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ABSTRACT
Cooperative Adaptive Cruise Control (CACC), a promising Vehicu-

lar Ad-hoc Network (VANET) application, automates transportation

and improves efficiency. Vehicles form a platoon, following a leader,

with their controllers automatically adjusting velocity, based on

messages by other vehicles, to keep appropriate distances for safety.

Towards deploying secure CACC, several proposals in academia and

standardization leave significant questions unanswered. Thwarting

adversaries is hard: cryptographic protection ensures access control

(authentication and authorization) but falsified kinematic informa-

tion by faulty insiders (platoon members with credentials, even the

platoon leader) can cause platoon instability or vehicle crashes. Fil-

tering out such adversarial data is challenging (computational cost

and high false positive rates) but, most important, state-of-the-art

misbehavior detection algorithms completely fail during platoon

maneuvering. In this paper, we systematically investigate how and

to what extent controllers for existing platooning applications are

vulnerable, mounting a gamut of attacks, ranging from falsifica-

tion attacks to jamming and collusion; including two novel attacks

during maneuvering. We show how the existing middle-join and

leave processes are vulnerable to falsification or ‘privilege escala-

tion’ attacks. We mitigate such vulnerabilities and enable vehicles

joining and exiting from any position (middle-join and middle-exit).

We propose a misbehavior detection system that achieves an 𝐹1
score of ≈87% on identifying attacks throughout the lifetime of

the platoon formation, including maneuvers. Our cyberphysical

simulation framework can be extended to assess any other driving

automation functionality in the presence of attackers.
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1 INTRODUCTION
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) com-

munication seek to enhance transportation safety and efficiency:

vehicles disseminate Cooperative Awareness Messages (CAMs) and

Decentralized Environmental Notification Messages (DENMs). As

is well-understood that Vehicular Communication (VC) systems

are vulnerable to attacks, security solutions have been developed

by standardization bodies (IEEE 1609.2 WG [3] and ETSI [26]) and

projects (SeVeCom [51, 53], and CAMP [73]). To secure V2V and

V2I (V2X) communication, Public Key Cryptography (PKC) is used:

a set of Certification Authorities (CAs) constitutes the Vehicular

Public-Key Infrastructure (VPKI), e.g., [41, 73], providing multiple

anonymized certificates, termed pseudonyms, to each legitimate

vehicle. Vehicles switch pseudonyms (not previously used) towards

unlinkable digitally signed CAMs/DENMs.

Vehicular platooning promises reduced fuel consumption [13,

23, 42], more efficient transportation (i.e., improved throughput

with the existing infrastructure) [7, 17, 46, 72, 77, 78], and safer

and more comfortable driving [71]. V2X communication leads to

platoon topologies as those illustrated in Fig. 1, enabling Coop-

erative Adaptive Cruise Control (CACC) [37]. A variety of con-

trollers aim at providing local stability and string stability [21,

72]: maintaining distances between each vehicle and its succes-

sor/predecessor with appropriate margins, and determining how

spacing errors propagate through the platoon. To achieve this,

controllers leverage CAMs/DENMs and radar measurements of

adjacent vehicles [48]. Several on-going projects and Field Opera-

tional Tests (FOTs), e.g., [7, 43, 46], as well as pre-standardization

work [27], investigate the case of platooning. In a platooning envi-

ronment (level 3 or above as per the Society of Automotive Engi-

neers (SAE)-J3016 standard [2]), vehicles interact with the platoon

leader and request to join, typically, from the platoon tail [17].
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Modern platooning schemes allow vehicles joining from any po-

sition, namely performing middle-join and middle-exit maneuvers.

This has several advantages: sorting vehicles out based on their

trajectory paths and other attributes, i.e., engine and braking capa-

bilities, results in fewer split and merge maneuvers. This results in

increased platoon stability and safety, and higher road utilization

(throughput) [25, 33, 45].

While the benefits of platooning are evident, deploying such a

high-stake application, even at the lowest level of automation, can-

not materialize unless all its underlying processes and operations

are secure and reliable [40]. Mitigating misbehavior by internal

adversaries is hard: cryptographic protocols ensure access control

(authentication and authorization) but internal adversaries launch-

ing falsification attacks [12, 69] can destabilize the platoon and

jeopardize passenger/driver safety. Worse even, a compromised

platoon leader disseminating false position, speed and acceleration
values to all members of the platoon, e.g., [35], could cause a col-

lision; exactly because controllers mostly rely on leader-provided

data, the attack impact would be higher [35]. To alleviate the effects

of these attacks, vehicles can operate with larger intra-platoon dis-

tances, thus, increasing the reaction times (of the platoon members)

in the presence of a misbehavior. However, operating platoons and

CACC with larger vehicle distances cannot eliminate the collision

risk. This would not only make platooning less efficient, but also

fail mitigating attacks and eradicating vehicle collisions [35, 69].

Attacks can be more sophisticated: a compromised insider could

initiate a data falsification attack and collude with an external

entity, e.g., a drone flying above the platoon performing a clogging

Denial of Service (DoS) [18] or a jamming attack [69]. This type of

collusion, not yet shown in the literature, is difficult to mitigate as

the external entity cannot be held accountable.

The trend towards CACCmaneuvering and improved platooning

is a double-edged sword: it gives an internal adversary new ways to

destabilize the platoon formation (in particular, the joining vehicle

and its followers), based on appropriately crafted falsified V2X mes-

sages. Furthermore, the adversary could exploit the execution of

middle-join and middle-exit protocols [17, 29] towards a privilege
escalation attack. When the platoon is split to perform the maneu-

vers, a platoon member (positioned after the joiner/leaver) would

inadvertently be promoted to lead the second formation (until the

platoons re-merge). But, if a compromised vehicle is elevated to be

a leader, it can more easily destabilize the platoon, even catastroph-

ically. These scenarios need to be properly analyzed, notably in

terms of their physical impact. More so, appropriate secure CACC

maneuvering protocols are required.

Plausibility checks of the position, speed and acceleration data

received in V2V messages [38] can filter out a range of falsified

data, but they cannot detect carefully crafted attacks, e.g., a falsi-

fied yet gradual increase in speed within plausible ranges. Other

Misbehavior Detection Schemes (MDSs), leveraging data fusion

and/or Kalman Filters [16, 31, 35], aim at thwarting data falsifi-

cation attacks. However, they are limited in assuming that at all

times specific neighbors and/or platoon members are benign, e.g.,

other vehicles on the road [16] or the platoon leader [31]. More so,

existing MDSs cannot discern maneuvering processes from misbe-

havior [35], as their model relies on static ‘normal’ behavior; thus,

any benign deviation from it, notably a maneuver, would be flagged

(a): Predecessor Following

(b): Predecessor Leader Following 

(c): Bidirectional

(d): Bidirectional-Leader

Figure 1: Information Flow Topologies.

as misbehavior. This would disrupt the functionality of platoon-

ing and diminish its benefits. Therefore, we need to design MDSs

that reliably detect sophisticated attacks, without mis-classifying

maneuvering as misbehavior.

Contributions: We introduce novel vehicular platooning at-

tacks: falsification attacks during the join and leave maneuver pro-

cesses, and falsification attacks combined with targeted jamming

(with colluding adversaries). We design secure middle-join and

leave protocols to mitigate the privilege escalation vulnerability.

We evaluate the effectiveness of a state-of-the-art MDS at mitigat-

ing attacks in a dynamic platooning environment and we propose

a new MDS, leveraging machine learning algorithms. Unlike ex-

isting MDSs, our scheme discerns misbehavior from maneuvering.

We significantly extend existing simulation tools, integrating the

above elements into Artemis, a comprehensive framework to ana-

lyze maneuvers, attack scenarios, misbehavior detection schemes

and mitigation techniques.

In the rest of the paper, we describe the background (Sec. 2),

related works (Sec. 3), adversarial model and the attack procedures

(Sec. 4). We follow up with our proposals to detect attacks (Sec. 5),

the experimental evaluation setup (Sec. 6), and the attack (Sec. 7)

and countermeasure (Sec. 8) analyses, before we conclude.

2 BACKGROUND
System Overview: Vehicles forming a platoon, reach a consensus

to elect a leader, e.g., based on a voting mechanism [36] or based

on the history of being a leader [19]. The platoon leader facilitates
vehicles joining the platoon by periodically disseminating the pla-

toon identity, status, and destination [27]. Vehicles interact with

the leader and request to join; typically, from the platoon tail [17].

The leader is responsible for accepting or rejecting join requests,

depending on the situation; e.g., rejecting a join request if the road

traffic condition does not allow extra spacing. Once accepted, the

joiner vehicle positions itself behind the platoon tail and notifies

the leader; which in turn informs all platoon members about the

new joiner. Platoon joins can be performed by one car at a time, or

by merging two platoons, e.g., for road safety reasons [10].

Information flows within a platoon [76] as illustrated in Fig. 1.

Each platoon member communicates in four different ways: (i)

unidirectionally, receiving from its predecessor (Fig. 1.a), (ii) unidi-

rectionally, receiving from its predecessor and the leader (Fig. 1.b),

(iii) bidirectionally, with the predecessor (Fig. 1.c), and (iv) bidirec-

tionally, with the predecessor and unidirectionally receiving from

the leader (Fig. 1.d). Predecessor-Leader topologies are typically sta-

ble because the effective time for a V2V message (i.e., CAM, DENM)



Table 1: Comparing Controllers Required Information: Dis-
tance (D), Speed (S), Acceleration (A) and Position (P); Radar
Measurements (R) and V2V Communication (V).

Controller Policy

Predecessor

D S A
Leader

P S A
Topology

ACC CTH R R — — — — —

PATH CVS R VR V — V V PL Following

Consensus (CNSS) BOTH R — — V V — PL Following

Flatbed (FLBD) CVS R VR — — V — Leader Following

Ploeg (PLG) CTH R R V — — — Predecessor Following

to reach any vehicle is short, with the leader reaching every platoon

member directly (rather than relying on a multihop transmission),

thus improving the string stability.

There are two main spacing policies: Constant Vehicle Spac-

ing (CVS) and Constant Time Headway (CTH) [27, 28]. CVS is

enforced by utilizing speed and acceleration information obtained

from one’s predecessor. CVS tends to create smaller space among

platoon members, thus achieving higher traffic throughput [67] by

trading off platoon stability under certain circumstances, e.g., sud-

den braking. CTH uses the current speed and the headway, the time

it would take for the front of a vehicle to reach the rear of its prede-

cessor, to calculate the intra-platoon distance. Higher speeds for a

given headway value imply larger intra-platoon distances, leading

to reduced traffic throughput (due to larger vehicle distances) [32].

Table 1 compares different controllers in terms of their poli-

cies and topologies. Adaptive Cruise Control (ACC) is included for

completeness, even though it is not used for platooning. The PATH
controller [58] relies on Predecessor-Leader topology and CVS policy
(Fig. 1.b), with vehicles receiving the speed and acceleration from

their leader and predecessor, or obtain them based on own radar

measurements. Consensus [61] also relies on the Predecessor-Leader
topology but uses information only from the leader, its position and

speed, and enforces a combination of CVS and CTH. Flatbed [14]

uses the speeds of the leader and the predecessor (with smaller

weight), obtained based on a Predecessor-Leader topology, to main-

tain its CVS policy. Flatbed simulates a, tow truck, that pulls the

whole platoon: the speed difference between the truck and each ve-

hicle is used to calculate the correct acceleration and intra-platoon

distances. Finally, Ploeg [56] uses a Predecessor Following topology

and utilizes the predecessor acceleration to achieve its CTH policy.

Hidden Markov Models Fundamentals:Markov models en-

able predicting the future state of a system based on its current

state. A Hidden Markov Model (HMM) is based on two stochastic

processes: an observable process that represents the sequence of

observations, and a hidden process that can be inferred indirectly

by analyzing the observation sequence, e.g., transitions from one

observed state to another. Hidden states transitions are governed

by a set of probabilities determined during the training phase.

AnHMMconsists of a set of N possible states, 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑁 },
and a matrix, 𝜋 , containing the initial state probabilities, i.e., the

probability of being at a specific initial hidden state. Given a hidden

sequence {𝑧 = 𝑧1, 𝑧2, . . . , 𝑧𝑇 }, the initial matrix 𝜋 is:

𝜋𝑖 = 𝑃 (𝑧1 = 𝑆𝑖 ), 𝑖 = 1, . . . , 𝑁 (1)

S1 S2 S3 SN

a s1 s1 a s2 s2 a s2 s2 a sN sN

a s1 s2 a s2 s3

...
a sN-1 sN

HM
M

Hidden
States
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M
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...

Transition
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Observation
Probabilities

Figure 2: A Visualization of an HMM and GMMwith Contin-
uous Observations.

In addition, matrix 𝑎 = {𝑎𝑖 𝑗 } consists of the probabilities of transi-
tioning from state 𝑆𝑖 to 𝑆 𝑗 , where i, j = 1,. . . , N:

𝑎𝑖, 𝑗 = 𝑃 (𝑧𝑡+1 = 𝑆𝑖 |𝑧𝑡 = 𝑆 𝑗 ) (2)

The so-called emission probability distribution, B = {bi(·)}, represents
the observation probability distribution at state i. For discrete proba-
bilities, the observations belong to a codebook𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝐾 };
given an observed time series {𝑥 = 𝑥1, 𝑥2, . . . , 𝑥𝑇 }, the 𝑏 matrix is

defined as:

𝑏𝑖 (𝑥𝑡 ) = 𝑃 (𝑥𝑡 = 𝑣𝑘 |𝑧𝑡 = 𝑆𝑖 ) (3)

If continuous, e.g., a Gaussian distribution or a mixture of multiple

Gaussians, matrix 𝑏 is defined as:

𝑏𝑖 (𝑥𝑡 ) =
𝑀∑
𝑚=1

𝐶𝑖,𝑚S(𝑥𝑡 ) |𝜇𝑖,𝑚,
∑

𝑖,𝑚 (4)

where 1≤i≤S, M is the number of Gaussians, 𝜇 is the mean,

∑
the

covariance and 𝐶𝑖,𝑚 the mixture coefficient where

∑𝑀
𝑚=1𝐶𝑖,𝑚 = 1.

We use a probability density function, termed Gaussian Mixture

Model (GMM), a mixture of multiple multivariate Gaussian den-

sities. GMM models the dependent relationship among multiple

variables, e.g., speed and acceleration. Fig. 2 illustrates the HMM,

the GMM, and the observations. Inference of the sequence of the

hidden states is achieved by observing visible system changes. For

example, in a platoon formation, increasing the intra-platoon gap

could imply decreasing the speed (i.e., the observation) of a vehicle

during a join maneuver (i.e., a sequence of hidden states).

3 RELATEDWORK
It is intuitive that a malicious platoon leader can cause more harm

than amalicious platoonmember: a leader falsification attack would

result in collision [35], while, with the same setup, a platoon mem-

ber attack would either have no effect or it would destabilize the

platoon. The effects of jamming on the string stability of the pla-

toon were evaluated [15, 24, 69]. A drone, hovering above, initiates

a jamming attack when the platoon is accelerating (without maneu-

vering). The drone effectively interrupts all the V2V communica-

tions towards destabilizing the formation; this results in a collision

with the CVS policy, which utilizes the information from the pre-

decessor to ensure constant gaps among members. The larger the



intra-platooning gaps, the lower the probability of collision, but the

lower the platoon stability too. In our investigation, we propose

novel collusion attacks and we go far beyond existing limited at-

tack evaluations: we compare the severity of falsification attacks,

including new variants, considering all state-of-the-art controllers.

Platoon management protocols, capable of performing several

maneuvers, including join, leave, merge and split [9, 17, 18], initially

allowed only joining from the tail of a platoon. However, there are

advantages in enabling a middle join process: vehicles with the

same, or nearby, destinations can be placed together, resulting in

less maneuvers throughout the lifetime of the platoon [25, 33],

thus, higher platoon stability (and efficiency). More so, vehicles

with different engine and breaking capabilities can be positioned

to improve the safety of the convoy [45]. In spite of its advantages,

the security implications of deploying the middle-join and exit

maneuvers were not thoroughly analyzed before this investigation.

Existing solutions for join [29] and exit processes [17, 29, 49]

require splitting the platoon. However, this would enable the fol-

lowing member of the joiner or leaver to be promoted to a leading

position (without any leader election mechanism [19, 36]). In the

presence of malicious insiders, any member could be elevated to

leader, thus, enabled to misbehave in various ways, e.g., prevent-

ing other vehicles from joining the platoon, or destabilizing the

platoon by disseminating erroneous information. Furthermore, dif-

ferent schemes for exit maneuvers are considered [9, 68], but their

resilience to falsifications attacks is not explored. We improved

the state-of-the-art platooning formation [6, 17] by designing and

deploying middle-join and exit processes. Unlike [17, 29, 49], our

middle-join and exit protocols (See Fig. 17 and Fig. 18 in Appen-

dix B) mitigate the ‘privilege escalation’ attack, as they do not split

the platoon nor elevate a node to a (temporary) leader.

Several consistency and plausibility mechanisms are evaluated

using a mobility data-set [38]: a misbehavior detection system

can detect speed and position falsification attacks with ≈40% and

≈85% accuracy, respectively. Alternatively, one can correlate the

information from the predecessor and the leader to establish trust

among the platoon members [31]. These results show that such an

approach can detect falsification attacks; but, fail to do so in case

of a compromised/malicious leader.

Appropriate countermeasures to prevent location spoofing, se-

cure neighborhood discovery [22, 47, 52, 54, 55, 75] and physical

position verification [30], can be leveraged to cross-reference other

kinematic data [16]. However, such schemes are either orthogonal

and complementary, yet invaluable, for automated driving (e.g.,

Global Navigation Satellite System (GNSS) anti-spoofing solutions);

require honest neighbors (e.g., for secure neighbor discovery), or

can partially assist (e.g., neighbor position verification). Nonethe-

less, such schemes cannot necessarily guarantee the detection of in-

telligent adversarial behavior, e.g., attacks that incrementally falsify

the kinematic data within the limits of neighborhood verification.

Several schemes leverage Kalman Filters to identify sensor mal-

functioning and misbehavior in platooning scenarios, e.g., [35, 66,

70]. A kinematic fusion approach, leveraging a Kalman Filter to

validate the incoming information and handle sensor errors was

investigated [35], but such a mechanism is computationally expen-

sive [70]. To the best of our knowledge, none of the abovementioned

schemes can thwart falsification attacks during maneuvering. We

evaluate the Kalman Filter effectiveness during maneuvering; our

results illustrate that it cannot discern between an attack and the

maneuver processes, always resulting in false positives.

A Hidden Markov Model (HMM)-based scheme to detect ma-

neuvers was proposed [34, 65]: the model was trained to recognize

overtaking and lane changing maneuvers. The schemes utilize the

Forward and Viterbi algorithms [57] to categorize the observed ve-

hicle behavior. Similarly, we leverage an HMM-based approach to

deign a novel MDS: beyond recognizing vehicle behavior and pla-

toon maneuvering, we utilize the HMM-based approach to identify

misbehavior and attacks during the platoon lifetime.

Machine learning based techniques were used in the VC sys-

tems to detect vehicles exhibiting abnormal behavior. Supervised

learning models were investigated in [64] while semi-supervised

learning and unsupervised learning were considered in [44]. More

complex neural networks models were investigated with a com-

plete pipeline of local and global detection algorithms to classify

misbehavior [39]. However, none of these works consider misbe-

havior detection during platoon maneuvers. A detailed analysis

and comparison of machine learning algorithms for broad-scope

MDS in VC systems is orthogonal to this investigation.

4 NEW ATTACKS AGAINST PLATOONING
Internal adversaries, i.e., malicious platoon members, possess valid

VC cryptographic material and their messages are considered legit-

imate, i.e, accepted, by the other platoon members. Thus, they con-

duct falsification attacks, by manipulating information in the CAMs

or DENMs they transmit, notably speed, acceleration, and position.

Furthermore, they degrade availability to harm the platoon opera-

tions by clogging DoS and/or jamming attacks. Non-platoon mem-

bers also possess valid cryptographic material as part of the VC sys-

tem; they cannot affect platoon functionality, but, they can launch

DoS or jamming attacks; we term those as external to the platoon
adversaries. Adversaries are not able to successfully ‘crack’ crypto-

graphic keys and forge messages impersonating platoon members.

We consider the general adversary model in [53] for secure and

privacy-preserving VC systems and adversarial model assumptions

of the vehicular platooning in the literature [18, 24, 35, 68, 69].

Novel aspects for VC platooning systems:We extend the ad-

versarial model for vehicular platooning to (i) include collaboration

among (multiple) internal and/or external adversaries; for example,

an internal adversary could perform a data falsification attack and

collude with an external adversary that mounts a targeted jamming

attack. Moreover, we introduce (ii) the notion of rationality for

platoon adversaries: an attacker could opt out of the platoon after

mounting an attack, or choose faulty values that would destabilize

vehicles downstream. This reduces the risk for the attacker to be

itself part of a vehicle collision. This new dimension facilitates eval-

uating the impact of attacks on the platoon formation and can serve

as a guide for adversarial choice of attack strategy (See Table 5)
1
.

An internal adversary can infer platoon-specific information,

e.g., the communication range and the role of the platoon mem-

bers, towards maximizing the impact of its attack. Additionally,

by observing the behavior of the platoon during the join and exit

1
It is possible, of course, that internal adversaries are malware-infected vehicles that

serve to mount destabilizing or destructive attacks anyway.



maneuvers, for a specific controller, it can anticipate the time of

completion of future join or leave processes. This, enables an ad-

versary to find an optimal time and position for an attack scenario,

e.g., a position falsification attack when the platoon accelerates.

Note that such an adversary complies with the policies determined

by the leader and controllers, e.g., only manipulating the kinematic

values within the plausible ranges, without interfering with the

platoon protocols (thus being harder to detect).

We provide a number of different attack procedures based on

this adversarial model. The attacks range from simply and stati-

cally falsifying a kinematic value (in CAMs), to launching jamming

attacks, to more intelligent attacks that dynamically change all the

kinematic properties with carefully selected falsified information.

The latter, termed combined attack, affects the operation of all con-

trollers and makes it harder for misbehavior detection mechanisms

to ‘flag’ it as such. The adversary modifies a kinematic property

(e.g. position), in each time-step, with a predetermined (system

specific parameter) small value relative to its own mobility proper-

ties. Based on the position change, it then falsifies the acceleration

and speed to make the former appear genuine. Alternatively, the

attacker can perform a gradual attack, e.g., gradual acceleration
attack, by incrementally increasing the falsified value.

We introduce a novel collusion attack by an internal and an

external adversary. An external entity with a transmitter, possibly

a drone hovering above the platoon or a vehicle in an adjacent

lane, interrupts the communication of the targeted vehicle; while

the internal adversary disseminates falsified kinematic information.

Furthermore, we introduce two novel attack scenarios during the

maneuvering processes. In both maneuvers, the attacker starts

its message falsification attack when the distance to its follower

(jfollower) is at its maximum. The reason is two-fold: first, the

increased distance permits higher speeds to be achieved under

(relatively) positive falsified values
2
; second, the joiner is affected

and needs to adjust its speed just before entering the formation.

This results in deviations from the nominal intra-platoon distances

when completing the maneuver; moreover, the controller would

still be affected by the falsified information endangering the platoon.

For an exit, the attacker initiates the misbehavior once the process

finishes. At this point, the new follower of the attacker accelerates

to close the gap, leading to a higher collision impact.

5 PLATOON DEFENSIVE MECHANISMS
Secure Maneuvering Protocols: The protocols we design not

only adhere to all the cryptographic primitives required by the

state-of-the-art VCs, but also manage to thwart the privilege escala-
tion attack. Due to space limitations, we detail all the secure messag-

ing exchange for platoon maneuvering in Appendix B (Please see

Fig. 17 and Fig. 18). Next, we elaborate on the proposed misbehavior

detection and mitigation scheme.

MisbehaviorDetection:We leverage aGaussianMixtureModel

Hidden Markov Model (GMMHMM) [57] to detect falsification at-

tacks during maneuvering. Fig. 3 illustrates the training phase of the
proposed MDS. The first step is to isolate the vehicle observations

that correspond to one of the three maneuvering processes, i.e.,

2
Positive/negative values correspond to absolute values while relative positive/negative
values refer to changes from the original value.

Figure 3: Misbehavior Detection Scheme (MDS) training.

static (no maneuver, only forward movement and velocity adjust-

ments), middle-join and exit. To gather these, we run platooning

simulations with and without a maneuvering process; one sim-

ulation per controller and speed combination. The observations

(𝑜𝑡 = (𝑟𝑑𝑖, 𝑗 , 𝑟𝑣𝑖, 𝑗 )) consist of the relative distance and speed be-

tween a vehicle, i, and its predecessor, j, at time 𝑡 .

Asmodel parameters 𝜆 = (𝐴, 𝐵, 𝜋) (Sec. 2) are not known a-priori,
we use the Baum-Welch algorithm [57], an iterative procedure that

finds local maximum likelihoods given an observation set, to find

the best initial parameters. However, the main goal of training is

to find an optimal number of components in a GMMHMM model:

choosing a high number results in over-fitted models and degraded

performance. Thus, we use the Bayesian Information Criterion

(BIC) [62] algorithm to choose an optimal number for our models,

i.e., we select the best model representation of the maneuver (the

numbers are given in Table 4). Each vehicle is then provided with

the trained models, and the observation set that produced it.

During the inference phase, the MDS in each vehicle is provided

with a number of recent observations (𝑟𝑑𝑖, 𝑗 , 𝑟𝑣𝑖, 𝑗 ), corresponding

to a predefined (system parameter) interval, termed sliding window.
These observations are then used to determine the matching be-

havioral maneuvering model. Because our detection mechanism

operates on the observations produced by the controllers, it can

better alleviate deviations produced by road traction differences and

environmental effects; the controller will accelerate or decelerate

in order to maintain the same distance between the vehicles.

We consider four different misbehavior detection approaches.

The first two require, first, the detection of a maneuver, and then an

inference on the presence of an attack. The latter two can detect an

attack directly (and the maneuver implicitly). In order to avoid false

attack attributions, from small deviations across the observations,

e.g., from sensor errors, we apply a parameterized threshold.

ManeuverRecognition beforeAttackDetection:We use the

Viterbi algorithm, a dynamic programming algorithm that produces

the most probable hidden state chain from the given observations.

By utilizing the four available observation sets (the current and

the three modeling sets), we compare the similarity of the chains,

pair-wise, to determine the presence of a maneuver. Alternatively,

we use the Forward algorithm to compute the log likelihood of the

current observation against the maneuvering models. The model

that produces the biggest log likelihood corresponds to the most

likely maneuver. At this point, we have only determined (or not) the

presence of a maneuver. To decide if an attack takes place, we score,

using the Forward algorithm, the current observation set and the

model-producing set against the picked model. The score difference

is then measured using the Hellinger distance; this, measures the

distance between two probability distributions.
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Only Attack Detection: We use the Forward algorithm on all

our observation sets in a pair-wise fashion, i.e., the current data and

each of the observation sets are measured against the correspond-

ing model. Then, we measure the Hellinger distance for each of

these combinations; the minimum distance produced gives us both

the most likely model and a measurable deviation between the two

datasets. Alternatively, instead of applying the Hellinger distance

we measure the Log Likelihood Ratio (LLR) between the log likeli-

hood pairs. Because the observation set that produced the model

can be regarded as the maximum likelihood estimate, the ratio gives

us the relative plausibility of the current observation against the

model-producing observations. By subtracting the log likelihoods

produced for each pair L(A) (current set) and L(B) (modeling set)

we obtain the likelihood ratio: log
𝐿 (𝐴)
𝐿 (𝐵) = log𝐿(𝐴) − log𝐿(𝐵)

Mitigation Techniques: Detecting an attack is the first step in

safeguarding the platooning application. When a misbehavior is

detected, a mitigation technique can be employed to avoid its effects:

degrading from CACC to ACC [31, 35] and/or gradually increasing

the intra-platoon distances [74]. These mitigation techniques are

considered in our framework set-up in order to preserve the safety

of the platoon. However, detecting an attack does not guarantee

that its effect will be mitigated; sophisticated attacks can still induce

instability and/or crashes (See Appendix C).

6 SIMULATION FRAMEWORK
We create Artemis, a platooning security assessment framework,

an extensible tool shown in Fig. 4, for the systematic evaluation of

cyberphysical attacks, including notably their physical effects and

the effectiveness of the proposed defenses. We use OMNET++ [5],

Plexe [6, 35], an extension of Veins [50], and SUMO [20] as the

building blocks. This ensemble provides a comprehensive realistic

simulation environment: a complex cyber-physical setting, cov-

ering vehicular mobility and perception in VC systems, network

connectivity (802.11p [4]) and platooning automation. We expand

Plexe and SUMO by implementing newmaneuvers (middle-join and

leave processes), so that any position of the platoon can be used; a

step for more complex maneuvering scenarios, e.g., the middle-join

for a two-platoon merge. We extend all the existing controllers

(PATH, Ploeg, Consensus and Flatbed) with the extended set of ma-

neuvers, including, naturally, join at the platoon tail. We implement

all attacks described in Sec. 4. The Artemis framework supports

positioning the attacker(s) at any position in the formation and it al-

lows the collaboration of multiple (internal or external) adversaries

to perform different type of attacks.

Table 2: Simulation Parameters for the Experiments.

Parameters Value Parameters Value

Beacon interval 0.1s Controller PATH, Ploeg, Consensus, Flatbed

Carrier frequency 5.89 GHz Spacing 5m, 0.5s, 0.8s, 5m

Physical layer bit-rate 6 Mbps Leader speed 50, 80, 100, 150 kmph

Area size
5 KM × 50 M

4 lanes

Sensors

𝜖𝑉 2𝑉
𝑝 = 1𝑚, 𝜖𝑉 2𝑉

𝑠 = 0.1𝑚/𝑠,
𝜖𝑉 2𝑉
𝑎 = 0.01𝑚/𝑠2,

𝜖𝑅𝐴𝐷𝑝 = 0.1𝑚, 𝜖𝑅𝐴𝐷𝑠 = 0.1𝑚/𝑠

Number of vehicles 6 - 7 (Join) Falsification steps

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑡𝑒𝑝 = 2.5𝑚

𝑆𝑝𝑒𝑒𝑑𝑠𝑡𝑒𝑝 = 0.5𝑚/𝑠
𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑒𝑝 = 0.05𝑚/𝑠2

Propagation delays Randomized Kalman Filter (KF)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑊 𝑖𝑛𝑑𝑜𝑤 = 10 values

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 10 detections

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐾𝐹
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

= 0.33

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑅𝐴𝐷
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

= 0.25

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑓 𝑎𝑐𝑡𝑜𝑟 = 0.05

Vehicle TX Range 600m Leader speed pattern Sinusoidal

Jammer TX Range 50m Number of executions 10 times

TX power 100mW Duration of simulation 120s

Thermal Noise -95dBm Warm-up period 30s

Sensitivity -94dBm Mitigation Headway 2s

Sliding window 1s-9(1)s Vehicle length 4 m

Table 3: Attacker Configuration Parameters.

Configuration Attack Values Attack Position Maneuver

PosAttack {3, 5, 7, 9, 11} m [0, 2] [no, Join, Exit]

SpeedAttack {-50, 0, 50, 100, 150} km/h [0, 2] [no, Join, Exit]

AccAttack {-30, -10, 0, 10, 30} m/𝑠2 [0, 2] [no, Join, Exit]

GradualPosAttack [-10,40] m [0, 2] [no, Join, Exit]

GradualSpeedAttack [-10,17] m/s [0, 2] [no, Join, Exit]

GradualAccAttack [-10,10] m/𝑠2 [0, 2] [no, Join, Exit]

CombinedPosAttack [-10,10] m [0, 2] [no, Join, Exit]

CombinedSpeedAttack [-10,10] m/s [0, 2] [no, Join, Exit]

CombinedAccAttack [-10,10] m/𝑠2 [0, 2] [no, Join, Exit]

ColludingAttack 40 s [2 and 4] [no]

We implement a gamut of countermeasures, including notably

the Kalman Filter-based data fusion MDS and our proposal. Specif-

ically, (i) a Kalman Filter [35] detection mechanism to identify

falsification attacks, implemented using the Armadillo math li-

brary [8, 59, 60] and (ii) our machine-learning based approach

based on GMMHMM (using the hmmlearn and sklearn python

libraries). Artemis allows the implementation and integration of

other defensive mechanisms, which function either offline, as foren-

sic mechanisms, or online as an MDS, through a C++/Python API

that connects the MDS module with the main simulation software.

Last but not least, Artemis supports a range of sensors and allows

imposing sensor errors (through the use of configuration parame-

ters) to approximate a real-world environment. It is also equipped

with a security module for basic security and privacy requirements,

e.g., message signature generation and validation. All options can be

utilized by one or more vehicles during the simulation, depending

on the intended outcome of the experiment; any combination of the

attack procedures, maneuvering processes, misbehavior detection

and mitigation techniques is permitted. To systematically evaluate

the performance of the platooning applications under various attack

scenarios, we utilize a set of metrics to assess the transportation

safety and the performance of the CACC controllers.

Experimental Setup: Table 2 shows the simulation parameters

for the experiments. Intra-platoon distances are set to 5 meters

for the CVS policy (PATH and Flatbed), and the default headway

values for Ploeg and Consensus controllers, 0.5 and 0.8 seconds

respectively. The platoon speeds were chosen similar to real-world
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scenarios, ranging from 50 km/h to 150 km/h. Similar to [35], we

incorporate sensor uncertainties based on real-world sensor capa-

bilities; errors are uniformly random for all sensors (the radar, the

Global Positioning System (GPS) receiver, and the wheel spin sen-

sor). We experimented with several sliding window values, ranging

from 1 second to 9 seconds; for the detect-maneuver-then-attack

approaches, the sliding window is 9 seconds when determining

the maneuver, but only the last second is used to detect an attack

(noted as 9(1)).

The platoon consists of six identical cars moving on a straight

road with four lanes, and their V2X communication is over IEEE

802.11p [4]. During a join, a new vehicle approaches the platoon

from an adjacent lane. Vehicles already possess the necessary cre-

dentials for interacting with the leader, i.e., initiating the join and

leave processes. We model propagation delays in the physical, data-

link, and network layers. Each experiment uses a different seed

to randomize the delays and it is run ten times. We employ a 30s

warm-up period with the ACC fallback headway at 2s [63].

Table 3 summarizes the parameters for the implemented attacks:

the falsified values, the start of the colluding attack, and the posi-

tion(s) of the attacker(s). Each attack is evaluated in three configura-

tions: (i) a static platoon, i.e., no maneuver, just forward movement

and velocity adjustments, (ii) during a middle-join maneuver, and

(iii) during an exit maneuver. The attack values vary depending

on the scenario, e.g., for speed falsification attack, the values range

from static -50 to 150 km/h; for gradual speed falsification attack,

the adversarial values fall within the range of [-10, 40] m/s. In com-
bined falsification attacks, the range of falsified values ([-10,10])

is smaller than those for gradual ones: large changes in position

within a short time frame, e.g., 100 ms, would require changes in

speed and acceleration beyond the plausible ranges, thus, being

flagged as malicious. The attacking positions are relative to the

platoon structure: 0 (for the leader) or 2 (for the third platoon mem-

ber). For colluding attacks, the adversary conducts an intelligent
attack: a gradual or a combined falsification (positioned at 2), in

conjunction with a targeted jamming attack (victim positioned at 4

cannot receive messages).

For static platooning, the attack starts when the platoon begins to

accelerate, as this has the highest collision impact [17] (See Appen-

dix E). For a meaningful comparison among controllers, we perform

the attacks at a specific step during the maneuvering (step 17.20,

for the join process, as shown in Fig. 5, and step 18.10, for the

Table 4: The Optimal Number of GMMHMM Components.

Controller Speed (km/h) No Maneuver Middle Join Exit

Path (50,80,100,150) (9,11,9,11) (13,13,13,13) (11,9,9,9)

Ploeg (50,80,100,150) (11,9,9,9) (9,9,7,9) (11,11,9,11)

Consensus (50,80,100,150) (7,9,11,7) (8,9,9,9) (11,11,11,11)

Flatbed (50,80,100,150) (9,6,7,9) (17,19,19,17) (11,11,11,11)

leave process). We also chose the (follower) attacker to be posi-

tioned immediately ahead of either the joiner or the leaver, i.e., an

ideal placement to induce the highest impact/harm. The reasoning

behind this position and the ability of an attacker to predict the

maneuvering process is presented in Sec. 4. Table 4 summarizes

the number of components for each maneuver based on speed and

controller. These values show the optimal number of components

to maximize the MDS performance as described in Sec. 5.

Metrics: To evaluate the string stability of a platoon, we measure

the spacing errors induced by the attacks; to gauge the collision
impact, i.e., the level of crash severity, we measure the ΔV (speed
difference) of the vehicles involved. For the controllers, we consider
resiliency in terms of them being in a stable, unstable or crash condi-

tion. A controller is stable if its behavior is not affected by an attack

and unstable if it is affected, but without resulting into a crash. For

experiments leading to a crash, we quantify the involvement of an

attacker: being part of a crash is undesirable as it is harmful to the

attacker. The controller comparison is given in Appendix D.

The metrics to evaluate the MDS are recall, precision, accuracy,
𝐹1 score, and Receiver Operating Characteristic (ROC) curves. These
metrics provide additional details on the results of the classifier

algorithms and they are based on the True Positive (TP), False

Positive (FP), True Negative (TN), and False Negative (FN) met-

rics. Recall is the proportion of the correctly identified messages

(TP) over the correctly identified messages and messages falsely

flagged as benign (TP+FN). Precision is the proportion of correctly

identified messages (TP) over all identified messages (TP+FP). 𝐹1
score provides the harmonic mean of recall and precision. ROC, the
proportion of correctly detected messages (TP) over incorrectly

identified messages (FP), is presented in Appendix F. To measure

the overhead of identifying a maneuver and detecting an attack,

we test three different systems using a Python time library [11] to

count specifically the CPU time of the MDS process. These results

can be found in Appendix G.

7 ATTACK ANALYSIS RESULTS
Attacks During the Middle-Join Process: During the middle-

join, the joiner needs to maintain its relative distance to the entry

position; it relies on information by its predecessor, an attacker

in this scenario. Fig. 6.a shows that a falsified positive accelera-

tion has a minor effect (momentary instability) on the formation

with Flatbed. In contrast, Fig. 6.b shows that a falsified negative

acceleration results in a collision. The affected vehicle continues

to decelerate even after changing its controller to the platoon ap-

propriate controller, in this case Flatbed. This is important because

Flatbed is not affected by acceleration attacks.

Fig. 7 explores the combined position falsification attack during

a middle-join. We consider the collision impact metric, i.e., the sever-

ity of a crash (measured with ΔV), shown on the top-half of the



0 20 40 60 80 100 120
time (s)

0

2

4

6

8

10

12

di
st

an
ce

(m
)

Leader

Follower 1

Attacker

Follower 3

Follower 4

Follower 5

Joiner 2⇔3

(a) Acceleration: +10 (𝑚/𝑠2)

0 10 20 30 40
time (s)

0

2

4

6

8

10

12

di
st

an
ce

(m
)

Leader

Follower 1

Attacker

Follower 3

Follower 4

Follower 5

Joiner 2⇔3

(b) Acceleration: -10 (𝑚/𝑠2)
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Figure 7: Attack Impact: Combined Position During Join.
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Figure 8: Gradual Acceleration on Path During Join.

figure, and the string stability metric, i.e., the spacing error induced

by an attack, shown on the bottom-half of the figure. The colored

bars in each column correspond to the nominal intra-platoon gaps.

Fig. 7.a shows the combined position falsification attack during

the middle-join when the follower misbehaves: all controllers are

affected, suffering a collision, except Consensus that does not utilize

predecessor data. Fig. 7.b illustrates the combined position falsifica-

tion for a leader-attacker. All the controllers are affected, suffering

collisions, with impact ranges from ≈18 to 58 km/h.

Fig. 8 presents the gradual acceleration falsification attack on the

Path controller duringmiddle-join. Fig. 8.a shows the decrease of the
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Figure 9: Attack Impact: Speed Falsification During Join.

intra-platoon distances of the vehicles when the attack is performed

by the follower; upon maneuver completion, the downstream vehi-

cles collide without the attacker being part of the collision. Fig. 8.b

shows the gradual acceleration attack by the leader: once the ma-

neuver is completed, all the platoon members are affected but the

immediate follower of the leader collides with the attacker. The

gradual acceleration attack by the follower is significantly less

harmful, but it does not involve the attacking vehicle.

Fig. 9 compares speed falsification: Path controller always leads

to a crash; however, the crash severity is slightly higher when the

attack is performed by the follower. With Flatbed, the jfollower
crashes into the joiner when the attacker disseminates relatively

negative speeds. With a misbehaving leader, the impact is amplified.

For example, the attack with relatively negative falsified values at

50 km/h results in instability, while the positive values cause a

collision. Consensus, though, is not affected by a malicious follower

but rather a misbehaving leader: with relatively negative falsified

values, the intra-platoon gaps grow from 35 meters to 230 meters,

when the speed is 100 km/h. Ploeg is never affected as it does not

consider the disseminated speed values from V2V communications.

Attacks During the Exit Process: PATH is susceptible to grad-

ual speed falsification attacks during the exit maneuver. Fig. 10.a

shows that the follower of the attacker crashes into the attacking

vehicle; however, the other controllers are resilient. PATH, Flatbed,

and Consensus suffer from collisions against a leader-mounted

gradual speed attack (Fig. 10.b). Consensus decreases the rate of ac-

celeration to compensate for the deviation from the nominal vehicle

distance; the higher the speed, the larger the intra-platoon distances,

thus, the smaller speed difference for the colliding vehicles.

The combined acceleration falsification attack results in a crash

when using PATH and Ploeg (Fig. 11). With PATH, the collision

impact caused by the misbehaving leader is greater than the one

caused by a malicious follower. Fig. 11.b shows that the attack with

Flatbed results in an accident when the leader falsifies all kinematic

properties; however, the crash severity is less than 5 km/h.

ColludingAttackers: Fig. 12 evaluates controllers under a grad-
ual position falsification attack (Fig. 12.a) combined with a jamming

attack (Fig. 12.b). By actively disrupting communication down-

stream, a collision is caused for PATH and Flatbed, but not for

Consensus and Ploeg. Consensus increases intra-platoon distances

if CAMs are not received within a time interval (100 ms). Ploeg

estimates the acceleration of its predecessor (via its radar sensor)



Table 5: Collision Hitmap: attacker not in collision (green); attacker in collision (red); Follower (𝐹 ) and Leader (𝐿).

No Maneuver Join Maneuver Exit Maneuver
Attack

50 (km/h) 80 (km/h) 100 (km/h) 150 (km/h) 50 (km/h) 80 (km/h) 100 (km/h) 150 (km/h) 50 (km/h) 80 (km/h) 100 (km/h) 150 (km/h)

PATH - - - - - - - - - - - -

Consensus LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11} LF {3,5,7,9,11}

Flatbed - - - - - - - - - - - -

Position (m)

Ploeg - - - - - - - - - - - -

PATH LF {-50,0} LF {-50,0} F 50 LF {-50,0,50} LF {-50,0,50,100} LF {-50,0} LF {-50,0} F 50 LF {-50,0,50} LF {-50,0,50,100} LF {-50,0} LF {-50,0} F 50 LF {-50,0,50} LF {-50,0,50,100}

Consensus L {100,150} L 150 L 150 - L {100,150} L 150 L {0, 50} L -50 L {100,150} L 150 L 150 -

Flatbed L {100,150} L {100,150} L 150 - F {-50,0} LF {-50,0} L 50 LF {-50,0} L 50 F {-50,0,50,100} L {100,150} L {100,150} L 150 -

Speed (km/h)

Ploeg - - - - - - - - - - - -

PATH F {-30,-10} F {-30,-10} F {-30, -10} F {-30, -10} F {-30,-10} LF -30, F -10 LF -30, F -10 LF -30, F -10 F {-30,-10} F {-30,-10} F {-30,-10} F {-30,-10}

Consensus - - - - - - - - - - - -

Flatbed - - - - LF -10, F -30 F {-30,-10} L -10, F -30 F {-30,-10,10,30} - - - -
Acceleration (m/𝑠2)

Ploeg LF {-10,-30} LF -30 LF -30 LF -30 L -10, LF -30 LF -30 LF -30 LF {10,30} LF -30 LF -30 LF -30 L -30

PATH - - - - - - - - - - - -

Consensus LF -10/+40 LF -10/+40 - - LF -10/+40 LF -10/+40 L -10/+40 - LF -10/+40 LF -10/+40 L -10/+40 -

Flatbed - - - - - - - - - - - -

Gradual Position (m)

Ploeg - - - - - - - - - - - -

PATH LF {-10/+17} LF {-10/+17} LF {-10/+17} LF {-10/+17} LF -10/+17 LF -10/+17 LF -10/+17 LF -10/+17 LF -10/+17 LF -10/+17 LF -10/+17 LF -10/+17

Consensus L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17

Flatbed L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17 L -10/+17

Gradual Speed (m/s)

Ploeg - - - - - - - - - - - -

PATH L -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10

Consensus - - - - - - - - - - - -

Flatbed - - - - LF -10/+10 - L -10/+10 F -10/+10 - - - -
Gradual Acceleration (m/𝑠2)

Ploeg LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 L -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10

PATH L -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10

Consensus L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10

Flatbed F -10/+10 F -10/+10 F -10/+10 F -10/+10 LF -10/+10 LF -10/+10 L -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10

Combined Position (m)

Ploeg L -10/+10 LF-10/+10 LF -10/+10 LF -10/+10 F -10/+10 F -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10

PATH F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10

Consensus L -10/+10 L -10/+10 - - L -10/+10 L -10/+10 L -10/+10 - L -10/+10 L -10/+10 - -

Flatbed L -10/+10 L -10/+10 L -10/+10 L -10/+10 LF -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10

Combined Speed (m/s)

Ploeg LF -10/+10 LF -10/+10 L -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 L -10/+10 LF -10/+10

PATH F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10 F -10/+10

Consensus - - - - - - - - - - - -

Flatbed L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10 L -10/+10
Combined Acceleration (m/𝑠2)

Ploeg LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 L -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10 LF -10/+10
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Figure 10: Attack Impact: Gradual Speed During Exit.
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Figure 11: Attack Impact: Combined Acceleration on Exit.

if the CAMs are not received on time, resulting only in a destabi-

lize platoon. Thus, the impact of collusion attacks depends on the

controller characteristics.
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Figure 12: Attack Impact: Gradual Position with Colluder.

Attacker Hitmap: Table 5 summarizes all the attack scenarios

that resulted in a collision from the perspective of a rational ad-

versary. Attacks involving the adversarial vehicle are marked as

red; when the attacker causes a crash without being part of the

collision, we mark it as green (when both happen, we prioritize the

safety of the attacker).𝐹 denotes attacks mounted by a follower and

𝐿 those mounted by the leader. A simple scenario that illustrates

this is presented in Appendix A. PATH is susceptible to speed and

acceleration falsification attacks, when the falsified speed and ac-

celeration are lower than the victim’s values. For PATH, a rational

adversary would choose relatively negative speed and accelera-

tion values. Consensus appears to be an inappropriate target for

a rational attacker: without a maneuver, all the accidents involve

the misbehaving vehicle (marked as red). An adversary positioned

as follower and targeting Flatbed would avoid attacking during

the exit maneuver: the attack never results into a collision, except

for the combined position scenario (red cell). For combined speed

falsification attacks against Ploeg, a rational adversary would opt
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Figure 13: Maneuver Detection with a Kalman Filter
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(b) Different Thresholds: LLR

Figure 14: Detection Rates: 1 second window

in attacking the formation at lower speeds (50 km/h and 80 km/h)

regardless of its position or the undertaken maneuver.

8 MISBEHAVIOR DETECTION ANALYSIS
Kinematic Fusion and Kalman Filter: We incorporated a state-

of-the-art MDS [35] that leverages kinematic data fusion and a

Kalman Filter to identify misbehavior. The scheme relies on a rolling

average
3
to calculate the plausibility of the incoming (kinematic)

data to detect deviations. The Kalman Filter normalizes sensor

errors, e.g., from the GPS sensor, in order to improve the accuracy

of the detection model. We find that even though such an approach

detects attacks during static platooning [35], it fails to detect attacks

during maneuvering.

Fig. 13.a and Fig. 13.b show that the scheme fails to distinguish be-

tween attacks and benign middle-join and exit maneuvers (falsely

marked as misbehavior). This is due to the extreme divergence

of vehicle behavior from ‘normality’ during the maneuvers. Dur-

ing a middle-join (Fig. 13.a), the distance of the jfollower from its

predecessor (red line) deviates from its nominal intra-platoon dis-

tance (green line). The scheme estimates the increase in distance

(blue line) and flags the deviation as a misbehavior (black lines).

In fact, multiple vehicles flag their predecessor as malicious: the

first detection happens by the jfollower, while the second one by its

follower. Similarly, Fig. 13.b shows that the system falsely flags the

exit process as a malicious behavior even without any attacks. This

mis-identification is present under all maneuvering scenarios.

3
Computed as the average of the last 𝑘 values over a series of 𝑛 values (𝑘 < 𝑛).

LLR: 1.7 Forward: 1.3 Hellinger: 0.1 Viterbi: 1.5
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Figure 15: Comparison Between Best F1 Scores

GMMHMM-based Misbehavior Detection: Our MDS is not

only capable of understanding if a maneuver takes place, but it

can also detect falsification attacks during maneuvering. Fig. 14

shows the performance of the attack-detection-only approaches

(Hellinger and LLR) for a slidingwindow of 1 second. Fig. 14.a shows

the precision metric increases with higher detection thresholds.

However, this reduces the recall. A higher threshold results in

lower FP and higher FN . Similarly, Fig. 14.b shows the trend of

improved precision as we increase the threshold; the improvement

plateaus when we reach a threshold/ratio of 1.7.

In order to compare all four approaches, and in the interest of

space, we show in Fig. 15 the best results produced by each. We

identify as best the threshold and window combination that pro-

duces the higher 𝐹1 metric. As the approaches differ, the detection

thresholds also differ. Nonetheless, we observe that a pure Forward

algorithm approach (both for maneuver detection and attack recog-

nition) produces poor results. In contrast, the Forward algorithm, in

conjunction with the LLR approach, produces the best 𝐹1 score; the

margin between this approach and Hellinger is 3%. The feasibility

in terms of computational overhead, measuring MDS latencies, is

given in Appendix G.

9 CONCLUSION AND FUTUREWORK
Paving the way for the deployment of secure platooning systems

requires a systematic investigation of attacks and detection mecha-

nisms. Our framework, Artemis, offers new capabilities in perform-

ing middle-join and leave maneuvers for all control algorithm. We

investigate the attack impact and how adversaries could harm the

platoon based on their intelligence and rationality. We show that

unlike a kinematic data fusion MDS, leveraging a Kalman Filter,

our novel MDS scheme is capable of detecting such attacks. As

future work, we will expand Artemis to include merge and split

maneuvers and an automatic configuration tuning, based on attack

impact, towards an improved misbehavior detection.
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Figure 16: Leader Combined Speed (100 km/h) on Flatbed.

A COMPARING VEHICLE COLLISIONS
Fig. 16 shows the results of a combined speed falsification attack,

performed by a malicious leader, with Flatbed during a static pla-

toon, a join and an exit process. The attack without a maneuver

causes the follower of the leader (i.e., the second vehicle in the

platoon) to crash into the attacking vehicle. In contrast, during the

join process, the joiner crashes into its predecessor upon entering

the formation. During the exit process, the attack causes a vehicle

downstream to crash into its predecessor.

B SECURE CACC MANEUVER PROTOCOLS
Join Procedure: A vehicle joining the platoon, a joiner, sends
a request to the platoon leader; providing the platoon identity

(𝐼𝑑𝑝𝑙𝑎𝑡𝑜𝑜𝑛), its desired position (𝑃𝑜𝑠), the vehicle length (𝑆), lane

number (𝐿), a nonce, the current timestamp, and its currently valid

pseudonym to facilitate verification by the receiver. The joiner signs

this message with the private key corresponding to its current pseu-

donym (step 17.1). Upon receiving the request and verifying the

signature (and the pseudonym, if not done so before) (step 17.2), the

leader checks the availability of the requested position (step 17.3). It

then deactivates the lane change maneuver and crafts a new forma-

tion which includes the joiner. Then, the leader notifies the latter

to approach the platoon, by providing the current speed (𝑉 ), lane

(𝐿), vehicle length (𝑆), type of controller (𝐶), the platoon formation

(𝐹 ), and the approved position (𝑃𝑜𝑠). The leader message is signed

and sent to the joiner (step 17.4). Upon receipt of the message, the

joiner verifies the signature, approaches the position, and notifies

the leader (steps 17.5–17.7).

The leader verifies the confirmation (step 17.8) and proceeds to

the next step depending on the type of joining process. In case

of a tail join, it notifies the joiner to join from the tail (step 17.9).

In case of a middle join, it notifies the platoon members about

the maneuver (steps 17.10 and 17.13). The jfollower, the vehicle

residing at the entry position, creates the gap for the joiner to enter.

The vehicles following the jfollower anticipate the speed reduction

and maintain the appropriate intra-platoon distances. Once the

gap is established, the leader sends an authenticated notification

to the joiner to enter the formation (steps 17.16–17.20). Once the

joiner successfully enters the platoon, the leader notifies the platoon

members about the new formation (steps 17.21–17.26).

During the middle-join process, the joiner needs to maintain

its relative position (both to the jfollower and its ‘predecessor’)

until the maneuver finishes (Protocol 1). To achieve that, the joiner

calculates the distance based on its current and its predecessor’s

position (step 1.3). and the required distance based on the type of

the controller (step 1.4). If the calculated distance is greater than

twice the estimated gap (including its car length), or it is less than a

predefined (parameterized) threshold, it aborts the joining process

(steps 1.5–1.7). This distance estimation is executed until the leader

notifies the joiner to change its lane and merge into the platoon.

Exit Procedure: As per Fig. 18, a vehicle that is to leave the

platoon, the leaver, submits a request to the leader, digitally signed

with the private key corresponding to its currently valid pseudonym

(step 18.1). Upon verifying the signature, the leader deactivates any

lane changes, checks if the exit is allowed, and updates the platoon

formation (steps 18.2–18.3). It then notifies the leaver to exit the

platoon (step 18.4). The leaver verifies the signature (step 18.5) and

initiates the leave formation process (step 18.6). It then sends a

message to inform the leader that it exited the platoon (step 18.7).

The leader receives the confirmation, it validates the signature,

and acknowledges the leaver (steps 18.7–18.8). The leaver changes

the controller, e.g., switching to ACC and finally, it sends an ac-

knowledgment to the leader (steps 18.10–18.11). Upon receiving

the message, the leader verifies the signature and notifies all the

platoon members about the new formation (steps 18.12–18.13).

Mitigating Privilege Escalation: Certain protocol implemen-

tations [17, 29, 49] require the platoon to be temporarily split in

order to perform the maneuver. This, however, can lead to a privi-

lege escalation attack as a malicious platoon member can trivially

become a leader, e.g., by colluding with another vehicle who wishes

to enter just ahead or with its predecessor who elects to leave the



Table 6: Notation Used in the Protocols.

AbortManeuverProcess() Aborts the current maneuver

ApproachingPlatoon() Approach platoon and maintain position

beacon The beacon received through V2V

𝐶 Controller

𝐷 Distance

ExitPlatoon() Remove internal platoon information

𝐹 Platoon formation

𝛾 Maximum distance allowed before aborting

G The estimated intra-platoon gap

IncreasingSpace() Increase distance based on controller

𝐼𝑑𝑟𝑒𝑞, 𝐼𝑑𝑟𝑒𝑠 , 𝐼𝑑𝑝𝑙𝑎𝑡𝑜𝑜𝑛 Request/Response/Platoon Unique Identifiers

JoinProcessInit() Performe pre-join steps

JoinFormation() Change lane and update internal structures

𝐾𝑖𝑣, 𝑘
𝑖
𝑣 Pseudonymous public/private key pairs

𝐿 Lane number

LeaveProcessInit() Deactivate maneuvers and validate exit

LeaveFormation() Change Lane and controller

ManeuverUnderway() Update internal structures and increase gaps

(𝑚𝑠𝑔)𝜎𝑣 A signed message with the vehicle’s private key

𝑁, 𝑁 ′
Nonces

(𝑃𝑖𝑣)𝑝𝑐𝑎 , 𝑃𝑖𝑣 A pseudonym signed by the PCA

𝑃𝑜𝑠,𝑉 , 𝑆 Position, Velocity, Size

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑅𝑒𝑠𝐹𝑟𝑜𝑚𝐿𝑒𝑎𝑑𝑒𝑟 () Wait until the leader responds

𝑆𝑒𝑡𝐹𝑟𝑜𝑛𝑡𝑉𝑒ℎ𝑖𝑐𝑙𝑒 () Update the local values of the predecessor

𝑆𝑖𝑔𝑛 (𝐿𝑘,𝑚𝑠𝑔) Sign a message with the private key (𝐿𝑘)

𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛() Change 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑖𝑑𝑠 , belonging to a platoon

𝑉𝑒ℎ𝑖 Holds 𝑖’s vehicle data, including Pos, V and Size

𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝐿𝐾,𝑚𝑠𝑔) Verify a message with the public key (𝐿𝐾 )

formation. Our protocol, does not promote a member to temporar-

ily lead and the platoon is never split during a maneuver. Instead,

the vehicles downstream (from the join or leave position) either

decrease their speed to create a gap during join (steps 17.9–17.20),

or increase their speed to close the recently created gap after an

exit (steps 18.5–18.13) while maintaining the platoon formation.

This, essentially, eliminates the privilege escalation attack.

Protocol 1 DistanceEvaluator (by the Joiner)

1: procedure DistanceEvaluation(beacon, Veh, C)
2: repeat
3: 𝐷 = 𝑏𝑒𝑎𝑐𝑜𝑛[𝑃𝑜𝑠] −𝑉𝑒ℎ𝑃𝑜𝑠 −𝑉𝑒ℎ𝑖𝑆
4: G = GetPlatoonGaps(𝐶,𝑉𝑒ℎ𝑉 )
5: if 𝐷 > ((2 × G) − 𝛾) OR (𝐷 < 𝛾) then
6: 𝐴𝑏𝑜𝑟𝑡𝑀𝑎𝑛𝑒𝑢𝑣𝑒𝑟𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 ()
7: end if
8: until !ReceiveResFromLeader()

9: end procedure

C DETECTION VS MITIGATION
To avoid crashes (vehicle collisions), one can degrade from CACC

to ACC (e.g., [31, 35, 69, 74]). Fig. 19.a shows that leveraging a kine-

matic fusion with a Kalman Filter to detect a gradual acceleration

falsification attack (during no maneuvering) and employing such a

countermeasure would prevent an accident (for PATH controller).

But, such a countermeasure cannot mitigate colluding adversaries

(Fig. 19.b): even though the attack is detected, simply degrading to

ACC is not adequate to prevent a collision. This is caused by the pro-

cessing delay of the MDS (1.5-3.9 sec.) [35]. A detailed investigation

into the causes is part of our future work.
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Figure 17: Vehicular Platooning: the Join Process.

D CONTROLLERS COMPARISON
Table 7 compares controllers under different attacks in terms of the

percentages of the total number of experiments that did not result

into instability or collision. The higher the percentage is, the higher

the resilience of the controller under attack. Ploeg is affected only

by acceleration attacks, while Consensus and Flatbed are affected

by position and speed attacks. However, the more sophisticated an

attack is, the less resilient the controllers are.

Table 8 compares the instability of the controllers for different

attack scenarios. Based on the experiments, PATH and Ploeg are

unstable even under simple falsification attacks. PATH requires
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Figure 18: Vehicular Platooning: the Leave Process.
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Figure 19: Kalman Filter Detection and ACC Mitigation.

speed and acceleration information disseminated by the predeces-

sor; thus, it is susceptible to attacks that falsify these values. Ploeg,

however, relies only on the acceleration information from the prede-

cessor. As a result, it is not affected by any other falsified value, i.e.,

position and speed. Similarly, Flatbed is more prone to the speed

falsification attacks by the leader. It is not, however, affected by

speed falsification attacks by the predecessor. Consensus appears

unstable, but it is the most crash-resilient controller (overall, see

Table 9) because it utilizes information from all the vehicles in the

platoon.

Table 9 shows the probability of a collision under different at-

tack scenarios. PATH and Ploeg mostly result in a crash; Flatbed

is more resilient, especially with the more complex attacks, but

is still more crash-prone than Consensus, which outperforms all

controllers. Simple and gradual position falsification attacks have

the least impact as all controllers are resilient to them. Conversely,

the combined position falsification attacks have the highest impact.

Table 7: Controllers Resilience Comparison (%).

Controller

Simple

P S A

Gradual

P S A

Combined

P S A

PATH 100 0 20 100 0 0 0 0 0

Ploeg 100 100 20 100 100 0 0 0 0

Consensus 0 50 100 0 33.3 100 0 45.8 62.5

Flatbed 91.7 14.7 51.7 87.5 0 33.3 0 29.1 29.1

Table 8: Controllers Instability Comparison (%).

Controller

Simple

P S A

Gradual

P S A

Combined

P S A

PATH 0 2.9 17.5 0 0 0 0 0 0

Ploeg 0 0 20 0 0 0 0 0 0

Consensus 0 35.3 0 37.5 16.7 0 50 25 37.5

Flatbed 8.3 54.9 40 12.5 50 33.3 0 16.7 4.2

Table 9: Controllers Crash Comparison (%).

Controller

Simple

P S A

Gradual

P S A

Combined

P S A

PATH 0 97.1 62.5 0 100 100 100 100 100

Ploeg 0 0 60 0 0 100 100 100 100

Consensus 100 14.7 0 62.5 50 0 50 29.2 0

Flatbed 0 30.4 8.4 0 50 33.4 100 54.2 66.7
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Figure 20: Attack Impact: Gradual Speed Falsification.

E INTELLIGENT ATTACKS DURING STATIC
PLATOONING

Fig. 20 compares the gradual speed falsification attacks for different

controllers. Fig. 20.a shows the effect when the attack is performed

by a follower: only the PATH controller is affected and the victim

crashes into the attacking vehicle in less than 6 seconds with a ΔV
of 7.5 m/s (or 27 km/h). Fig. 20.b illustrates a gradual speed falsi-

fication attack by the leader: all controllers but Ploeg are affected.

Among the affected ones, Flatbed has the highest crash severity



(≈50 km/h). For the Consensus controller, the higher the speed,

the less severe the collision impact; this is due to the increased

intra-platoon gaps, which allow Consensus to compensate for the

increasing acceleration.

Fig. 21.a shows the effect of gradual falsification attacks by the

leader: only the Consensus controller crashes when the speed is

less than 100 km/h. Fig. 21.b demonstrates the effectiveness of a

combined position falsification attack (by the leader). All controllers

are highly affected, with collision severity ranging from 50 km/h to

65 km/h (13.8 m/s and 18 m/s in the figure). The Ploeg-controlled

platoon, at the lowest speed, is the only discrepancy in terms of

impact because the collision does not involve the immediate victim

but rather the vehicles downstream.
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Figure 21: Attack Impact: Leader Position Falsification.
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(c) Forward & Viterbi During Static
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(d) LLR & Hellinger During Static

Figure 22: ROC: Combined Position Leader Attack on PATH.

F RECEIVER OPERATING CHARACTERISTIC
Fig. 22 compares the Viterbi, Forward, LLR andHellinger approaches,

used by the anomaly detection component of the MDS, against a

malicious leader. We choose to show the ROCs for the combined

position falsification attack because it results in the biggest number

of crashes among all controllers (See Table 9). LLR and Hellinger

outperform both Forward and Viterbi; they achieve a TP rate close

to 1 at a FP rate of 0.01. Forward achieves higher TP rate than

Viterbi; albeit, slower during an exit maneuver. Forward suffers

from low precision (higher FP) rates affecting its score; increasing

the detection threshold ultimately reduces its overall (𝐹1) detection

capabilities. It should be noted here, that the standard deviation

in all cases is too small to be observable; all four methods achieve

almost the same rates every time they are executed.
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Figure 23: Processing overhead: Comparison of CPU timings

G MEASURING PROCESSING OVERHEAD
In Fig. 23 we present the processing time required by each MDS

method, when run in three different machines (with Ubuntu 20.04).

The output is a detection of attack based on an observation (sliding)

window. Each bar quantifies the average values recorded; the lower

and upper margins quantify the best and worst value respectively.

The 2.3 and 2.4 Ghz Central Processing Units (CPUs) correspond to

regular workstations and the third CPU, at 1.66 Ghz, corresponds

to a modest On-Board Unit (OBU) [1]. Even though the OBU is

several times slower than the more powerful units, in the worst

case scenario, even with the slowest MDS method, the time needed

for a decision is 280 ms. In the case of LLR, only 130 ms are required.

Considering the dissemination frequency of CAM messages (100

ms) and the sliding detection window of 1 second, this time is not

prohibiting. Further, this allows for even smaller windows depend-

ing on the safety application. Moreover, any in-car architecture that

performs CPU intensive operations in another on-board machine

other than the OBU, handling V2X, can handle MDS with lower

latencies and operate with broader windows. Such considerations

are part of future work.
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