N. Bißmeyer, "Misbehavior Detection and Attacker Identification in Vehicular Ad-Hoc Networks," Ph.D. dissertation, Technische Universität, Dec. 2014.

Efficient, Scalable, and Resilient Vehicle-Centric Certificate Revocation List Distribution in VANETs

Mohammad Khodaei and Panos Papadimitratos

Networked Systems Security Group (NSS) www.ee.kth.se/nss

Royal Institute of Technology (KTH) Stockholm, Sweden

June 20, 2018

Adversarial Model:

- Excluding revoked pseudonym serial numbers from a CRL
- Adding valid pseudonyms by forging a fake CRL (piece)
- Preventing legitimate vehicles from obtaining genuine and the most up-to-date CRL (pieces) or delaying the distribution
- Harming user privacy by the VPKI entities

Requirements:

- Fine-grained authentication, integrity, and non-repudiation
- Unlinkability (perfect-forward-privacy)
- Availability
- Efficiency
- Explicit and/or implicit notification on revocation events

Prior Work

- CRL distribution via RSUs and car-to-car epidemic communication
- Revoking an ensemble of pseudonyms with a single entry (no perfect-forward-privacy)
- Revoking an ensemble of pseudonyms by leveraging a hash chain (*trivially linked by the issuer*)
- Compressing CRLs using a BF (scalability and efficiency challenges)
- Validating pseudonym status (revocation) information through Online Certificate Status Protocol (OCSP)
 - Problematic due to intermittent connectivity, significant usage of the bandwidth by time- and safety-critical operations, and substantial overhead for the VPKI
- Temporarily "revoking" (isolating) them from further access to the system (*not the "ultimate" decision*)

Table: Notation Used in the Protocols.

Notation	Description	Notation	Description	
$(P_v^i)_{pca}, P_v^i$	a valid psnym signed by the PCA	Append()	appending a revoked psnym SN to CRLs	
(K_v^i, k_v^i)	psnym pub./priv. key pairs	BFTest()	BF membership test	
(K _{pca} ; Lk _{pca})	long-term pub./priv. key pairs	р, К	false positive rate, optimal hash functions	
$(msg)_{\sigma_v}$	signed msg with vehicle's priv. key	Г	interval to issue time-aligned psnyms	
LTC	Long Term Certificate	Γ _{CRL}	interval to release CRLs	
t _{now} , t _s , t _e	a fresh, starting, ending timestamp	RIK	revocation identifiable key	
T _{timeout}	response reception timeout	B	max. bandwidth for CRL distribution	
n-tkt, (n-tkt) _{ltca}	a native ticket	R	revocation rate	
Id _{req} , Id _{res}	request/response identifiers	N	total number of CRL pieces in each Γ_{CRL}	
SN	psnym serial number	n	number of remaining psnyms in each batch	
Sign(Lk _{ca} , msg)	signing a msg with CA's priv. key	k	index of the first revoked psnym	
Verify(LTC _{ca} , msg)	verifying with the CA's pub. key	CRL _v	CRL version	
GenRnd(), rand(0, *)	GEN. a random number, or in range	Ø Null or empty vector		
$H^{k}(), H$	hash function (k times), hash value	k, j, m, ζ	k, j, m, ζ temporary variables	

Simulation Parameters Information

Parameters	Value	Parameters	Value	
CRL/Fingerprint TX interval	0.5s/5s	Pseudonym lifetime	30s-600s	
Carrier frequency	5.89 GHz	Area size	50 KM $ imes$ 50 KM	
TX power	20mW	Number of vehicles	138,259	
Physical layer bit-rate	18Mbps	Number of trips	287,939	
Sensitivity	-89dBm	Average trip duration	692.81s	
Thermal noise	-110dBm	Duration of simulation	4 hour (7-9, 17-19)	
CRL dist. Bandwidth (\mathbb{B})	10, 25, 50 KB/s	Г	1-60 min	
Number of RSUs	100	Γ _{CRL}	60 min	

Table: Simulation Parameters (LuST dataset).

Table: LuST Revocation Information ($\mathbb{R} = 1\%$, $\mathbb{B} = 10KB/s$).

Pseudonym Lifetime	Number of Psnyms	Number of Revoked Psnyms	Average Number per Γ_{CRL}	Number of Pieces
$\tau_P=30s$	3,425,565	34,256	1,428	12
$\tau_P = 60 s$	1,712,782	17,128	710	6
$\tau_P=300s$	342,556	3,426	143	2
$\tau_P = 600 s$	171,278	1,713	72	1

Table: Simulation Parameters for LuST Dataset ($\tau_P = 60s$).

Revocation	Baseline Scheme			Vehicle-Centric Scheme				
Rate (\mathbb{R})	CRL	10 KB/s	25 KB/s	50 KB/s	CRL	10 KB/s	25 KB/s	50 KB/s
	Entries	Pieces	Pieces	Pieces	Entries	Pieces	Pieces	Pieces
0.5%	8,500	70	30	15	355	3	2	1
1%	17,000	140	59	30	710	6	3	2
2%	34,000	279	117	59	1,417	12	5	3
3%	51,000	419	175	89	2,125	18	8	4
4%	68,000	558	233	118	2,834	24	10	5
5%	85,000	697	291	148	3,542	30	13	7

Qualitative Analysis

Figure: Extra overhead for CRL fingerprints.

Protocol 1 Issuing Pseudonyms (by the PCA)

```
1: procedure ISSUEPSNYMS(Reg)
             Req \rightarrow (Id_{req}, t_s, t_e, (tkt)_{\sigma_{ltca}}, \{(K_v^1)_{\sigma_{v^1}}, \cdots, (K_v^n)_{\sigma_{k_v^n}}\}, nonce, t_{now})
 2:
 3:
             Verify(LTC_{ltca}, (tkt)_{\sigma_{ltca}})
 4:
             Rnd_v \leftarrow GenRnd()
 5:
             for i:=1 to n do
 6:
                   Begin
 7:
                         \operatorname{Verify}(K_v^i, (K_v^i)_{\sigma_{vi}})
                         RIK_{P^i} \leftarrow H(IK_{tkt}||K_v^i||t_s^i||t_e^i||H^i(Rnd_v))
 8:
 9:
                         if i = 1 then
                               SN^i \leftarrow H(RIK_{P^i} || H^i(Rnd_v))
10:
11:
                         else
                               SN^{i} \leftarrow H(SN^{i-1}||H^{i}(Rnd_{v}))
12:
13:
                         end if
14:
                         \zeta \leftarrow (SN^{i}, K_{v}^{i}, CRL_{v}, BF_{\Gamma_{CR}^{i}}, RIK_{P_{v}^{i}}, t_{s}^{i}, t_{e}^{i})
                        (P_v^i)_{\sigma_{pca}} \leftarrow Sign(Lk_{pca}, \zeta)
15:
                   End
16:
             return (Id_{res}, \{(P_v^1)_{\sigma_{nra}}, \dots, (P_v^n)_{\sigma_{nra}}\}, Rnd_v, nonce+1, t_{now})
17:
18: end procedure
```


Protocol 2 CRL Construction (by the PCA)

1: procedure GENCRL($\Gamma_{CRI}^{i}, \mathbb{B}$) 2: $Piece_{\Gamma_{CRL}^{i}} \leftarrow \emptyset$ 3: repeat 4: $\{SN_P^k, H_{Rnd_u}^k, n\} \leftarrow fetchRevokedPsnyms(\Gamma_{CRI}^i)$ 5: if $SN_P^k \neq Null$ then $Piece_{\Gamma_{CRI}^{i}} \leftarrow Append(\{SN_{P}^{k}, H_{Rnd_{v}}^{k}, n\})$ 6. 7: end if until $SN_P^k == Null$ 8. $size(Piece_{\Gamma_{CRL}^{i}})$ Q٠ $N \leftarrow$ for $i \leftarrow 0, N$ do 10: $Piece_{\Gamma_{CRL}^{i}}^{j} \leftarrow Split(Piece_{\Gamma_{CRL}^{i}}, \mathbb{B}, N)$ 11: end for 12. return { $(Piece^{1}_{\Gamma_{CPI}^{i}}), \ldots, (Piece^{N}_{\Gamma_{CPI}^{i}})$ } 13: 14: end procedure

▷ k: the revoked

 \triangleright calculating number of pieces with a given $\mathbb B$

▷ N: number of pieces in Γⁱ_{CRL} ▷ splitting into N pieces

Protocol 3 Publishing CRLs (by the OBUs)

1: procedure PUBLISHCRL() 2: $\{(Id_{req}, \Gamma^{i}_{CRL}, [indexes])\} = receiveQuery((\zeta)_{\sigma_{Pi}})$ $Verify(P_v^i, (\zeta)_{\sigma_{P_v^i}})$ 3: $CRL^{*}_{\Gamma^{i}_{CRI}} = search_{local}(\Gamma^{i}_{CRL})$ 4: $j \leftarrow rand(0, *)$ 5: if $CRL^{j}_{\Gamma^{i}_{CPI}} \neq \emptyset$ then 6: $broadcast(\{Id_{res}, CRL^{j}_{\Gamma_{cru}^{i}}\})$ 7: 8. end if 9: end procedure

▷ The g.c.d. of a and b

▷ search local repository > randomly select one of the available pieces

22 / 22

∃ >

Protocol 4 Subscribing to CRL Pieces (by the OBUs)

 procedure SUBSCRIBECRL(Γⁱ_{CRI}, N) 2: $resp_{final} \leftarrow \emptyset, j \leftarrow 0, t \leftarrow t_{now} + T_{timeout}$ 3: repeat $\zeta \leftarrow (Id_{reg}, \Gamma^{i}_{CRI}, [missing pieces indexes])$ 4: 5: $(\zeta)_{\sigma_v} \leftarrow Sign(k_v^i, \zeta)$ $broadcast((\zeta)_{\sigma_{pi}}, P_v^i)$ 6: $Piece^{j}_{\Gamma^{i}_{CPI}} \leftarrow receiveBefore(t)$ 7: if $BFTest(Piece_{\Gamma_{CRI}^{i}}^{j}, BF_{\Gamma_{CRI}^{i}})$ then 8. 9: $resp_{final} \leftarrow Store(Piece_{\Gamma_{num}^{j}}^{j})$ 10: end if 11: $j \leftarrow j + 1$ until i > N12: 13: return respinal 14: end procedure

storing in local repository

22 / 22

.

4 A

Protocol 5 Parsing a CRL Piece (by the OBUs)

N: Number of Entires

 \triangleright N: Total number of CRL pieces \triangleright n: Number of remaining psnyms in each batch

22 / 22

.

Linkability based on Timing Information of Credentials

- Non-overlapping pseudonym lifetimes from eavesdroppers' perspective
- Distinct lifetimes per vehicle make linkability easier
- Uniform pseudonym lifetime results in no distinction among obtained pseudonyms set, thus less probable to link pseudonyms

