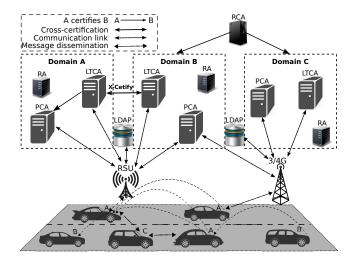
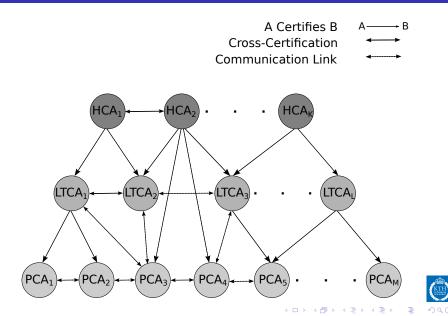
The Key to Intelligent Transportation: Identity and Credential Management in Vehicular Communication Systems


Mohammad Khodaei and Panos Papadimitratos

Networked Systems Security Group

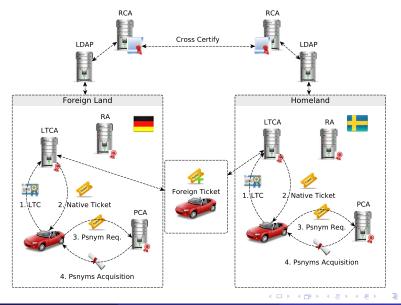
Dec, 2015

Secure Vehicular Communication (VC) System



Dec, 2015 2 / 11

3 🕨 🖌 3


Hierarchical Organization of the VC Security Infrastructure

M. Khodaei and P. Papadimitratos (KTH)

Dec, 2015 3 / 11

VPKI Architecture

M. Khodaei and P. Papadimitratos (KTH)

LCN Seminar

Dec, 2015 4 / 11

State-of-the-art

Projects

SEVECOM, EVITA, PRECIOSA, OVERSEE, DRIVE-C2X, PRESERVE, CAMP-VSC3

Standarization and Harmonization

IEEE 1609.2, ETSI and C2C-CC: VC related specifications for privacy-preserving architectures

Vehicular Public Key Infrastructure (VPKI)

- Do we indeed have a corner-stone to build upon secure and privacy-protecting VC systems?
- More precisely, do we have all answers needed to deploy an identity and credential management infrastructure for VC?

Privacy Challenges

Stronger adversarial model¹

- User privacy protection against *honest-but-curious* entities
- Inference of service provider or time

LTCA infers relevant information from the requests²

- Direct (C2C-CC design) or indirect (ticket-based designs) approaches
- Actual pseudonym acquisition period
- Targeted PCA that the vehicle seeks to obtain credentials from

Trivially linking pseudonyms issued by the PCA

- Fully-trusted proxy-based scheme (CAMP)³ that shuffles the requests
- Honest-but-curious proxy?

```
<sup>3</sup>Whyte et al. 2013
```

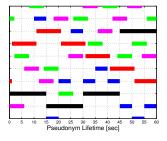
M. Khodaei and P. Papadimitratos (KTH)

¹Gisdakis et al., 2013 and Khodaei et al., 2014.

²Khodaei et al., 2014.

Sybil-based misbehavior

- Acquisition of multiple simultaneously valid credentials
- Allow several pseudonymous valid simultaneously for a specific period of time (C2C-CC or CAMP project)
 - Changing the certificate in a critical traffic situation (e.g., intersection, accident)
 - Safety applications necessitate partial linkability
 - But what if a vehicle gets compromised?
 - Injecting multiple erroneous hazard notification
- VPKI should ensure a compromised vehicle cannot obtain multiple pseudonyms valid simultaneously⁴
 - along with enforcing a policy on the vehicle side
- Standardization bodies and harmonization efforts do not preclude such misbehavior



⁴Khodaei et al., 2014.

Pseudonym Lifetime Policy

- Ideally one pseudonym for a single message authentication
 - But costly, e.g. 10 beacons per sec.
- Safety applications necessitate partial linkability
 - E.g. collision avoidance: inferring a collision hazard based on unlinkable CAMs is hard; requires precise location information
- No conclusive view or guideline for pseudonym lifetime policy

- Sybil-based misbehavior \rightarrow Non-overlapping lifetime
- Flexible access to PCA → undermine unlinkability
- Timing information makes sets of pseudonyms linkable

Revocation

- Eviction of the wrong doers in case of misbehavior
- Not straightforward in the VC systems
 - Multiplicity of pseudonyms
 - Very large number of pseudonyms, thus huge revocation list
 - Efficient distribution of the revocation list among mobile entities
 - Limited memory and bandwidth consumption for OBU through usage of CRL

Diminish such vulnerability

- Requiring the vehicles to interact with the VPKI regularly
- or at least as frequently as dissemination of information by PCA

The remaining challenge:

- No consensus on the need and the method
 - C2C-CC recommendation to preload with 1500 pseudonyms for a year and let them expire (no revocation)
- Timely dissemination of credential validity information
 - Time, cost, bandwidth, network accessibility, etc.

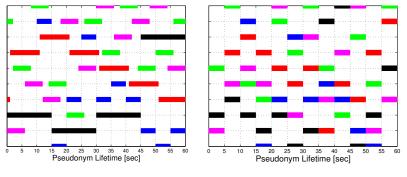
Other Challenges

- Extending to anonymous authentication primitives
 - Group signature schemes⁵
 - Zero-knowledge proof⁶
- Extensive experimental validation
 - SEROSA⁷
 - SR-VPKI⁸
- Operational challenges:
 - Who is in charge of the identity and credential management
 - How to establish the trust:
 - [Saab, Scania, Volvo] and [Volkswagen, BMW]
 - [EU] and [US]

⁵Papadimitratos et al., 2007 & Perrig et al., 2009
⁶Förster et al., 2014
⁷Gisdakis et al., 2013
⁸Khodaei et al., 2014

M. Khodaei and P. Papadimitratos (KTH)

Identity and Credential Management in Vehicular Communication Systems


Questions and Discussion

11 / 11

Mohammad Khodaei (KTH)

Pseudonym Lifetime Policy

Flexible lifetimes

Fixed lifetimes

- Non-overlapping pseudonym lifetimes from eavesdroppers' perspective
- Distinct lifetimes per vehicle make linkability easier
- Uniform pseudonym lifetime in a domain
- No distinction among obtained pseudonyms set, thus less probable link pseudonyms