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Abstract—The central building block of secure and privacy-preserving Vehicular Communication (VC) systems is a Vehicular Public Key
Infrastructure (VPKI), which provides vehicles with multiple anonymized credentials, termed pseudonyms. These pseudonyms are used
to ensure VC message authenticity and integrity while preserving vehicle (thus passenger) privacy. In the light of emerging large-scale
multi-domain VC environments, the efficiency of the VPKI and, more broadly, its scalability are paramount. By the same token, preventing
misuse of the credentials, in particular, Sybil-based misbehavior, and managing “honest-but-curious” VPKI entities are other facets of a
challenging problem. In this paper, we leverage the state-of-the-art VPKI system and enhance its functionality towards a highly-available,
dynamically-scalable, and resilient design; this ensures that the system remains operational in the presence of benign failures or resource
depletion attacks, and that it dynamically scales out, or possibly scales in, according to request arrival rates. Our full-blown
implementation on the Google Cloud Platform shows that deploying large-scale and efficient VPKI can be cost-effective: the processing
latency to issue 100 pseudonyms is approximately 56 ms. More so, our experiments show that our VPKI system dynamically scales out
or scales in according to the rate of pseudonyms requests. We formally assess the achieved security and privacy properties for the
credential acquisition process. Overall, our scheme is a comprehensive solution that complements standards and can catalyze the
deployment of secure and privacy-protecting VC systems.
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1 INTRODUCTION

In Vehicular Communication (VC) systems, vehicles beacon
Cooperative Awareness Messages (CAMs) and Decentralized
Environmental Notification Messages (DENMs) periodically,
at high rates [1], to enable transportation safety and efficiency.
It has been well-understood that VC systems are vulnerable
to attacks and that the privacy of their users is at stake. As a
result, security and privacy solutions have been developed
by standardization bodies (IEEE 1609.2 WG [2] and ETSI [3],
[4], [5], [6]), harmonization efforts (C2C-CC [7]), and projects
(SeVeCom [8], [9], [10], PRESERVE [11], and CAMP [12],
[13], [14], [15], [16]). The de facto standard in VC systems to
protect Vehicle-to-Vehicle (V2V)/Vehicle-to-Infrastructure
(V2I) (V2X) communication is to use Public Key Cryptog-
raphy (PKC) and pseudonymous authentication [3], [8],
[9], [10], [15]: each vehicle is registered with one Long
Term Certification Authority (LTCA), issuing its Long Term
Certificate (LTC), and it is able to obtain a set of short-
lived anonymized certificates, termed pseudonyms, from any
Pseudonym Certification Authority (PCA), a pseudonym
provider. Vehicles switch from one pseudonym to a non-
previously used one, e.g., [3], [4], [5], [17], towards message
unlinkability, as pseudonyms per se are inherently unlink-
able. Pseudonymity is conditional, in the sense that the
corresponding long-term vehicle identity can be retrieved by
the Vehicular Public Key Infrastructure (VPKI) when needed,
e.g., deviating from system policies.

Deploying a VPKI differs from a traditional Public Key
Infrastructure (PKI), e.g., [18], [19], [20]. One of the most im-
portant factors is the VPKI dimension, i.e., the number of reg-
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istered ‘‘users’’ (vehicles) and the multiplicity of certificates
per user. According to the US Department of Transportation
(DoT), a VPKI should be able to issue pseudonyms for more
that 350 million vehicles across the Nation [21]. Considering
the average daily commute time to be 1 hour [21] and a
pseudonym lifetime of 5 minutes, the VPKI should be able
to issue at least 1.5 × 1012 pseudonyms per year, i.e., 5
orders of magnitude more than the number of credentials
the largest current PKI issues (10 million certificates per
year [14]). Note that this number could be even greater for
the entire envisioned Intelligent Transport Systems (ITSs)
ecosystem, e.g., including pedestrians and cyclists, vehicular
platooning, Location Based Services (LBSs) [3], [22], [23],
and vehicular social networks [24]. These numbers could
grow further if higher degrees of unlinkability, thus short
pseudonym lifetimes, was chosen1.

With emerging large-scale multi-domain VC environ-
ments [2], [3], [7], [22], [29], the efficiency of the VPKI and,
more broadly, its scalability are paramount. Vehicles could
request pseudonyms for a long period, e.g., 25 years [30].
However, extensive pre-loading with millions of pseudo-
nyms per vehicle for a long period is computationally costly
and inefficient in terms of utilization [31]. Moreover, in
case of revocation [26], [27], [32], a huge CRL should be
distributed among all vehicles due to the long lifespan of
the credentials. In fact, sizable portion of any such over-
sized CRL is irrelevant to a receiving vehicle and can
be left unused, i.e., wasting of significant bandwidth for
CRL distribution [32], [33]. Alternatively, each vehicle could

1. The trend towards short-lived certificates is not unique to mobile
systems, notably VC systems. It is also proposed for the classical Internet,
although with less demanding requirements. Web server certificates are
issued with a lifetime of a few days [25]. This essentially diminishes the
need to distribute a large volume of revoked certificate after the latest
Certificate Revocation List (CRL) was released [26], [27], [28].
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interact with the VPKI regularly, e.g., once or a few times per
day, not only to refill its pseudonym pool but also to fetch the
latest revocation information2. However, the performance of
a VPKI system can be drastically degraded and its operation
undermined by a clogging Denial of Service (DoS) attack,
targeting the VPKI [37], [31]: external adversaries with fake
certificates or bogus tickets and internal adversaries with
bogus Certificate Signing Requests (CSRs) could perform
a signature flooding attack [38], thus, compromising the
availability of the VPKI entities. Moreover, a flash crowd [39],
e.g., a surge in pseudonym acquisition requests during rush
hours, could render the VPKI unreachable, or drastically
decrease its quality of service.

The cost of VPKI unavailability is twofold, affecting
security (and consequently road safety) and privacy. An
active malicious entity could prevent other vehicles from
accessing the VPKI to fetch the latest revocation information.
Moreover, signing CAMs with private keys corresponding to
expired pseudonyms, or the LTC, is insecure and detrimental
to user privacy. Thus, it is crucial to design a highly-available,
scalable, and resilient VPKI that could efficiently issue
pseudonyms in an on-demand fashion3 [40], [41].

Considering a multi-domain deployment of VC sys-
tems, with a multiplicity of service providers, each vehicle
could obtain pseudonyms from various service providers.
The acquisition of multiple simultaneously valid (sets of)
pseudonyms would enable an adversary to inject multiple
erroneous messages, e.g., hazard notifications while the road
conditions are safe, as if they were originated from multiple
vehicles; or affect protocols based on voting, by sending out
false, yet authenticated, information. Even though there are
distributed schemes to identify Sybil [42] nodes, e.g., [43],
[44], or secure and privacy-preserving VC systems can
mitigate this vulnerability by relying on Hardware Security
Modules (HSMs) [10], a VPKI system should prevent such
credential misuse on the infrastructure side, e.g., [37], [31].

The VPKI entities are, often implicitly, assumed to be
fully trustworthy. Given the experience from recent mobile
applications, we need to guarantee strong user privacy even
in the presence of honest-but-curious VPKI entities [29],
[31]: they are honest, i.e., thoroughly complying with the
best practices, specified protocols, and system policies, but
curious, i.e., tempted to infer sensitive user information,
thus harming user privacy. In the context of VC systems,
no single VPKI entity should be able to link two successive
pseudonyms belonging to the same vehicle. However, an
honest-but-curious Resolution Authority (RA), responsible
for resolving a pseudonym and identifying the long-term
identity of a misbehaving vehicle, could harm user privacy
by linking multiple sets of pseudonyms issued for a given
vehicle4. This vulnerability results from the implicit binding
of pseudonyms [45] (using a hash chain) towards an efficient

2. Note that Cellular-V2X can provide reliable and low-latency V2X
communication with a wide range of coverage [34], [35], [36]; thus,
network connectivity will not be a bottleneck.

3. Unlike issuing short-lived certificates [25] for the Internet that the
certificates can be pre-generated and cached by the PKI, issuing on-
demand pseudonyms for the VC system cannot be precomputed: each
vehicle requests new pseudonymous certificate with a different public
key, important for unlinkability (user privacy).

4. This vulnerability was not an issue in SECMACE [31] as distinct
random numbers were used to implicitly bind the pseudonyms.

distribution of the CRL [28], [32]. However, an RA could
repeatedly conduct a pseudonym resolution process, e.g.,
by falsely claiming it received misbehaving reports. Beyond
semi-honest VPKI entities that they are solely curious, a
deviant LTCA could misbehave and issue fake authorization
tickets, or issue multiple simultaneously valid tickets for a
given vehicle; the tickets can be used later to obtain multiple
sets of simultaneously valid pseudonyms. We address these
challenges and re-define the pseudonym issuance process
with a PCA and the registration process with an LTCA.

The recent trends towards cloudification with micro-
service architecture provide high availability and dynamic
scalability; the cloud-based VPKI system, e.g., [46], [47],
could dynamically scale out, or possibly scale in, based on
the VPKI as a Service (VPKIaaS)5 system workload and
the requests’ arrival rate, so that it can comfortably handle
unexpected demanding loads while being cost-effective by
systematically allocating and deallocating resources. In cloud
terminology, scaling in/out, termed horizontal scaling, refers
to replicating a new instance of a service; while scaling
up/down, termed vertical scaling, refers to allocating/deal-
locating resources for an instance of a given service. A
malicious vehicle could repeatedly request pseudonyms;
in fact, requests might be delivered to different replicas
of a micro-service, releasing multiple simultaneously valid
pseudonyms. Mandating a centralized database, shared
among all replicas to ensure isolation and consistency of all
transactions, would mitigate such a vulnerability. However,
this contradicts highly efficient and timely pseudonyms
provisioning for large-scale mobile systems.

Contributions: We leverage and enhance the state-of-the-
art VPKI, and propose a VPKIaaS system towards a highly-
available, dynamically-scalable, and fault-tolerant (highly-
resilient) design, ensuring the system remains operational
in the presence of benign failures or any resource depletion
attack (clogging a DoS attack). At the same time, we re-
define the vehicle registration process (with the LTCA) and
improve our scheme to be resilient against a compromised
LTCA. More so, we modify the pseudonym issuance process
in two ways: (i) mitigating a DoS attack by internal malicious
vehicles sending bogus CSRs, (ii) mitigating inferences an
RA, that is honest-but-curious, could make and harm user
privacy (when resolving two successive pseudonyms belong
to the same vehicle). We present a formal security and
privacy analysis of the pseudonym acquisition process in
the presence of strong adversarial VPKI entities and vehicles.
Moreover, our scheme eradicates Sybil-based misbehavior
without diminishing the pseudonym acquisition efficiency.
All procedures of deployment and migration to the cloud,
e.g., bootstrapping phase, initializing the micro-services,
pseudonym acquisition process, monitoring health and
load metrics, etc., are fully automated. Through extensive
experimental evaluation, we show that the VPKIaaS system
could dynamically scale out, or possibly scale in. Our experi-
mental evaluation shows a 36-fold improvement over prior
work [47]: the processing delay to issue 100 pseudonyms
for [47] is approximately 2000 ms, while it is approximately
56 ms in our system. Moreover, the performance of the VPKI

5. VPKIaaS refers to the cloudification of the VPKI and SECMACE+
is the system; VPKIaaS and SECMACE+ are used interchangeably.
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system [31] drastically decreases when there is a surge in
the pseudonym request arrival rates; on the contrary, our
VPKIaaS system can comfortably handle demanding loads
request while efficiently issuing batches of pseudonyms.

In the rest of the paper, we describe the system model and
objectives (Sec. 2). We then explain the VPKIaaS system, de-
tailing security protocols (Sec. 3), and providing a qualitative
analysis (Sec. 4), followed by a quantitative analysis (Sec. 5)
and related work (Sec. 6) before our conclusion (Sec. 7).

2 SYSTEM MODEL AND OBJECTIVES

2.1 Overview and Assumptions
A VPKI consists of a set of Certification Authorities (CAs)
with distinct roles: the Root CA (RCA), the highest-level
authority, certifies other lower-level authorities; the LTCA is
responsible for the vehicle registration and the Long Term
Certificate (LTC) issuance, and the PCA issues pseudonyms
for the registered vehicles. Pseudonyms have a lifetime (a
validity period), typically ranging from minutes to hours; in
principle, the shorter the pseudonym lifetime is, the higher
the unlinkability and thus the higher privacy protection
can be achieved. We assume that each vehicle is registered
only with its Home-LTCA (H-LTCA), the policy decision and
enforcement point, reachable by the registered vehicles. With-
out loss of generality, a domain can be defined as a set of
vehicles in a region, registered with the H-LTCA, subject
to the same administrative regulations and policies [29],
[48]. There can be several PCAs, each active in one or more
domains; any legitimate, i.e., registered, vehicle is able to
obtain pseudonyms from any PCA, the pseudonym provider
(as long as there is a trust established between the two CAs).
Trust between two domains can be established with the help
of the RCA, or through cross certification.

Each vehicle interacts with the VPKI entities to obtain a
batch of pseudonyms, each having a corresponding short-
term private key, to sign and disseminate their mobility
information, e.g., CAMs or DENMs, time- and geo-stamped,
periodically or when needed as a response to a specific event.
Fig. 1 shows an overview of a VPKI with three domains,
A, B and C. Domains A and B have established trust with
the help of a higher level authority, i.e., the RCA, while
domains B and C have established security association by
cross certification. The vehicles in the figure are labeled
with the domains they are affiliated to. A vehicle registered
in domain A digitally signs outgoing messages with the
private key, kiv , corresponding to the pseudonym P iv , which
signifies the current valid pseudonym signed by the PCA.
The pseudonym is then attached to the signed messages
to enable verification by any recipient. Upon reception, the
pseudonym is verified before the message itself (signature
validation). This process ensures communication authentic-
ity, message integrity, and non-repudiation. Vehicles switch
from one pseudonym to another one (non-previously used)
to achieve unlinkability, thus protecting sender’s privacy as
the pseudonyms are inherently unlinkable.

Each vehicle ‘‘decides’’ when to trigger the pseudonym
acquisition process based on various factors [41]. Such a
scheme requires sparse connectivity to the VPKI, but it
facilitates an On-Board Unit (OBU) to be preloaded with
pseudonyms proactively, covering a longer period, e.g., a
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Fig. 1: A VPKI Overview for Multi-domain VC Systems.

week or a month, should the connectivity be expected heavily
intermittent. A universally fixed interval, Γ, is specified by
the H-LTCA and all pseudonyms in that domain are issued
with the lifetime (τP ) aligned with the VPKI clock [31]. As
a result of this policy, at any point in time, all the vehicles
transmit using pseudonyms that cannot be distinguished
based on their issuance time thanks to this time alignment.

All vehicles (OBUs) registered are equipped with HSMs,
ensuring that private keys never leave the HSM. We assume
that there is a misbehavior detection system, e.g., [49], that
triggers revocation. The Resolution Authority (RA) can
initiate a process to resolve and revoke all pseudonyms of a
misbehaving vehicle [50]: it interacts with the corresponding
PCAs and LTCA to resolve and revoke all credentials issued
for a misbehaving vehicle. Consequently, the misbehaving
vehicle can no longer obtain credentials from the VPKI. The
VPKI is responsible for distributing the CRLs and notifying
all legitimate entities about the revocation, e.g., [28], [32]. We
further assume that the cloud service providers are honest
and they provide a service with the desired Service Level
Agreement (SLA); in terms of secret management, we assume
that the cloud service providers are fully trustworthy. For a
detailed description of secret management in the cloud, we
refer interested readers to our earlier publication [45].

2.2 Adversarial Model and Requirements
We first extend the general adversary model in secure
vehicular communications [31], [48] to include an honest-
but-curious service provider, i.e., a VPKI entity that attempts
to gain advantages towards its goal, e.g., profiling users.
In addition, malicious PCAs could try to (i) issue multiple
sets of (simultaneously valid) pseudonyms for a legitimate
vehicle, or (ii) issue a set of pseudonyms for a non-existing
(illegitimate) vehicle, or (iii) fraudulently accuse different
vehicles (users) during a pseudonym resolution process.
A deviant LTCA could attempt to map a different LTC
during the resolution process, thus misleading the system.
Furthermore, a deviant LTCA could unlawfully register
illegitimate vehicles, i.e., issue fake LTCs, fake authorization
tickets (to be used during pseudonym acquisition process),
or multiple simultaneously valid tickets for a given vehicle.
A semi-honest RA can also continuously initiate pseudonym
validation process towards inferring user sensitive informat-
ion, e.g., linking successive pseudonyms belonging to the
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same vehicle. Multiple VPKI servers can collude, i.e., share
information that each of them individually infers with the
others, to harm user privacy.

In a multi-PCA environment, malicious (compromised)
clients, i.e., internal adversaries, raise two challenges. First,
they could repeatedly request multiple simultaneously valid
pseudonyms, thus preparing to act (and misbehave), each
posing as multiple registered legitimate-looking vehicles.
Second, they could degrade the system operations by mount-
ing a clogging DoS attack against the VPKI servers. External
adversaries, i.e., unauthorized entities, could try to harm the
system operations by launching a DoS (or a Distributed
DoS (DDoS)) attack, thus degrading the availability of the
system. But they are unable to successfully forge messages
or ‘crack’ the employed cryptosystems and cryptographic
primitives. Internal adversaries could aggressively request
tickets with fake certificates or pseudonyms with bogus
ticket. Alternatively, they could send pseudonym requests
with forge signature on the CSRs; in the worst case (for the
PCA), a vehicle provides valid signature in all the CSRs, but
the last one, i.e., bogus signature only in the latest CSR when
requesting multiple pseudonyms. This requires the PCA to
validate the signature of all CSR until it detects the last one
with bogus signature.

Security and privacy requirements for V2X communi-
cations have been specified in [48], and additional require-
ments for VPKI entities and the CRL distribution in [31],
[32]. Beyond the aforementioned requirements, we need to
thwart Sybil-based attacks in a cloud-based VPKIaaS system
(without degrading efficient pseudonym issuance). At the
same time, we need to ensure that the VPKIaaS system
is dynamically scalable, i.e., that the system dynamically
scales out, or possibly scales in, according to the requests’
arrival rate, to handle any demanding load while being
cost-effective by systematically allocating and deallocating
resources. Moreover, we need to ensure that the scheme is
resilient to any resource depletion attack.

3 SERVICE OVERVIEW & SECURITY PROTOCOLS

In the registration phase, each H-LTCA registers vehicles
within its domain and maintains their long-term identities.
At the bootstrapping phase, each vehicle needs to discover
the VPKI-related information, e.g., the available PCAs in its
home domain, or the desired Foreign-LTCA (F-LTCA) and
PCAs in a foreign domain, along with their corresponding
certificates. To facilitate the overall intra- and multi-domain
operations, a vehicle first finds such information from a
Lightweight Directory Access Protocol (LDAP) [51] server.
This is carried out without disclosing the long-term iden-
tity of the vehicle. We presume connectivity to the VPKI,
e.g., via Roadside Units (RSUs) or Cellular-V2X; should
the connectivity be intermittent, the vehicle, i.e., the OBU,
could initiate pseudonym provisioning proactively based on
different parameters, e.g., the number of remaining valid
pseudonyms and the residual trip duration.

The H-LTCA authenticates and authorizes vehicles over
a unidirectional (server-only) authenticated Transport Layer
Security (TLS)/Secure Sockets Layer (SSL) [52] tunnel. This
way the vehicle obtains a native ticket (n-tkt) from its H-LTCA
while the targeted PCA or the actual pseudonym acquisition
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Fig. 2: A High-level Overview of VPKIaaS Architecture.

period is hidden from the H-LTCA; the ticket is anonymized
and it does not reveal the vehicle identity (Protocol 2 and
Protocol 3). The ticket is then presented to the intended
PCA, over a unidirectional (server-only) authenticated TLS,
to obtain pseudonyms (Protocol 4).

When the vehicle travels in a foreign domain, it should ob-
tain new pseudonyms from a PCA operating in that domain;
otherwise, the vehicle would stand out and be more easily
traceable. The vehicle first requests a foreign ticket (f -tkt)
from its H-LTCA (without revealing its targeted F-LTCA)
so that the vehicle can be authenticated and authorized by
the F-LTCA. In turn, the F-LTCA provides the vehicle with
a new ticket (n-tkt), which is native within the domain of
the F-LTCA to be used for pseudonym acquisition in that
(foreign) domain. The vehicle then interacts with its desired
PCA to obtain pseudonyms. Obtaining an f -tkt is transpar-
ent to the H-LTCA: the H-LTCA cannot distinguish between
native and foreign ticket requests. This way, the PCA in the
foreign domain cannot distinguish native requesters from
foreign ones. For liability attribution, our scheme enables the
RA, with the help of the PCA and the LTCA, to initiate
a resolution process, i.e., to resolve a pseudonym to its
long-term identity. Each vehicle can interact with any PCA,
within its home or a foreign domain, to fetch the CRL [32]
and perform Online Certificate Status Protocol (OCSP) [37]
operations, authenticated with a current valid pseudonym.

3.1 VPKI as a Service (VPKIaaS)
We migrate the VPKI on the Google Cloud Platform
(GCP) [53] for the availability, reliability, and dynamic
scalability of the VPKI system under various circumstances.
Fig. 2 illustrates a high-level abstraction of the VPKIaaS
architecture on a managed Kubernetes cluster [54] on GCP.
The RCA is assumed to be off-line, not included in this ab-
straction. A set of Pods will be created for each micro-service,
e.g., LTCA6 or PCA, from their corresponding container
images, facilitating their horizontal scalability. When the rate
of pseudonym requests increases, the Kubernetes master,
shown on the top in Fig. 2, schedules new Pods or kills a
running Pod in case of benign failures, e.g., system faults
or crashes, or resource depletion attacks, e.g., a DoS attack.
The number of Pods could be scaled out to a pre-set number,
defined in the deployment configuration, or scaled out to the
amount of available resources enabled by Kubernetes nodes.

6. The terms LTCA and H-LTCA are used interchangeably.
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TABLE 1: Notation Used in the Protocols.

AddToCRL(LTC) Adding a pseudonym to the CRL
CK Commitment Key
CN Common Name
ExtractPublicKey(LTCv) Extracting the public key from the LTC
GenRnd() Generating a random number
H ′(), H() Secure Hash Functions
Idreq, Idres, Idca Request, Response, CA Unique Identifiers
(Ki

v, k
i
v) Pseudonymous public/private key pairs

(LKv, Lkv) Long-term public/private key pairs
LTC Long Term Certificate

(msg)σv

A signed message with the vehicle’s private key;
σv represents the signature of the message

N,Rnd Nonce, A Random Number
n-tkt, tkt Native Ticket
(P iv)pca, P iv A pseudonym signed by the PCA
RedisQuery(SN) Checking if a serial number exists in Redis
RedisUpdate(SN, value) Updating a SN (key) with value in the Redis
Resolve(tkt) Resolving a ticket to its LTC
Sign(Lk,msg) Signing a message with the private key (Lk)
SN Serial Number
tnow, ts, te Current, starting, and ending timestamps
V Vehicle
V erify(LK,msg) Verifying a message with the public key (LK)
τP Pseudonym Lifetime
ζ, χ Temporary Variables
Γ Interacting interval with the VPKI

Each Pod publishes two types of metrics: load and
health. The load metric values are generated by a resource
monitoring service, which facilitates horizontal scaling of a
micro-service: upon reaching a threshold of a pre-defined
load, replication controller replicates a new instance of the
micro-service to ensure a desired SLA. The health metric
ensures correct operation of a micro-service by persistently
monitoring its status: a faulty Pod is killed and a new one
is created. In our VPKIaaS system, we define CPU usage
as the load metric. In order to monitor the health condition
of a micro-service, dummy requests (dummy tickets for the
LTCA micro-services and dummy pseudonyms for the PCA
micro-services) are locally queried by each Pod. A dummy
ticket request is constructed by an LTCA Pod to validate
the correctness of the ticket issuance procedure, while a
dummy pseudonym request is constructed by a PCA Pod
to ensure the correctness of pseudonym issuance procedure.
Such dummy requests cannot be used by a compromised
Pod to issue fake pseudonyms (see Sec. 4).

3.2 Security Protocols

We describe the pseudonym acquisition (Protocol 4) and
pseudonym issuance validation processes (Protocol 5) to
identify a misbehaving PCA issuing fraudulent pseudonym.
Furthermore, in order to mitigate Sybil attacks on the side
of VPKIaaS system, we propose two protocols (Protocols 7
and 8): an in-memory key-value Redis database [55] is shared
among all replicas of a micro-service, to facilitate efficient
validation of tickets and pseudonyms requests. Table 1 shows
the notation used in the security protocols.

Vehicle Registration and LTC Update (Protocol 1)
Each vehicle first interacts with its Original Equipment
Manufacturer (OEM) (or the department of transportation)
to initiate the registration process (step 1.1, i.e., step 1 in
Protocol 1). To validate the registration process (step 1.2), the
OEM provides a signed registration coupon, V RegIDσLkoem

(step 1.3). Upon receiving the coupon (step 1.4), the vehicle

V OEM H-LTCA

1.Registration Request

2.RegistrationProcessV alidation()

3. Sign(LTCoem, V RegID)

4. V RegIDσLkoem

5. V erify(LKoem, V RegIDσLkoem
)

6. LKv, Lkv

7. V RegIDσLkoem
, (LKv)σLkv

, N, tnow

8. V erify(LKoem, V RegIDσLkoem
)

9. V erify(LKv, (LKv)σLkv
)

10. RndCKLTC
→ GenRnd()

11. CKLTC ← H(V RegIDσLkoem
||LKv||RndCKLTC

)

12. LTCv ← (SN,CN,CKLTC , LKv, ts, te)

13. Sign(LTCltca, LTCv)

14. (LTCv)σLkltca
, N + 1, t

Protocol 1: Vehicle Registration with the OEM and the LTC
Acquisition from the H-LTCA.

verifies the signature (step 1.5), generates a pair of public
and private keys (step 1.6), and prepares the CSR [56].
The vehicle then sends the LTC acquisition request to the
H-LTCA (step 1.7).

Having received a request, the H-LTCA verifies the
coupon signed by the OEM, assuming that trust is estab-
lished between the two entities (step 1.8). It then initiates
a proof-of-possession protocol for the ownership of the
corresponding private keys (step 1.9). Upon successful verifi-
cation, the H-LTCA generates a random number, RndCKLTC

(step 1.10). Then, it calculates the LTC’s commitment key,
CKLTC : H(V RegIDσLkoem

||LKv||RndCKLTC
) (step 1.11).

This essentially prevents a deviant LTCA from unlawfully
registering an illegitimate vehicle in the system. The LTCA
then integrates the CKLTC in the LTC and issues the
certificates (steps 1.12–1.13). Finally, the vehicle validates
the signature on the LTC (step 1.14).

Ticket Acquisition Process (Protocols 2 and 3)
Assume the OBU decides to obtain pseudonyms from a
specific PCA. It first interacts with its H-LTCA to obtain
a valid ticket. To conceal the actual identity of its desired
PCA from the LTCA, it calculates the hash value of the
concatenation of the specific PCA identity with a random
number7 (steps 2.1–2.2). The vehicle prepares the request
and signs it with the private key corresponding to its LTC
(step 2.3–2.4) before returning the ticket request (step 2.5).
It will then interact with the LTCA over a unidirectional
(server-only) authenticated TLS [52] tunnel.

7. The storage cost for these random numbers is reasonably cheap,
e.g., 264 million vehicles with average trip duration of 1 hour require 32
GB per day (25$ per month, US multi-region [57]).
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Protocol 2 Ticket Request from the LTCA (by the Vehicle)

1: procedure REQTICKET(IdPCA, ts, te)
2: Rndtkt ← GenRnd()
3: ζ ← (Idreq , H(IdPCA‖Rndtkt), ts, te)
4: (msg)σv ← Sign(Lkv , ζ)
5: return ((msg)σv ,LTCv , N, tnow)
6: end procedure

Protocol 3 Issuing a Ticket (by the LTCA)

1: procedure ISSUETICKET((msg)σv ,LTCv , N, tnow)
2: Verify(LTCv , (msg)σv )
3: RndCKn-tkt

← GenRnd()
4: CKn-tkt ← H(LTCv ||ts||te||RndCKn-tkt

)
5: ζ ← (SN,H(IdPCA‖Rndn-tkt), CKn-tkt, ts, te, Expn-tkt)
6: (n-tkt)σltca ← Sign(Lkltca, ζ)
7: return (Idres, (n-tkt)σltca , RndCKn-tkt

, N + 1, tnow)
8: end procedure

Upon reception of the ticket request, the LTCA verifies
the LTC (thus authenticating and authorizing the requester)
and the signed message (step 3.2). The LTCA generates
a random number (RndCKtkt

) and calculates the ticket
commitment key (CKtkt) to bind the ticket to the LTC as:
H(LTCv||ts||te||RndCKtkt

) (steps 3.3–3.4); this prevents a
compromised LTCA from mapping a different LTC during
the resolution process. The LTCA then encapsulates (step
3.5), signs (step 3.6), and delivers the response (step 3.7).

3.2.1 Pseudonym Acquisition Process (Protocol 4)
Each vehicle first requests an anonymous ticket from its
H-LTCA, using it to interact with the desired PCA to
obtain pseudonyms. Upon reception of a valid ticket, it
generates CSRs with Elliptic Curve Digital Signature Algo-
rithm (ECDSA) public/private key pairs [2], [3] and sends
the request to the PCA. The vehicle-LTCA and vehicle-
PCA communications are over a unidirectional (server-only)
authenticated TLS [52] (or Datagram TLS (DTLS) [58]); this
ensures the PCA does not infer the actual requester identity.

Having received a request, the PCA verifies the ticket
signed by the H-LTCA (assuming trust is established be-
tween the two) (steps 4.2–4.3). The PCA then decapsulates
the ticket and verifies the pseudonym provider identity (step
4.4–4.5). Then, the PCA generates a random number (step 4.6)
and initiates a proof-of-possession protocol to verify the
ownership of the corresponding private keys by the vehicle
(step 4.9). Then, it calculates the commitment key, CKP i

v
, as:

H(CKtkt||Ki
v||tis||tie||H ′(Hi(Rndpsnym))) (step 4.10). This

essentially prevents a compromised PCA from mapping a
different ticket during the resolution process, or it identifies
a malicious PCA that issued a pseudonym without a valid
ticket provided by the client (requester). The PCA implic-
itly correlates a batch of pseudonyms belonging to each
requester (steps 4.11–4.15). This essentially enables efficient
distribution of the CRL [32]: the PCA only needs to include
one entry per batch of pseudonyms without compromising
their unlinkability. Finally, the PCA issues the pseudonyms
by signing them using its private key (steps 4.16–4.17) and
delivers the response (step 4.19).

An RA could harm user privacy by frequently initiating
the pseudonym resolution protocol towards linking multiple
sets of pseudonyms issued for a given vehicle. This vulner-

Protocol 4 Issuing Pseudonyms (by the PCA)

1: procedure ISSUEPSNYMS(Req)
2: Req → (Idreq , Rndn-tkt, tktσltca ,

{(K1
v , . . . ,K

n
v )σk1

v
, · · · , (K1

v , . . . ,K
n
v )σkn

v
}, N, tnow)

3: Verify(LTCltca, (tkt)σltca )
4: tktσltca → (SN,H(IdPCA‖Rndtkt), CKtkt, ts, te, Exptkt)
5: H(Idthis-pca‖Rndn-tkt)

?
= H(Idpca‖Rndn-tkt)

6: Rndpsnym ← GenRnd()
7: for i:=1 to n do
8: Begin
9: Verify(Ki

v , (K
1
v , . . . ,K

n
v )σki

v
)

10: CKP i
v
← H(CKtkt||Ki

v ||tis||tie||H′(Hi(Rndpsnym)))

11: if i = 1 then
12: SN i ← H(CKP i

v
||H′(Hi(Rndpsnym)))

13: else
14: SN i ← H(SN i−1||H′(Hi(Rndpsnym)))
15: end if
16: ζ ← (SN i,Ki

v , CKP i
v
, tis, t

i
e)

17: (P iv)σpca ← Sign(Lkpca, ζ)

18: End
19: return (Idres, {(P 1

v )σpca , . . . , (P
n
v )σpca}, Rndpsnym, N+1, tnow)

20: end procedure

 

j

 

H(Ki+1)

Ki Ki+1 Ki+2 Ki+3 Ki+4

H(Ki+2) H(Ki+5)H(Ki+3) H(Ki+4)

H'(Ki) H'(Ki+1) H'(Ki+2) H'(Ki+3) H'(Ki+4)

K'i K'i+1 K'i+2 K'i+3 K'i+4

Disclosure 
of K'i

Fig. 3: Issuing Multiple Pseudonyms in a Γ Interval.

ability is the result of the implicit binding of pseudonyms
(using a hash chain) issued to a given requester per an
interval (Γ) [32], [45]. An RA could either repeatedly conduct
a pseudonym resolution process, e.g., by falsely claiming
it received misbehaving reports, or perform a pseudonym
validation process for a victim vehicle towards linking all its
successive pseudonyms; this can be conducted if an RA
colludes with an external adversary, eavesdropping the
transcript of the VC system.

Fig. 3 shows how to mitigate this vulnerability: the
PCA creates a hash chain8, N times, for each Γj , where
N is Γj

τp
and it assigns the hash values sequentially to the

time intervals τ iP , i.e., one hash value per τP (step 4.10
in Protocol 4). The PCA calculates a new hash function,
H ′(K); each hash value is used to calculate the commitment
key, which is then integrated into a pseudonym and signed
by the PCA. In case the RA needs to perform pseudonym
validation process for a single pseudonym, e.g., whose
lifetime falls within τ i+5

P , the PCA would disclose K ′i+5;

8. Unlike using the hash chain for lightweight authentication, we
leverage the hash chain for efficient revocation [28], [32] and improved
user privacy protection.
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this prevents the RA from linking the pseudonym to its
successive ones (as it is infeasible to derive Ki+5 from
K ′i+5). Still, the RA could initiate a process to revoke all
pseudonyms belonging to a malfunctioning or malicious
vehicle. Thus, the PCA discloses Ki+5: this enables the RA
to simply derive subsequent pseudonyms from the Ki+5.
Note that performing hash operations are very efficient and
this does not impose excessive overhead to the pseudonym
issuance process: calculating one hash operation would result
in 0.00069 ms, i.e., 0.18% extra overhead in issuing 100
pseudonyms.

DoS-resilient CSR verification: According to the stan-
dard [59], each vehicle needs to provide the proof of
possession in each CSR to prove it has the private key cor-
responding to each requested public key. The VPKI system
should validate proof of possession for each public key.
However, this could compromise on-demand pseudonym
acquisition: adversarial vehicles construct legitimate-looking
CSRs with bogus proof-of-possession signature for the last
one. This results in a benign failure but it imposes excessive
computation overhead on the PCA, thus diminishing the
operation of the system9. We mitigate this without imposing
extra overhead on the vehicle or the PCA side: rather than
providing the proof of possession for one public key in
each CSR ((K1

v )σk1
v
, . . . , (Kn

v )σkn
v

), each vehicle provides
the proof of possession for all public keys in each CSR
((K1

v , . . . ,K
n
v )σk1

v
, · · · , (K1

v , . . . ,K
n
v )σkn

v
). As a result, each

vehicle signs the hash of all public keys with all the private
keys (steps 4.2 and 4.9 in Protocol 4). With this modification,
the PCA could randomly opt in one CSR to validate the proof-
of-possession for all CSRs as the requester non-repudiably
proved it possessed the private keys for all public keys.
Note that the changes in the CSR process do not impose
extra overhead to the overall pseudonym acquisition process:
rather than performing a hash operation on one public key, a
vehicle calculates a hash on all public keys. Moreover, there
is no additional communication overhead to the CSRs since a
hash function maps any arbitrary size to a fixed-sized value.

3.2.2 Pseudonym Issuance Validation (Protocol 5)
Upon receiving a request for misbehavior identification, e.g.,
multiple suspicious traffic congestion alerts sent to a traffic
monitoring system, an entity could send a request to the RA
to validate the pseudonym issuance process of a suspicious
pseudonym (step 5.1– 5.4). The RA validates the request
and interacts with the corresponding PCA that issued the
pseudonym, to provide evidence for the pseudonym issuance
procedure; in fact, this process ensures that an actual vehicle
requested the pseudonym by providing a valid ticket, also
guarantees the PCA did not issue a pseudonym for an
illegitimate vehicle (step 5.5– 5.9).

Upon receipt, the PCA validates the request and provides
the corresponding ticket and RndCKPi

v
, used to issue the

pseudonym. The PCA response is signed and sent back to
the RA (step 5.10– 5.14). In turn, the RA verifies it, enables
validating the ticket using the public key of the LTCA,
and checks H(CKtkt||Ki

v||tis||tie||H ′(Hi(Rndiv)))
?
= CKP i

v

9. Built-in DoS attack mitigation techniques in the GCP cannot
mitigate such an attack as the requests originated from legitimate
requesters, holding valid tickets.

V RA PCA

1. P iv ← (SN i,Ki
v, CKP i

v
, tis, t

i
e)

2. ζ ← (P iv)

3. (ζ)σv
← Sign(P jv , ζ)

4. (Idreq, (ζ)σv , tnow)

5.Verify(Pv, (ζ)σv
)

6. ζ ← (P iv)

7. (ζ)σra ← Sign(Lkra, ζ)

8. Ack

9. (Idreq, (ζ)σra
, LTCra, N, tnow)

10.Verify(LTCra, (ζ)σra)

11. (n-tkt,H ′(Hi(Rndiv)))← Resolve(P iv)

12. χ← (SNP i , n-tktσltca
, H ′(Hi(Rndiv)))

13. (χ)σpca
← Sign(Lkpca, χ)

14. (Idres, (χ)σpca
, N + 1, tnow)

15.Verify(LTCpca, χ)

16. (SNP i , n-tktσltca
, H ′(Hi(Rndiv)))← χ

17.Verify(LTCltca, n-tktσltca
)

18. (H(IdPCA‖Rndtkt), CKtkt, t
i
s, t

i
e, Exptkt)← n-tkt

19. H(CKtkt||Ki
v||tis||tie||H ′(Hi(Rndiv)))

?
= CKP i

v

Protocol 5: Pseudonym Issuance Validation.

(steps 5.15– 5.19). If the hash calculation results in the
same hash values, it confirms that the pseudonym has
been issued based on a valid ticket, i.e., properly issued
by the LTCA. Moreover, it ensures the PCA could not have
issued the pseudonym for a non-existing vehicle. Note that
upon performing pseudonym issuance validation process,
the actual identity of a vehicle is not disclosed, i.e., user
privacy is strongly protected.

3.2.3 Ticket Issuance Validation, and LTC Resolution
and Revocation Processes (Protocol 6)
The RA queries the corresponding H-LTCA to validate
the ticket issuance process, corresponding a suspicious
pseudonym and to have the vehicle identity identified, i.e.,
resolving the LTC of the vehicle. Further, the RA could
request to evict a misbehaving or malfunctioning vehicle
from the system; it would request the LTCA and the PCA
to revoke the LTC and all valid pseudonyms by adding
them to the CRL [28], [32]. The RA prepares and signs a
message and sends the request to the H-LTCA (steps 6.1-
6.3). Upon request verification, the H-LTCA resolves the
n-tkt, requested by the RA (steps 6.4-6.5). The LTCA
returns {LTCv, RndCKn-tkt

, RndCKLTC
, V RegIDσLkoem

}.
The RndCKn-tkt

enables validating CKn-tkt; the RndCKLTC

and V RegIDσLkoem
enable validating the commitment key

CKLTC . In case of revocation request, the H-LTCA revokes
the LTC and adds it to the CRL (step 6.6). The H-LTCA
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RA H-LTCA

1. ζ ← (Idreq, n-tkt,N, tnow)

2. (ζ)σra ← Sign(Lkra, ζ)

3. ((ζ)σra
, LTCra)

4.Verify(LTCra, (ζ)σra
)

5. {LTCv, RndCKn-tkt
, RndCKLTC

, V RegIDσLkoem
} ← Resolve(n-tkt)

6. Idreq
?
= ‘revoke’: AddToCRL(LTCv)

7. χ← (Idres, LTCv, RndCKn-tkt
, RndCKLTC

, V RegIDσLkoem
, N+1, tnow)

8. (χ)σh-ltca
← Sign(Lkh-ltca, χ)

9. (χ)σh-ltca

10.Verify(LTCh-ltca, χ)

11. H(LTCv||ts||te||RndCKn-tkt
)

?
= CKn-tkt

12. V erify(LTCoem, V RegIDσLkoem
)

13. V erify(LTCltca, LTCv)

14. LKv ← ExtractPublicKey(LTCv)

15. H(V RegIDσLkoem
||LKv||RndCKLTC

)
?
= CKLTC

Protocol 6: Ticket Issuance Validation, and LTC Resolution
and Revocation.

prepares a response, signs, and delivers it to the RA (steps 6.7-
6.9). The RA verifies the response signature and confirms
if the H-LTCA mapped the ticket to the correct LTCv by
validating the CKn-tkt (steps 6.10-6.11). Furthermore, the
RA verify the V RegIDσLkoem

and the LTCv (steps 6.12-
6.13), and extracts the public key (step 6.14). Finally, the
RA confirms if the H-LTCA has mapped LTC to the correct
V RegIDσLkoem

by validating the CKLTC (step 6.15).

3.3 Mitigating Sybil Attacks on the VPKIaaS System
Multiple replicas of a micro-service interact with the same
database to accomplish their operations; all replicas of
LTCAs should interact with the database to store informat-
ion about tickets they issue. The same way, all replicas
of PCAs interact with a single database to validate an
authorization ticket and store information corresponding
to issued pseudonyms. Micro-services could opt in to uti-
lize their shared MySQL database either synchronously or
asynchronously10. Asynchronous interaction of the micro-
services and the shared database would result in efficient
pseudonym issuance. However, a malicious vehicle could
repeatedly submit requests. If the micro-services do not
synchronously validate tickets and pseudonym requests, one
can obtain multiple sets of pseudonyms in the event such
multiple requests were delivered to different replicas. On the
other hand, synchronous interaction of the micro-services

10. A synchronous interaction with a database implies enforcing limits
on accessing to a resource by locking it to ensure the consistency of all
transactions. An asynchronous interaction, though, implies that requests
are proceeded without waiting to complete a transaction; the execution
will happen later via an asynchronous callback function.

Fig. 4: VPKIaaS Sybil mitigation with Redis and MySQL.

and the shared database would prevent issuing multiple
sets of pseudonym for a given requester, thus, eradicating
Sybil-based misbehavior. However, this would drastically
degrade system performance, notably timely on-demand
issuance of pseudonyms. The performance of the relational
database, e.g., MySQL, used in [31], can be highly degraded
by synchronized interactions, e.g., [60]. Moreover, scaling
out the Pods to handle large workload volume while relying
on a single shared MySQL database would become a single
point of failure11, questions the practicality of such a scheme
(to be highly-available and dynamically-scalable).

In order to systematically mitigate the Sybil attacks with-
out degrading the performance of the system, we propose a
hybrid design by considering two separate databases. Fig. 4
shows the Memorystore of the VPKIaaS: an in-memory key-
value database as a service on GCP, compatible with the
Redis [55] protocol, together with a relational database as
a service, e.g., MySQL as a service. Each micro-service Pod
synchronously interacts with the Redis database to validate
a pseudonym request. Upon validating it, the ticket and
pseudonyms are issued and the corresponding information
is stored in the relational database asynchronously. Such a
hybrid design mitigates Sybil attacks without diminishing
the overall performance of the pseudonym acquisition pro-
cess: the time-consuming validation through the relational
database is replaced by an efficient validation through the
Redis database. Note that MySQL and Redis could both be
single point of failures if not offered as a highly-available
and dynamically-scalable service. But, a distributed cluster
of MySQL is a bottleneck in our scenario because relational
databases are slow in nature, especially if the setup is
synchronous. The Redis cluster, though, is an in-memory key-
value database which offers very fast insertion and query.

3.3.1 LTCA Sybil Attack Mitigation (Protocol 7)

The LTCA, the policy decision and enforcement point in a
domain, issues tickets with non-overlapping intervals, i.e.,
vehicles cannot obtain tickets with overlapping lifetimes.
Upon receiving a ticket request, each LTCA micro-service

11. MySQL as a service can be instantiated to eliminate the single
point of failure; however, synchronous interaction with the MySQL
would degrade system performance.
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Protocol 7 Ticket Request Validation (by LTCA using Redis)

1: procedure VALIDATETICKETREQ(SN i
LTC , tkt

i
start, tkt

i
exp)

2: (valuei)← RedisQuery(SN i
LTC)

3: if valuei == NULL OR valuei <= tktistart then
4: RedisUpdate(SN i

LTC , tkt
i
exp)

5: Status← IssueT icket(.) . Invoking ticket issuance procedure
6: if Status == False then
7: RedisUpdate(SN i

LTC , value
i) . Revert SNi

LTC to valuei

8: return (False) . Ticket issuance failure
9: else

10: return (True) . Ticket issuance success
11: end if
12: else
13: return (False) . Suspicious to Sybil attacks
14: end if
15: end procedure

Pod should check if a ticket was issued to the requester
during the requested period. Enforcing such a policy ensures
that no vehicle would obtain more than a single valid
ticket towards requesting pseudonyms. Thus, given the
PCA issues a set of pseudonyms in response to a ticket-
enabled request with non-overlapping lifetimes, no vehicle
can submit multiple requests for pseudonyms and thus
hold at no point in time multiple simultaneously valid
pseudonyms. Furthermore, each ticket is implicitly bound to
a specific PCA by the vehicle; as a result, the ticket cannot
be used more than once to more than one PCAs. Each LTCA
micro-service Pod stores the serial number of the vehicle’s
LTC (as the key) and the expiration time of its current ticket
(as the value) on the Redis database. Upon receipt of a new
ticket request, each micro-service creates a Redis transaction,
a list of commands guaranteed to be executed sequentially
without interruption, to validate the ticket (step 7.2).

The Redis transaction checks the existence of the LTC
serial number in the database; if it exists, it checks if the
request interval overlaps with the previously recorded entry
(step 7.3); the request is marked malicious if the serial number
exists in the database and the requested ticket start time
(tktstart) is less than the expiration time of the already
issued ticket. Otherwise, the Redis transaction updates the
corresponding entry (or adds a new entry if none) with the
new ticket expiration time (step 7.4). Then, the procedure
for ticket issuance is invoked (step 7.5, i.e., Protocol 3). In
case of any failure during the ticket issuance, the ticket
expiration value will be rolled back (steps 7.6–7.8). The Redis
transaction is executed on a single thread and it guarantees to
sequentially execute the commands; thus, even if all replicas
of the LTCA received verifiable ticket requests from the same
vehicle, Redis ensures that only one ticket request would be
served and the rest of them would be denied.

3.3.2 PCA Sybil Attack Mitigation (Protocol 8)
The PCA issues pseudonyms with non-overlapping lifetimes
to ensure that no vehicle has more than one valid pseudonym
at any point in time. However, to fully eradicate Sybil-based
misbehavior, the PCA micro-service also ensures that each
ticket to issue a set of pseudonyms for a requester is used
only once. Upon receipt of a pseudonym request, each Pod
of the PCA micro-service creates a Redis transaction to
validate the ticket (step 8.2). If the key (SNtkt) does not
exist or the value is false (step 8.3), the procedure for issuing
pseudonyms (step 8.5, i.e., Protocol 4) will be invoked (and

Protocol 8 Pseudonym Request Validation (by PCA using Redis)

1: procedure VALIDATEPSEUDONYMREQ(SN i
tkt)

2: (valuei)← RedisQuery(SN i
tkt)

3: if valuei == NULL OR valuei == False then
4: RedisUpdate(SN i

tkt, T rue)
5: Status← IssuePsnyms(.) . Invoking pseudonym issuance
6: if Status == False then
7: RedisUpdate(SN i

tkt, False) . Reverting SNi
tkt to False

8: return (False) . Pseudonym issuance failure
9: else

10: return (True) . Pseudonym issuance success
11: end if
12: else
13: return (False) . Suspicious to Sybil attacks
14: end if
15: end procedure

the appropriate flag is set). In case of failure during the
pseudonym acquisition process, the corresponding flag for
the ticket will be set to false in the Redis database, i.e.,
rolling back the transaction, to ensure the consistency of the
pseudonym issuance procedure (steps 8.6–8.8). If the flag
for the key (SNtkt) is true, the request for obtaining a set of
pseudonyms is denied (step 8.13).

3.3.3 DoS-resilient VPKI
In case of a DoS attack, we leverage existing mitigation
techniques on the cloud, e.g., [61], [62], [63]. Unlike tradi-
tional puzzle mitigation schemes [64], [65], which introduce
additional computation or communication overhead, e.g., 50
ms additional overhead to solve a guided tour puzzle [65]
in [31], our VPKIaaS benefits from modern strategies to
detect and mitigate DoS attacks without such extra overhead.
Moreover, the VPKIaaS system can probabilistically verify
the batches of CSRs; this renders pseudonym provisioning
more efficient. A new process validates each CSR and detects
any deviation as misbehavior actions and the RA is informed
to initiate a revocation process.

4 QUALITATIVE ANALYSIS

A detailed security and privacy analysis for VPKI entities can
be found in [31], [32]. Here, we perform a focused security
and privacy analysis concerned with the novel elements and
requirements due to the deployment of the VPKIaaS system.

4.1 Security and Privacy Analysis
A deviant LTCA could misbehave by unlawfully registering
non-existing vehicles. During the registration process, the
LTCA registers a vehicle upon receiving a request from
the corresponding OEM. This implies that to fraudulently
register a vehicle, two entities must collude. Moreover,
the LTCA could try to issue a fake ticket or issue bogus
LTCs; but, the RA could perform ticket issuance validation
and LTC resolution processes (Protocol 6) to identify a
malicious LTCA. Alternatively, a single deviant PCA could
issue multiple simultaneously valid pseudonyms for a given
vehicle that presents a ticket; or issue pseudonyms without
any valid ticket issued by the LTCA. However, through
pseudonym validation, the RA requests the corresponding
PCA to provide a valid pseudonym commitment key (CKP i

v
).

Thus, a malicious PCA can be identified if it issued a
pseudonym without a valid ticket; and then be evicted
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from the VPKI system. Note that when performing the
pseudonym issuance validation process, the actual identity
of the pseudonym owner is not disclosed to the PCA or the
RA, i.e., user privacy is preserved. But, when conducting the
ticket issuance validation and LTC resolution process, the
long-term identity of the vehicle is disclosed to the RA.

Reusing stored tickets to obtain additional pseudonyms
by other legitimate vehicles would fail: a ticket is bound
to a specific PCA and the PCA keeps records of ticket
usage, a ticket cannot be reused for other PCAs. However, a
compromised PCA could also bind a pseudonym to a ticket
provided by another vehicle when issuing pseudonyms; this
implies that the PCA colludes with a malicious vehicle since
each vehicle should have verified the validity of commitment
keys (CK) for the received pseudonyms set. The RA queries
the PCA for the CKtkt and the corresponding ticket. Then,
the RA interacts with the LTCA to determine the actual
identity of the vehicle. The suspicious vehicle needs to
provide the response, obtained during the pseudonyms ac-
quisition process from the PCA. Having the vehicle response,
the RA can identify a PCA that misbehaved by binding
pseudonyms to a ticket other than the actual one used by
the vehicle (and provided by the LTCA). We emphasize
that our VPKIaaS scheme does not prevent a malicious PCA
from issuing multiple sets of fake pseudonyms; rather, our
scheme facilitates efficient identification of a misbehaving
PCA by cross-checking the pseudonym issuance procedure
in a privacy-preserving manner.

The PCA is evicted from the system and its certificate is
revoked. Moreover, all pseudonyms issued by a misbehaving
PCA will be revoked. Note that performing this operation
could harm user privacy as the actual identity of the vehicle
is identified. This operation can be performed under certain
circumstances, e.g., if the RA performs pseudonym issuance
validation process for two pseudonyms and they both result
in the same CKtkt. This clearly is a sign of misbehavior by
(at least) one internal VPKI entity.

Sybil-based misbehavior: A malicious vehicle could repeat-
edly request tickets from the LTCA, and/or aggressively re-
quest multiple sets of pseudonyms from the PCA. However,
all replicas of a micro-service share a Redis Memorystore
to validate every request. Thus, any suspicious request can
be instantaneously validated through the Redis Memorystore.
Redis is executed on a single thread and the transaction is
guaranteed to sequentially execute the commands; thus, even
if all replicas of a micro-service, e.g., the PCA, received a
pseudonym request from one vehicle at the same time, the
VPKIaaS system would serve only one pseudonym request
and the rest of them would be denied.

The ramification of the Redis service failure12 depends
on the action after the failure, i.e., fail open or fail close. In case
of fail open, Sybil attacks would be possible, as the VPKIaaS
system provides vehicles with spurious pseudonyms. Later,
it invalidates the erroneously issued credentials by adding
them to the CRL. In case of fail close, the VPKIaaS system
stops issuing credentials until the failure gets resolved.

DDoS attacks on the VPKIaaS system: Compromised in-
ternal entities or external adversaries could try to harm

12. A failure could be benign, e.g., system faults or crashes, or under
resource depletion attacks, e.g., a DDoS attack.

the system operations by launching a DDoS attack, thus
degrading the availability of the system. A rate limiting
mechanism, by requesting the suspicious nodes to piggyback
a response to solve a puzzle [64], [65], prevents internal
adversaries from compromising the availability of the system;
moreover, the system flags misbehaving users, thus evicting
them from the system. External adversaries, or internal ones
that do not use their credentials, could launch a DDoS attack
by clogging the LTCA with a fake request for a ticket using
a bogus signature or a bogus certificate, or the PCA with
bogus tickets. In fact, such misbehaving (external) entities
attempt to compromise the availability of the VPKI entities
by mandating them to excessively validate the signature
of fake LTCs or bogus tickets [37], [31], i.e., performing a
signature flooding attack [38].

Compromised internal vehicles (with valid tickets) could
conduct a DDoS attack on the PCA during the pseudonym
acquisition process: each malicious vehicle would construct
legitimate-looking CSRs with bogus proof-of-possession
signature for the last one. This would impose significant
computation overhead on the PCA, requiring validation of
all the CSRs; the most time-consuming part of pseudonym
validation request. To prevent internal malicious vehicles
from clogging a DDoS attack on the PCA, we modified
the protocol (as presented in [31], [45]): for each CSR,
each vehicle needs to sign the hash of concatenated all
pseudonymous public keys with each private key. Thus,
with each CSR, a vehicle would non-repudiably attest to
the possession of the private keys corresponding to all the
public keys. This does not impose extra overhead on the
performance as the signature generation and validation
processes remain intact; the difference is that the hash of
multiple public keys per CSR is signed and verified instead
of signing and verifying the hash of a single public key.

This brings forth the advantage of probabilistic selection
of the CSRs for verification, e.g., during a rush hour scenario
or when under a DDoS attack, without compromising the
security of the scheme or imposing computation overhead.
Note that detecting a malformed CSR cannot result in a
false positive. In case of the probabilistic selection of the
CSRs for validation, a new process will validate each CSR
during system idle time13. If any of proof-of-possession
validation fails, this could be identified as a misbehavior
action and be reported to the RA. Later, misbehaving
vehicles would be (temporarily) evicted from the system
and revocation information (CRL/∆-CRL [56]) would be
efficiently disseminated across the network, e.g., [28], [32].

We achieve high-availability and fault-tolerance in the
face of a benign failure by exploiting the Kubernetes master
to kill the running (faulty) Pod, e.g., in case of system
faults or crashes, and create a new Pod. In case of resource
depletion attacks, the Kubernetes master scales out the Pods
to handle such demanding loads. At the same time, a puzzle
technique, e.g., [64], [65], can be employed as a mitigation
approach in a VPKI [31]: before initiating the pseudonym
acquisition process, each vehicle is mandated to visit a pre-
defined set of nodes, in a pre-determined sequential order

13. Pseudonyms are issued with non-overlapping lifetimes; thus, an
internal malicious vehicle can only use one pseudonym at any time. This
would enable timely validation of successive CSRs by the PCA.
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TABLE 2: VPKI Secrecy Analysis for Dolev-Yao Adversaries.

User-sensitive Piece of Information Entity Secrecy
Strong Secrecy
(Unlinkability)

Vehicle Id (LTC) V, LTCA X X
Ticket (tkt/n-tkt) V, LTCA, PCA X X

Pseudonym CSR ((K1
v , . . . , K

n
v )σkiv

) V, PCA X X
Pseudonym ((P i

v)σpca) V, LTCA, PCA X X
Timestamps (ts, te) V, LTCA, PCA X X

Random number (Rndtkt) V, LTCA X X
Random number (RndCKtkt

) V, LTCA, PCA X X
Random number (Rndpsnym) V, PCA X X

Ticket Commitment Key (CKtkt) V, LTCA, PCA X X
Pseudonym Commitment Key (CKP ) V, PCA X X

to solve a puzzle [65]. The system grants access once the
requester visits the pre-defined set of nodes as required. As
a result, the computation power of an attacker is degraded
to the computation power of a legitimate client [65], thus,
an adversary cannot send high-rate spurious requests to
the VPKI. On the side of the infrastructure, there are DDoS
mitigation techniques at different network layers, provided
by various cloud service providers14, e.g., [61], [62], [63].

Synchronization among the VPKI entities: Lack of synchro-
nization between the LTCA and the PCA could affect the
pseudonym issuance process, e.g., a PCA would not issue
pseudonyms for a seemingly ‘expired’ ticket. However,
mildly drifting clocks of the VPKI entities can hardly affect
the operation, because the pseudonym lifetimes and periods
for pseudonym refills (Γ) are in the order of minutes,
typically. It suffices VPKI entities periodically synchronizing
their clocks. For example, if the accuracy of a Real Time
Clock (RTC) is 50 parts-per-million (ppm), i.e., 50 × 10−6,
and the maximum accepted error in timestamp is 50 ms, then
each entity should synchronize its clock every 16 minutes.

4.2 Formal Analysis
We formalize the security of the ticket and pseudonym
acquisition protocols, i.e., the principal processes of the VPKI
system, using ProVerif [68], [69]: an automated protocol
verifier which enables the modeling of security protocols
in π Calculus [70]. This would increase confidence in the
analysis of the security protocols. System entities (VPKI) and
clients (requesting vehicles) are modeled as processes and
protocols are represented as parallel compositions of multiple
processes. Each VPKI entity possesses its own private keys
and cryptographic credentials, and the adversaries does not
have access (knowledge) on the private keys of legitimate
entities. ProVerif verifies security protocols in the presence
of Dolev-Yao adversaries [71]: with complete control of the
communication channel, they eavesdrop, modify, delete, and
forge any message using strictly cryptographic keys they
possess. As part of the future work, we plan to formally
analyze pseudonym issuance validation (Protocol 5) and
pseudonym resolution (Protocol 6) processes.

Table 2 summarizes our findings: VPKIaaS system en-
sures secrecy and strong secrecy for all critical pieces of

14. There exist DoS attacks on the TLS/SSL establishment, e.g., SYN
(synchronize) floods and SSL Garbage Flood [66], [67]. All these can be
mitigated by leveraging the existing DoS countermeasures on the cloud,
e.g., [61], [62], [63]. Further discussion is orthogonal to this investigation.

information during ticket and pseudonym acquisition pro-
tocols; the results ensure system security and user privacy
protection. Secrecy refers to the fact that an attacker does
not obtain (or infer) the value of a secret value itself [70].
However, strong secrecy implies that an attacker cannot
see differences when the value of a secret changes [70]. To
examine if strong secrecy holds for a given datum, we use
noninterf. Based on the ProVerif outputs, our security proto-
cols guarantee secrecy and strong secrecy; thus, adversaries
cannot infer changes over the exchanged data. For example,
given two distinct tickets, belonging to the same vehicle, it is
infeasible for an adversary to relate the two [72]; the same
holds for other user sensitive data, e.g., LTC, pseudonyms,
and timestamps. In the Dolev-Yao adversarial model [71],
unlinkability [73], [74] is achieved15.

5 QUANTITATIVE ANALYSIS

Experimental setup: We leveraged the state-of-the-art VPKI
system [31] and restructured its source code to fit in a micro-
services architecture through containerization, automation,
and bootstrapping of services. We further added health
and load metric publishing features, to be used by an
orchestration service to scale in/out accordingly. We built
and pushed Docker images for LTCA, PCA, RA, MySQL,
and Locust [75], an open source load testing tool, to the
Google Container Registry [76]. Isolated namespaces and
deployment configuration files are defined before Google
Kubernetes Engine (GKE) v1.10.11 [77] cluster runs the
workload. We configured a cluster of five Virtual Machines
(VMs) (n1-highcpu-32), each with 32 vCPUs and 28.8GB
of memory. The implementation is in C++ and we use
FastCGI [78] to interface Apache web-server. We use XML-
RPC [79] to execute a remote procedure call on the cloud.
The VPKIaaS interface is language-neutral and platform-
neutral, as we use Protocol Buffers [80] for serializing and de-
serializing structured data16. For the cryptographic protocols
and primitives (ECDSA and TLS), we use OpenSSL with
ECDSA-256 key pairs according to the ETSI (TR-102-638) [3]
and IEEE 1609.2 [2] standards; other algorithms and key sizes
are compatible in our implementation.

To facilitate the deployment of the VPKIaaS, we created
all VPKIaaS configuration in YAML language [82], applicable
to deploy on any cloud provider which offers Kubernetes as a
Service, e.g., GCP [53] and Amazon Web Service (AWS) [83].
For our experiments, we deployed our VPKIaaS on the
GKE [77]. We also used other GCP services: Memorystore [84],
Prometheus [85], and Grafana [86]. The Memorystore service is
a Redis-compatible [55] service (16GB, Version 6.x, Redis
Standard with a failover replica in a separate zone for
high availability [87]) which acts as in-memory key-value
data store (see Fig. 4). Prometheus is a feature-rich metric
service which collects all the metrics of the Kubernetes
cluster and the applications running on it into a time-series
database. We use Grafana to visualize the metrics collected
by Prometheus and monitor the system under test. Prometheus
and Grafana are deployed as prepared applications from the
GCP marketplace [88] on the Kubernetes cluster. Moreover,

15. We provided the Proverif code in the complementary document.
16. One can interact with the VPKIaaS system using SecProtoBuf [81]

to automate the signature generation and validation procedures.
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TABLE 3: Experiment Parameters.
Parameters Config-1 Config-2 Config-3

total number of vehicles 1000 100, 50,000 5000
hatch rate 1 1, 100 5, 10, 15, 20, 25

interval between requests 1000-5000 ms 1000-5000 ms 30000-60000 ms
pseudonyms per request 100, 200, 300, 400, 500 100, 200, 500 100, 200
LTCA memory request 128 MiB 128 MiB 128 MiB

LTCA memory limit 256 MiB 256 MiB 256 MiB
LTCA CPU request 500 m 500 m 500 m

LTCA CPU limit 1000 m 1000 m 1000 m
LTCA HPA 1-40; CPU 60% 1-40; CPU 60% 1-40; CPU 60%

PCA memory request 128 MiB 128 MiB 128 MiB
PCA memory limit 256 MiB 256 MiB 256 MiB
PCA CPU request 700 m 700 m 700 m

PCA CPU limit 1000 m 1000 m 1000 m
PCA HPA 1-120; CPU 60% 1-120; CPU 60% 1-120; CPU 60%

we leveraged Locust [75], deployed on the Kubernetes cluster,
to synthetically generate a large volume of requests.

Fully-automated Certificate Management on the GCP:
Leveraging scripting languages, we created tools to facilitate
automated compilation, integration, and deployment of the
micro-services on the cloud. Having finished the compilation
and installation scripts, Docker images for each micro-service
are ready to push on the Google Container Registry [76].

Metrics: To evaluate the performance of our VPKIaaS
system, we measure the latency to obtain pseudonyms under
different scenarios and configurations for a large-scale mobile
environment. More specifically, we evaluate the performance
of the system with (and without) flash crowds to illustrate its
high-availability, robustness, reliability, and dynamic-scalability.
We demonstrate the performance of our VPKIaaS system
by emulating a large volume of synthetic workload. Table 3
shows the configurations used in our experiments, with
Config-1 referring to a ‘normal’ vehicle arrival rate and Config-
2 and Config-3 for a flash crowd scenario. Experiments with
Config-1 indicates that every 1-5 seconds, a new vehicle joins
the system and requests a batch of 100-500 pseudonyms. To
emulate a flash crowd scenario, i.e., Config-2 and Config-3,
beyond having vehicles joining the system based on Config-1,
new vehicles (with hatch rates17 5, 10, 15, 20, 25, and 100)
join the system every 1-5 seconds and request a batch of 100,
200, and 500 pseudonyms.

Remark: Assuming the pseudonyms are issued with non-
overlapping intervals (important to mitigate Sybil-based
misbehavior), obtaining 100 and 500 pseudonyms per day im-
plies pseudonyms lifetimes of 14.4 minutes or 172.8 seconds,
respectively. According to actual large-scale urban vehicular
mobility dataset, e.g., Tapas-Cologne [89] or LuST [90], the
average trip duration is 10 to 30 minutes. According to
the US DoT, the average daily commute time in the US
is around 1 hour [21]. Thus, requesting 500 pseudonyms
per day would cover 24 hours trip duration with each
pseudonym lifetime of approx. 3 minutes. We evaluate the
performance of our VPKIaaS system under such seemingly
extreme configurations (Config-1 and Config-2 in Table 3).

5.1 Large-scale Pseudonym Acquisition

Fig. 5.a illustrates the Cumulative Distribution Function
(CDF) of the single ticket issuance processing delay (executed
based on Config-1 in Table 3); as illustrated, 99.9% of ticket

17. The hatch rate is the number of vehicles to spawn per second [75].
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Fig. 5: (a) CDF of end-to-end latency to issue a ticket. (b)
CDF of end-to-end processing delay to issue pseudonyms.
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Fig. 6: VPKIaaS system in a flash crowd load situation. (a)
CPU utilization and the number of requests per second. (b)
CDF of processing latency to issue tickets and pseudonyms.

requests are served within 24 ms: Fx(t = 24 ms) = 0.999,
i.e., Pr{t ≤ 24 ms} = 0.999. Fig. 5.b shows the CDF of
processing latency for issuing pseudonyms with different
batches of pseudonyms per request as a parameter. For
example, with a batch of 100 pseudonyms per request,
99.9% of the vehicles are served within less than 77 ms:
Fx(t = 77 ms) = 0.999. Even with a batch of 500
pseudonyms per request, the VPKIaaS system can efficiently
issue pseudonyms: Fx(t = 388 ms) = 0.999. The results
confirm that the VPKIaaS scheme is efficient and scalable:
the pseudonym acquisition process incurs low latency and it
efficiently issues pseudonyms for the requesters.

5.2 VPKIaaS with Flash Crowd Load Pattern
Fig. 6 shows the performance of the VPKIaaS during a surge
in pseudonym acquisition requests (based on Config-2 in
Table 3, with 100 pseudonyms per request). We assess the
CPU utilization of the LTCA and the PCA Pods (Fig. 6.a
top) and the total number of pseudonyms requests per
second (Fig. 6.a bottom). When the number of requests per
second increases, the average CPU utilization rises; however,
when CPU utilization hits a 60% threshold, defined in the
Horizontal Pod Autoscalers (HPAs) [91], the LTCA and the
PCA deployment horizontally scales out to handle the loads,
thus the average CPU utilization drops.

Fig. 6.b shows the end-to-end processing latency to obtain
tickets and a batch of 100 or 200 pseudonyms in a flash
crowd situation. The processing latency to issue a single
ticket is: Fx(t = 87 ms) = 0.999; to issue a batch of 100
pseudonyms per request, the processing latency is: Fx(t =
192 ms) = 0.999. Compared to the end-to-end processing
delay in ‘normal’ conditions (Fig. 5), the processing latency
of issuing a single ticket increases from 24 ms to 87 ms;
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Fig. 7: VPKIaaS system with flash crowd load pattern. (a)
Average end-to-end latency to obtain pseudonyms. (b) CDF
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Fig. 8: Each vehicle requests 500 pseudonyms (CPU utiliza-
tion observed by HPA). (a) Number of active vehicles and
CPU utilization. (b) Dynamic scalability of VPKIaaS system.

the processing latency to issue a batch of 100 pseudonyms
increases from 77 ms to 192 ms. Thus, even with such a
highly demanding request rate, the VPKIaaS system issues
credentials efficiently. Throughout the simulated scenario,
the total number of vehicles requesting 100 pseudonyms
(under Config-2 in Table 3) is 398870 and the VPKIaaS system
issues approximately 40 millions pseudonyms within 2500
seconds; we can compute that at the rate of this scenario, the
VPKIaaS system would issue 0.5 × 1012 pseudonyms over
a year. This number is smaller than the expected number of
pseudonyms to be issued per year, i.e., 1.5× 1012 [21] (see
Sec. 1). Note that this is a proof of concept of the VPKIaaS
system implementation; by allocating more resources and
increasing the pseudonym request rates, the VPKIaaS system
would issue more numerous pseudonyms.

Fig. 7.a shows the latency for each system component
to obtain different size batches of pseudonyms per request
(Config-2 in Table 3). Our VPKIaaS system outperforms prior
work [47]: the processing delay to issue 100 pseudonym
for [47] is approx. 2000 ms, while it is approx. 56 ms in
our system, i.e., achieving a 36-fold improvement over prior
cloud-based work [47]. Fig. 7.b illustrates the average end-
to-end latency to obtain pseudonyms, observed by clients:
during a surge of requests, all vehicles obtained a batch of
100 pseudonyms within less than 4900 ms (including the
networking latency). Obviously, the shorter the pseudonym
lifetime, the higher the workload on the VPKI, thus the
higher the end-to-end latency. Note that serving requests
in a flash crowd scenario at this rate (Config-2 in Table 3)
implies serving 720,000 vehicles joining the system within an
hour. Thus, even under such flash crowd load pattern, our
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Fig. 9: Pseudonym acquisition with SECMACE [31].
VPKIaaS system comfortably handles the high demand.

5.3 Dynamic-scalability of the VPKIaaS

In this scenario, we evaluate the reliability and dynamic
scalability of our VPKIaaS system. To emulate a large volume
of workload, we generated synthetic workload using 30
containers, each with 1 vCPU and 1GB of memory (executed
based on Config-2 in Table 3). Fig. 8.a shows the average
CPU utilization of the LTCA and the PCA Pods (observed
by HPA), as well as the total number of requests per second.
Fig. 8.b shows how our VPKIaaS system dynamically scales
out or scales in, according to the rate of pseudonyms requests.
The numbers next to the arrows show the number of LTCA
and PCA Pod replicas at any specific system time. As
illustrated, the number of PCA Pods starts from 1 and it
gradually increases; at system time 1500, there is a surge in
pseudonym requests, thus the number of PCA Pods increases
to 80. Note that issuing a ticket is more efficient than issuing
pseudonyms; thus, the LTCA micro-service scaled out only
up to 4 Pod replicas.

5.4 VPKIaaS Performance Comparison

We compare VPKIaaS scheme with a baseline scheme [47],
which implements a VPKI according to the ETSI architec-
ture [3]. More precisely, each vehicle requests pseudonyms
from an authorization authority [3], [47]; the request is
forwarded to the enrollment authority to check and validate
the request. Upon a successful validation, the authorization
authority issues the pseudonyms and sends them back to the
vehicle. Using the similar setup to have a meaningful and
direct comparison, we achieve a 36-fold improvement over
the baseline scheme: under normal conditions, the processing
delay to issue 100 pseudonyms for the baseline scheme is
approx. 2000 ms, while it is approx. 56 ms in the VPKIaaS
system. Even under a flash crowd scenario (based on Config-
2), the processing delay to issue 100 pseudonyms is approx.
71 ms, i.e., 28-fold improvement. Furthermore, unlike the
VPKI system in [47], our implementation supports dynamic
scalability, i.e., the VPKI scales out, or scales is, based on the
arrival rate of pseudonyms requests.

Fig. 9 and Fig. 10 compare the performance of the
SECMACE [31] and the VPKIaaS systems under Config-3.
Vehicles join the system at different hatch rates and request
for 100 and 200 pseudonyms. At a hatch rate of 5, the number
of new vehicles, joining the system per second, is five. With
the SECMACE system (with a hatch rate of 25), 99.9% of
100 pseudonyms requests are served within 30 seconds:
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Fig. 10: Pseudonym acquisition with SECMACE+ (VPKIaaS).

Fx(t = 30 sec) = 0.999 (Fig. 9.a). However, with the same
set up, the VPKIaaS system can serve requesters within 5.5
seconds: Fx(t = 5.5 sec) = 0.999 (Fig. 10.a). Similarly, the
VPKIaaS system outperforms the SECMACE system when
requesting 200 pseudonyms: for SECMACE with hatch rate
of 10, Fx(t = 50 sec) = 0.999 while for the VPKIaaS system,
Fx(t = 15 sec) = 0.999.

Fig. 11 compares the performance of SECMACE [31]
and the VPKIaaS in flash crowd conditions. The SECMACE
performance drastically decreases when there is a surge
in the pseudonym arrivals; on the contrary, the VPKIaaS
system can comfortably handle such demanding requests
while efficiently issuing batches of pseudonyms. To issue 200
pseudonyms with a hatch rate of 10, it takes 29273 ms for the
SECMACE while it takes 2294 ms for the SECMACE+, i.e.,
13 times more efficient in issuing pseudonyms.

6 RELATED WORK

A VPKI can provide vehicles with valid pseudonyms for a
long period, e.g., 25 years [30]. However, extensive preload-
ing with millions of pseudonyms per vehicle for such a
long period is computationally costly, inefficient in terms of
utilization and cumbersome for revocation [29], [32]. On the
contrary, several proposals suggest more frequent Vehicle-to-
VPKI interactions, namely on-demand schemes, e.g., [37], [31],
[92], [93]. This strategy provides more efficient pseudonym
utilization and revocation, thus being effective in fending
off misbehavior. However, for on-demand pseudonym ac-
quisition, one needs to design (and deploy) an efficient and
scalable system while being resilient against any resource
depletion attack. Even though VPKI systems may handle
large-scaled distributed scenarios, e.g., [47], there is lack of
dynamic scalability (i.e., dynamically scale out/in according
to the arrival rates) and resilient to a resource depletion
attack, e.g., a DoS attack. Beyond a significant performance
improvement over [47], our VPKIaaS implementation is
highly-available, dynamically-scalable, and fault-tolerant.

Sybil-based [42] misbehavior can seriously affect the
operation of VC systems, as multiple fabricated non-existing
vehicles could pollute the network by injecting false informat-
ion. For example, an adversary with multiple valid pseudo-
nyms, termed here a Sybil node, could create an illusion of
traffic congestion towards affecting the operation of a traffic
monitoring system, or broadcast fake misbehavior detection
votes [94], [95], [96], or disseminate Spam to other users
in a vehicular social network [24]. The idea of enforcing
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Fig. 11: Pseudonym acquisition comparison between SEC-
MACE [31] and SECMACE+ (VPKIaaS with Redis Enabled).

non-overlapping pseudonym lifetimes was first proposed
in [10]. This prevents an adversary from equipping itself
with multiple valid identities, and thus affecting protocols
of collection of multiple inputs, e.g., based on voting, by
sending out redundant false, yet authenticated, information.
Even though this idea has been accepted, a number of
proposals, e.g., [14], [30], do not prevent a vehicle from
obtaining simultaneously valid pseudonyms via multiple
pseudonym requests. The existence of multiple pseudonym
issuers deteriorate the situation: a vehicle could request
pseudonyms from multiple service providers, while each
of them is not aware whether pseudonyms for the same
period were issued by any other service provider. One
can mitigate this vulnerability by relying on an HSM,
ensuring all signatures are generated with a single private
key corresponding to a single valid pseudonym at any
time. There are also distributed schemes to detect Sybil
nodes based on radio characteristics and triangulation [43],
[44]. Such strategies are application-dependent: this cannot
guarantee the operation of a traffic monitoring system from
an adversary who disseminates multiple traffic congestion
messages, each signed under a distinct ‘fake’ private key.

V-tokens scheme [93] prevents a vehicle from obtaining
multiple simultaneously valid pseudonyms due to having
service providers communicating with each other, e.g., a
distributed hash table. SECMACE [31] (including its pre-
decessors [37], [41]) prevents Sybil-based misbehavior on
the infrastructure side without the need for an additional
entity, i.e., extra interactions or intra-VPKI communications.
More specifically, it ensures each vehicle has one valid
pseudonym at any time in a multi-domain environment.
However, when deploying SECMACE (designed for and
implemented on a single machine) on the cloud, a malicious
vehicle could repeatedly request pseudonyms, hoping that
requests are delivered to different replicas of a micro-service,
thus obtaining multiple simultaneously valid pseudonyms,
e.g., [46], [47]. Unlike such schemes, our VPKIaaS scheme
prevents Sybil-based misbehavior on the cloud-deployed
infrastructure: it ensures that each vehicle can only have one
valid pseudonym at any time without affecting the timely
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issuance of pseudonyms.
Moreover, to handle a large volume workload, SEC-

MACE [31] requires to statically allocate resources. In case
of an unpredictable surge in the arrival rates or being
under a DDoS attack, the performance of SECMACE would
drastically decrease. Also, when deploying SECMACE on the
cloud, a malicious vehicle could repeatedly request to obtain
pseudonyms towards performing Sybil-based misbehavior.
On the contrary, our VPKIaaS system can comfortably
handle requests with unexpected arrival rate while being
efficient in issuing pseudonyms, being resilient against Sybil
and resource depletion attacks, and being cost-effective by
systematically allocating and deallocating resources.

The VPKI entities are, often implicitly, assumed to be
fully trustworthy. Given the experience from recent mobile
applications, e.g., [97], [98], [99], the adversarial model is
extended from fully trustworthy to honest-but-curious VPKI
servers, notably in [14], [31]. Such honest-but-curious entities
may subvert the security protocols and deviate from system
policies if gained an advantage without being identified,
e.g., inferring user sensitive information [100], [101], [102],
[103], [104], [105]. During the pseudonym acquisition process,
a PCA could trivially link all pseudonyms for a requester
issued within an interval (Γ). However, one can configure the
VPKI system to issue fully-unlinkable pseudonyms [31]: each
vehicle requests a distinct ticket to obtain each pseudonym.
Thus, even an honest-but-curious PCA cannot link two
successive pseudonym requests to a single vehicle. During
the pseudonym issuance process, the PCA calculates the Re-
vocation Commitment Key [28], [32]. This essentially provides
two important features: firstly, it prevents a compromised
PCA from mapping a different ticket during the resolution
process. Secondly, this enables efficient distribution of the
CRL: the PCA implicitly correlates a batch of pseudonyms
belonging to each requester. Thus, upon revocation, the PCA
only needs to include one entry per batch of pseudonyms
without compromising their unlinkability.

In case of fully-unlinkable pseudonyms, there is only one
pseudonym issued per interval (Γ); upon revocation, the PCA
discloses one entry per Γ. This guarantees that even after a
revocation event, the PCA cannot link any two pseudonyms
belonging to the same vehicle [28], [32] (unlike the SCMS
design [14]). In the SCMS design [14], this linking attack is
mitigated by a Registration Authority, one PCA, and two
Linkage Authorities (LAs), i.e., four entities. In contrast, our
scheme achieves the same with a simpler design, based on
two VPKI entities, the LTCA and the PCA.

In general, SECMACE [31], [28], [45] issues numerous
pseudonyms per Γ, with each pseudonym having a lifetime
τp � Γ. For SCMS [14], the interval (Γ) is equal to pseudo-
nym lifetime (τp), by default, and multiple pseudonyms (20-
40) are issued within an interval Γ. Thus, upon revocation, all
20-40 pseudonyms could be linked within a Γ. SECMACE as-
sumes a shorter Γ, e.g., 1 hour, with a pseudonym lifetime of
5 minutes. Upon revocation, one cannot link the pseudonyms
backward due to the utilization of a hash chain. The shorter
the interval is, the narrower the linkability window becomes.
But simply narrowing down this interval does not diminish
the linkability window in ACPC [33] and SCMS [14], [30]:
for each vehicle, 20-40 pseudonyms are issued, valid for a
week, all with overlapping validity intervals.

To diminish linkability, the pseudonym issuance process
should be changed, i.e., issuing pseudonyms with a shorter
validity interval. More precisely, if the pseudonyms are
issued with a validity interval of one week, defining a shorter
interval for CRL distribution becomes meaningless because
the revoked pseudonyms would appear in all shorter-defined
intervals. The second important issue is that when the
linkage seed is disclosed, all the revoked pseudonyms,
within that interval, will be linked; thus, if any of such
revoked pseudonyms have been used prior to revocation,
they become linkable, thus, harming user privacy. On the
contrary, our scheme mitigates this vulnerability based on
what we term Pseudonym Acquisition Policies [31], [41]:
vehicles request one or multiple pseudonyms based on a
predetermined universally fixed interval and the pseudonym
lifetime. This prevents linking pseudonyms based on their
timing information, linking multiple sets of pseudonyms
belonging to the same requester, and most important, facili-
tating more efficient dissemination of revocation information.

SEROSA [106] proposed a general service-oriented se-
curity architecture seeking to bridge Internet and the VC
domains. The LTCA issues authenticated, yet anonymized,
tickets to the vehicles to obtain pseudonyms from the PCA.
However, the LTCA can learn from pseudonym acquisition
process: when and from which PCA the vehicle will obtain
pseudonyms since the Security Assertion Markup Language
(SAML) token is presented to the LTCA. The exact pseu-
donym acquisition period could be used to infer the active
period of the vehicle operation, and the targeting PCA could
be used to infer the approximate location (assuming the
vehicle chooses the nearest PCA) or the affiliation (assuming
the vehicle can only obtain pseudonyms from the PCA
in the domain it is affiliated to, or operating in) of the
vehicle. Moreover, the multi-domain environment explicitly
addressed by [106] leaves space for Sybil-based misbehavior:
the infrastructure cannot prevent multiple spurious requests
to different PCAs. Furthermore, our scheme outperforms
SEROSA [106] with a 2.5-fold improvement [31]. The main
reasons for such a significant improvement is efficient
protocol design with minimum interaction with the VPKI
(only two interactions rather than three interactions in [106]
and [47]) as well as leveraging multiple programming
features, e.g., multi-threading implementation, code and
memory usage optimization techniques.

The trend towards the cloudification of the PKIs is not
limited to the VC systems; there are various cloud-based
PKIs for the Internet, e.g., Enterprise Java Beans Certificate
Authority (EJBCA) [107], the Key-factor PKIaaS [108], the
digicert [109], and the HydrantID [110]. Such PKI as a Service
(PKIaaS) systems cannot be used for the VC systems. To
comply with the security and privacy requirements in the
standardization bodies (IEEE 1609.2 [2] and ETSI [3], [4]), no
single entity should be able to fully de-anonymize a user or
link successive anonymized credentials over a long period
of time. This requires a special-purpose PKI with separation
of duties to ensure conditional anonymity for the deployment
of secure and privacy-protecting VC systems.

Outside the VC realm, there are also different proposals
for PKIs to be resilient against compromised insiders. Such
schemes rely on signing a certificate by more than a threshold
number of CAs, e.g., [111], [112]; however, such schemes
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cannot be used by VC systems. For example, issuing a
certificate in [112] takes approximately 2 minutes and it
varies with the number of required CAs. Obviously, this
contradicts with on-demand pseudonym acquisition strategies
for VC systems, e.g., [31], [113], [40], [41], which necessitate
efficient pseudonym provisioning.

7 CONCLUSION

The deployment of secure and privacy-preserving VC sys-
tems relies on deploying a special-purpose Vehicular Public
Key Infrastructure (VPKI). Its success requires viability in
terms of performance and cost. To achieve high availability,
resiliency, scalability, and cost-effective VPKI deployment,
we leverage the state-of-the-art VPKI, enhance its func-
tionality, and migrate it into the GCP. Through extensive
security and privacy analysis, we show that the VPKIaaS
system fully eradicates Sybil-based misbehavior without
compromising the efficiency of the pseudonym acquisition
process. We formally analyze the security protocols for ticket
and pseudonym acquisition processes: VPKIaaS achieves
security, privacy and resilience in the presence of strong
adversaries. Moreover, we improve the system to be resilient
against deviant LTCA and RA entities that aim to deteriorate
the security of the system or harm user privacy. With
these characteristics, our VPKIaaS system can catalyze the
deployment of secure and privacy-preserving VC systems.

ACKNOWLEDGEMENT

Work supported by the Swedish Foundation for Strategic
Research (SSF), the KAW Academy Fellows program (WAF),
and the Swedish Science Foundation (VR).

REFERENCES

[1] ‘‘Review of NHTSA Proposal to Mandate V2V Communication for
Safety,’’ https://www.etsi.org/deliver/etsi ts/102700 102799/
102731/01.01.01 60/ts 102731v010101p.pdf, Tech. Rep., Dec. 2016.

[2] ‘‘IEEE Standard for Wireless Access in Vehicular Environments -
Security Services for Applications and Management Messages,’’
Tech. Rep., Mar. 2016.

[3] ‘‘Intelligent Transport Systems (ITS); Vehicular Comm-
unications; Basic Set of Applications; Definitions,’’
https://www.etsi.org/deliver/etsi tr/102600 102699/102638/
01.01.01 60/tr 102638v010101p.pdf, Tech. Rep., Jun. 2009.

[4] ‘‘Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Part 2: Specification of Cooperative
Awareness Basic Service - V1.4.1,’’ Tech. Rep., Apr. 2019.

[5] ‘‘Intelligent Transport Systems (ITS); Security; Security Header
and Certificate Formats,’’ Tech. Rep., Oct. 2017.

[6] ‘‘C-ITS Platform Phase II: Certificate Policy for Deployment
and Operation of European Cooperative Intelligent Transport
Systems (C-ITS),’’ https://ec.europa.eu/transport/sites/default/
files/c-its certificate policy release 1.pdf, Tech. Rep., Jun. 2017.

[7] PKI-Memo, ‘‘C2C-CC,’’ http://www.car-2-car.org/, Tech. Rep.,
Feb. 2011.

[8] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger,
M. Raya, Z. Ma, F. Kargl, A. Kung, and J.-P. Hubaux, ‘‘Secure
Vehicular Communication Systems: Design and Architecture,’’
IEEE Communications Magazine, vol. 46, no. 11, Nov. 2008.

[9] A. Kung, ‘‘Security Architecture and Mechanisms for V2V/V2I,
SeVeCom,’’ https://sevecom.eu/Deliverables/Sevecom
Deliverable D2.1 v3.0.pdf, Tech. Rep., Feb. 2008.

[10] P. Papadimitratos, L. Buttyan, J.-P. Hubaux, F. Kargl, A. Kung, and
M. Raya, ‘‘Architecture for Secure and Private Vehicular Comm-
unications,’’ in International Conference on ITS Telecommunications
(IEEE ITST), Sophia Antipolis, Jun. 2007, pp. 1--6.

[11] PRESERVE-Project, www.preserve-project.eu/, Jun. 2015.

[12] ‘‘Vehicle Safety Communications (VSC),’’ https://www.campllc.
org/vehicle-safety-communications-vsc/, Tech. Rep., Dec. 2006.

[13] ‘‘Vehicle Safety Communications - Applications (VSC-A) - Final
Report,’’ https://www.nhtsa.gov/sites/nhtsa.gov/files/811492a.
pdf, Tech. Rep., Sep. 2011.

[14] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, ‘‘A Security
Credential Management System for V2V Communications,’’ in
IEEE Vehicular Networking Conference, Boston, MA, Dec. 2013.

[15] ‘‘Vehicle Safety Communications Security Studies: Technical
Design of the Security Credential Management System,’’ https://
www.regulations.gov/document?D=NHTSA-2015-0060-0004, Jul.
2016.

[16] ‘‘Development of DSRC Device and Communication System
Performance Measures - Recommendations for DSRC OBE Per-
formance and Security Requirements,’’ https://rosap.ntl.bts.gov/
view/dot/31627, Tech. Rep., May 2016.

[17] ‘‘Intelligent Transport Systems (ITS); Security; Pre-
standardization Study on Pseudonym Change Management,’’
https://www.etsi.org/deliver/etsi tr/103400 103499/103415/
01.01.01 60/tr 103415v010101p.pdf, Tech. Rep., Apr. 2018.

[18] ‘‘Let’s Encrypt Stats,’’ https://letsencrypt.org/, Oct. 2018.
[19] ‘‘Comodo Certification Authority,’’ ssl.comodo.com/, Oct. 2018.
[20] ‘‘Symantec SSL/TLS Certificates,’’ https://www.websecurity.

digicert.com/ssl-certificate, Oct. 2018.
[21] ‘‘V2V Communications: Readiness of V2V Technology for Appli-

cation,’’ Tech. Rep., Aug. 2014, National Highway Traffic Safety
Administration, DOT HS 812 014.

[22] P. Papadimitratos, A. La Fortelle, K. Evenssen, R. Brignolo,
and S. Cosenza, ‘‘Vehicular Communication Systems: Enabling
Technologies, Applications, and Future Outlook on Intelligent
Transportation,’’ IEEE Communications Magazine, vol. 47, no. 11,
pp. 84--95, Nov. 2009.

[23] R. Shokri, G. Theodorakopoulos, P. Papadimitratos, E. Kazemi,
and J.-P. Hubaux, ‘‘Hiding in the Mobile Crowd: Location Privacy
through Collaboration,’’ IEEE Transactions on Dependable and Secure
Computing (TDSC), vol. 11, no. 3, pp. 266--279, May 2014.

[24] H. Jin, M. Khodaei, and P. Papadimitratos, ‘‘Security and Privacy
in Vehicular Social Networks,’’ in Vehicular Social Networks.
Taylor & Francis Group, Mar. 2016.

[25] E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, and D. Boneh,
‘‘Towards Short-lived Certificates,’’ IEEE Oakland Web 2.0 Security
and Privacy (W2SP), May 2012.

[26] P. McDaniel and A. Rubin, ‘‘A Response to ‘‘Can We Eliminate
Certificate Revocation Lists?’’,’’ in FC (Springer), Berlin, Heidel-
berg, Feb. 2000, pp. 245--258.

[27] J. Clark and P. C. Van Oorschot, ‘‘SoK: SSL and HTTPS: Revisiting
Past Challenges and Evaluating Certificate Trust Model Enhance-
ments,’’ in IEEE SnP, Berkeley, USA, May 2013.

[28] M. Khodaei and P. Papadimitratos, ‘‘Scalable & Resilient Vehicle-
Centric Certificate Revocation List Distribution in Vehicular
Communication Systems,’’ IEEE Transactions on Mobile Computing
(IEEE TMC), vol. 20, no. 7, pp. 2473--2489, Jul. 2021.

[29] ------, ‘‘The Key to Intelligent Transportation: Identity and Creden-
tial Management in Vehicular Communication Systems,’’ IEEE
Vehicular Technology Magazine, vol. 10, no. 4, pp. 63--69, Dec. 2015.

[30] V. Kumar, J. Petit, and W. Whyte, ‘‘Binary Hash Tree based
Certificate Access Management for Connected Vehicles,’’ in
Proceedings of the 10th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, Boston, USA, Jul. 2017.

[31] M. Khodaei, H. Jin, and P. Papadimitratos, ‘‘SECMACE: Scalable
and Robust Identity and Credential Management Infrastructure
in Vehicular Communication Systems,’’ IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 5, pp. 1430--1444,
May 2018.

[32] M. Khodaei and P. Papadimitratos, ‘‘Efficient, Scalable, and
Resilient Vehicle-Centric Certificate Revocation List Distribution
in VANETs,’’ in ACM Conference on Security & Privacy in Wireless
and Mobile Networks, Stockholm, Sweden, Jun. 2018, pp. 172--183.

[33] M. A. Simplicio Jr, E. L. Cominetti, H. K. Patil, J. E. Ricardini,
and M. V. M. Silva, ‘‘ACPC: Efficient Revocation of Pseudonym
Certificates using Activation Codes,’’ Ad Hoc Networks, Jul. 2018.

[34] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C.
Soong, and J. C. Zhang, ‘‘What Will 5G Be?’’ IEEE Journal on
Selected Areas in Communications (JSAC), vol. 32, no. 6, pp. 1065--
1082, 2014.

https://www.etsi.org/deliver/etsi_ts/102700_102799/102731/01.01.01_60/ts_102731v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102700_102799/102731/01.01.01_60/ts_102731v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf
https://ec.europa.eu/transport/sites/default/files/c-its_certificate_policy_release_1.pdf
https://ec.europa.eu/transport/sites/default/files/c-its_certificate_policy_release_1.pdf
http://www.car-2-car.org/
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
www.preserve-project.eu/
https://www.campllc.org/vehicle-safety-communications-vsc/
https://www.campllc.org/vehicle-safety-communications-vsc/
https://www.nhtsa.gov/sites/nhtsa.gov/files/811492a.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/811492a.pdf
https://www.regulations.gov/document?D=NHTSA-2015-0060-0004
https://www.regulations.gov/document?D=NHTSA-2015-0060-0004
https://rosap.ntl.bts.gov/view/dot/31627
https://rosap.ntl.bts.gov/view/dot/31627
https://www.etsi.org/deliver/etsi_tr/103400_103499/103415/01.01.01_60/tr_103415v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103400_103499/103415/01.01.01_60/tr_103415v010101p.pdf
https://letsencrypt.org/
ssl.comodo.com/
https://www.websecurity.digicert.com/ssl-certificate
https://www.websecurity.digicert.com/ssl-certificate


17

[35] M. Agiwal, A. Roy, and N. Saxena, ‘‘Next Generation 5G Wireless
Networks: A Comprehensive Survey,’’ IEEE Communications
Surveys & Tutorials, vol. 18, no. 3, pp. 1617--1655, 2016.

[36] K. Abboud, H. A. Omar, and W. Zhuang, ‘‘Interworking of DSRC
and Cellular Network Technologies for V2X Communications: A
Survey,’’ IEEE Transactions on Vehicular Technology (TVT), vol. 65,
no. 12, pp. 9457--9470, Jul. 2016.

[37] M. Khodaei, H. Jin, and P. Papadimitratos, ‘‘Towards Deploying a
Scalable & Robust Vehicular Identity and Credential Management
Infrastructure,’’ in IEEE Vehicular Networking Conference (VNC),
Paderborn, Germany, Dec. 2014.

[38] H.-C. Hsiao, A. Studer, C. Chen, A. Perrig, F. Bai, B. Bellur,
and A. Iyer, ‘‘Flooding-Resilient Broadcast Authentication for
VANETs,’’ in ACM Mobile Computing and Networking, Las Vegas,
Nevada, USA, Sep. 2011.

[39] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. Long, ‘‘Man-
aging Flash Crowds on the Internet,’’ in IEEE/ACM MASCOTS,
Orlando, FL, USA, Oct. 2003, pp. 246--249.

[40] Z. Ma, F. Kargl, and M. Weber, ‘‘Pseudonym-on-demand: A New
Pseudonym Refill Strategy for Vehicular Communications,’’ in
IEEE Vehicular Technology Conference, Calgary, BC, Sep. 2008.

[41] M. Khodaei and P. Papadimitratos, ‘‘Evaluating On-demand
Pseudonym Acquisition Policies in Vehicular Communication
Systems,’’ in ACM MobiHoc Workshop on Internet of Vehicles and
Vehicles of Internet (ACM IoV-VoI), Paderborn, Germany, Jul. 2016.

[42] J. R. Douceur, ‘‘The Sybil Attack,’’ in ACM Peer-to-peer Systems,
London, UK, Mar. 2002.

[43] B. Xiao, B. Yu, and C. Gao, ‘‘Detection and Localization of
Sybil Nodes in VANETs,’’ in Proceedings of the 2006 workshop
on Dependability issues in wireless ad hoc networks and sensor networks
(DIWANS), Los Angeles, CA, USA, Sep. 2006, pp. 1--8.

[44] P. Golle, D. Greene, and J. Staddon, ‘‘Detecting and correcting
malicious data in vanets,’’ in ACM VANET, Philadelphia, PA,
USA, Oct. 2004, pp. 29--37.

[45] M. Khodaei, H. Noroozi, and P. Papadimitratos, ‘‘Scaling
Pseudonymous Authentication for Large Mobile Systems,’’ in
Proceedings of the 12th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, Miami, FL, USA, May 2019.

[46] H. Noroozi, M. Khodaei, and P. Papadimitratos, ‘‘DEMO: VP-
KIaaS: A Highly-Available and Dynamically-Scalable Vehicular
Public-Key Infrastructure,’’ in Proceedings of the 2018 ACM confer-
ence on Security and privacy in wireless & mobile networks, Stockholm,
Sweden, Jun. 2018, pp. 302--304.

[47] P. Cincilla, O. Hicham, and B. Charles, ‘‘Vehicular PKI Scalability-
Consistency Trade-Offs in Large Scale Distributed Scenarios,’’ in
IEEE Vehicular Networking Conference (VNC), Columbus, Ohio,
USA, Dec. 2016.

[48] P. Papadimitratos, V. Gligor, and J.-P. Hubaux, ‘‘Securing Vehicu-
lar Communications-Assumptions, Requirements, and Principles,’’
in Workshop on Embedded Security in Cars (ESCAR), Berlin, Ger-
many, Nov. 2006.

[49] N. Bißmeyer, ‘‘Misbehavior Detection and Attacker Identification
in Vehicular Ad-Hoc Networks,’’ Ph.D. dissertation, Technische
Universität, Dec. 2014.

[50] P. Papadimitratos, ‘‘”On the road” - Reflections on the Security
of Vehicular Communication Systems,’’ in IEEE International
Conference on Vehicular Electronics and Safety (ICVES), Columbus,
OH, USA, Sep. 2008.

[51] J. Sermersheim, ‘‘Lightweight Directory Access Protocol (LDAP),’’
RFC 4511, Tech. Rep., Jun. 2006.

[52] E. Rescorlad, ‘‘The Transport Layer Security (TLS) Protocol
Version 1.3,’’ RFC 8446, Tech. Rep., Aug. 2018.

[53] ‘‘Google Cloud Platform,’’ Jan. 2019. [Online]. Available:
https://cloud.google.com/gcp/

[54] ‘‘Kubernetes: Production-Grade Container Orchestration,’’ Jan.
2019. [Online]. Available: https://kubernetes.io/

[55] ‘‘Redis, In-memory Data Structure Store, Used as a Database,’’
https://redis.io/, Oct. 2018.

[56] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. T. Polk, ‘‘Internet X. 509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,’’ RFC 5280, Tech.
Rep., May 2008.

[57] ‘‘Cloud Storage Pricing,’’ https://cloud.google.com/storage/
pricing#price-tables, Aug. 2021.

[58] E. Rescorla and N. Modadugu, ‘‘Datagram Transport Layer
Security V.1.2,’’ Jan. 2012.

[59] C. Adams, S. Farrell, T. Kause, and T. Mononen, ‘‘Internet
X.509 Public Key Infrastructure Certificate Management Protocol
(CMP),’’ RFC 4210, Tech. Rep., Sep. 2005.

[60] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
‘‘Benchmarking Cloud Serving Systems with YCSB,’’ in ACM
SoCC, Indianapolis, Indiana, USA, Jun. 2010, pp. 143--154.

[61] ‘‘Google Cloud Armor,’’ cloud.google.com/armor, Aug. 2021.
[62] ‘‘Best Practices for DDoS Protection and Mitigation on

Google Cloud Platform,’’ https://cloud.google.com/files/
GCPDDoSprotection-04122016.pdf, Apr. 2016.

[63] ‘‘AWS Best Practices for DDoS Resiliency,’’ https://d1.awsstatic.
com/whitepapers/Security/DDoS White Paper.pdf, Jun. 2018.

[64] T. Aura, P. Nikander, and J. Leiwo, ‘‘DoS-Resistant Authentication
with Client Puzzles,’’ in Proceedings of Security Protocols Workshop,
New York, USA, Apr. 2001.

[65] M. Abliz and T. Znati, ‘‘A Guided Tour Puzzle for Denial of
Service Prevention,’’ in IEEE Annual Computer Security Applications
Conference (ACSAC), Honolulu, HI, Dec. 2009, pp. 279--288.

[66] ‘‘SSL DDoS Attacks and How to Defend Against
Them,’’ www.link11.com/en/blog/threat-landscape/
ssl-ddos-attacks-and-how-to-defend-against-them/, Aug.
2018.

[67] ‘‘TLS Security 6: Examples of TLS Vulnerabilities and
Attacks,’’ https://www.acunetix.com/blog/articles/
tls-vulnerabilities-attacks-final-part/, Mar. 2019.

[68] ‘‘ProVerif: Cryptographic Protocol Verifier in the For-
mal Model,’’ https://prosecco.gforge.inria.fr/personal/bblanche/
proverif/, Feb. 2021, accessed Feb. 15, 2021.

[69] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, ‘‘ProVerif 2.02
pl1: Automatic Cryptographic Protocol Verifier, User Manual and
Tutorial,’’ https://prosecco.gforge.inria.fr/personal/bblanche/
proverif/manual.pdf, Tech. Rep., Sep. 2020.

[70] B. Blanchet, ‘‘Automatic Proof of Strong Secrecy for Security
Protocols,’’ in IEEE Symposium on Security and Privacy, California,
USA, May 2004.

[71] D. Dolev and A. Yao, ‘‘On the Security of Public Key Protocols,’’
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198--208,
Mar. 1983.

[72] L. Hirschi, D. Baelde, and S. Delaune, ‘‘A Method for Verifying
Privacy-type Properties: The Unbounded Case,’’ in IEEE Sympo-
sium on Security and Privacy (SP), San Jose, CA, USA, May 2016,
pp. 564--581.
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