
SecProtobuf: Implicit Message Integrity Provision
in Heterogeneous Vehicular Systems

Paul Molloy
Networked Systems Security Group
KTH Royal Institute of Technology

Stockholm, Sweden
molloy@kth.se

Mohammad Khodaei
Networked Systems Security Group
KTH Royal Institute of Technology

Stockholm, Sweden
khodaei@kth.se

Per Hallgren
Einride AB

Gothenburg, Sweden
per.hallgren@einride.tech

Alexandre Thenorio
Einride AB

Gothenburg, Sweden
alexandre.thenorio@einride.tech

Panos Papadimitratos
Networked Systems Security Group
KTH Royal Institute of Technology

Stockholm, Sweden
papadim@kth.se

Abstract—Novel vehicular applications, such as remote driving,
platooning, and autonomous driving systems are increasing the
complexity of networked vehicular systems. These Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) (V2X) use-
cases require strong security (and privacy) guarantees, authenti-
cation, integrity, and non-repudiation. Standardization bodies and
harmonization efforts provide complex data structures for basic
safety messages, mandated to be digitally signed and validated.
Due to the complex data structures, the multiplicity of use-cases,
the rapid deployment, as well as the need for interoperability
among Original Equipment Manufacturers (OEMs), developing
the code needed to provide security becomes a more challenging,
error prone, and time consuming task; even more so as the scale
of Vehicular Communication (VC) systems grow. In order to
tackle this challenge, we propose SecProtobuf, a novel security
framework to automate the signature generation and validation
procedures for any VC safety and non-safety data structures.
Our framework facilitates the serialisation and deserialisation
processes for arbitrarily complex data types, thus, mitigating
potential security defect risks and catalyzing the deployment. In
order to ensure the correct usage of the framework by developers,
SecProtobuf is provided with a static code analysis (linter).

Index Terms—Automatic Integrity Checks; Code-generation.

I. INTRODUCTION

In Vehicular Communication (VC) systems, vehicles beacon
Cooperative Awareness Messages (CAMs) and Decentralized
Environmental Notification Messages (DENMs) periodically,
at high rates, to facilitate transportation safety and efficiency.
It has been well-understood that VC systems are vulnerable
to attacks and that the privacy of their users is at stake [1],
[2]. As a result, security and privacy solutions have been
developed by standardisation bodies (IEEE 1609.2 WG [3] and
ETSI [4]), harmonisation efforts (C2C-CC [5]), and projects
(SeVeCom [6]–[8], PRESERVE [9], and CAMP [10], [11]). A
consensus towards using Public Key Cryptography (PKC) to
protect Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) (V2X) communication has been reached: a set of
short-lived anonymised certificates, termed pseudonyms, are
issued by a Vehicular Public-Key Infrastructure (VPKI) [12],

e.g., [10], [13], for registered vehicles. Vehicles switch from
one pseudonym to a non-previously used one towards message
unlinkability, as pseudonyms are per se inherently unlinkable.

The number of CAM and DENM data structure types,
as specified in IEEE 1609.2 [3] and ETSI [14], increases
greatly as V2X systems are scaled and deployed. These
messages are nested data structures, needing custom code
to traverse, sign and verify them. The Wireless Access in
Vehicular Environments (WAVE) HeaderInfo [3] data structure
illustrates the format of basic safety messages with multiple
nested sub-data structures. The ISO standard 15628 [15]
specifies 20 different types (dsrcApplicationEntityId) for
vehicular networking applications, such as parking, electronic
fee collection and emergency warning. Fig. 1 shows a use-case
for remote driving with vehicles interacting with the remote
driving station every 10 ms. A common process for signing
(sign, serialize, transmit) and validating (receive, deserialise,
verify and handle, process) are shown. All messages need to
be signed before transmission to the backend infrastructure;
at the same time, all messages need to be validated on the
remote driving station when received. Each new application
would have many different message types, all of which would
need to be signed, thus requiring custom code to digitally sign
and verify.

Widely used standards include the World Wide Web Consor-
tium (W3C) Extensible Markup Language (XML) signatures
standard [16], it allows for enveloped signature elements,
stored inside the data structure of the message. There exist
other standards for message integrity and authentication in
vehicular contexts such as IEEE 1609.02 [3]: Abstract Syntax
Notation One (ASN.1) with a compact and performant binary
encoding format [17]–[19]. However, these standards do not
provide support for automatic generation of the code for
signing and verifying. Rather, a developer needs to program
it manually.

At he same time, Original Equipment Manufacturers
(OEMs) need to provide guarantees of integrity, non-

Pod (truck)

1. msg.Sign()
2. proto.Marshal(msg)
3. sendUDP(msg)

Remote Drive Station

1. receiveUDP(&bytes)
2. proto.Unmarshal(bytes, &msg)
3. If ok, err := msg.verify();..
4. processData(&msg)

Fig. 1: A Use-case Scenario: Datastream to Remote Driver Sta-
tion Over User Datagram Protocol (UDP) [taken from [22]].

repudiation and authentication [20], and implement vehicular
standards such as IEEE 1609.2 [3]. As the complexity of multi-
node systems increases, the risk of introducing new vulnerabil-
ities increases while trying to implement security mechanisms.
A security in depth approach is needed [21] to mitigate against
such a risk: all in-vehicle communications require security
guarantees for interactions among different components and
sub-systems instead of just of edge nodes. Making this worse,
many networked vehicle systems are adopting micro-service
architecture orientated designs, with many computing sub-
systems and sensors using different programming languages.

Adding protection mechanisms correctly and consistently
in a heterogeneous system is an immensely complex task, and
error prone when conducted manually. To assert that a system
correctly applies security policies, we propose an architecture
where necessary functionality is not re-implemented manually
and uniquely for every entity; instead, it consists of reusable
components that can be audited in isolation. This calls for
a code-generated security layer that a programmer does not
touch on a day-to-day basis, but is implicit for every message
sent.

Most V2X developers are not security engineers and may
‘mis-implement’ security critical components; for example, the
code to locate the signature in the structured data, particularly
so with enveloped signatures nested in the structured data sent.
The message must have the nested signature field copied and
then cleared before it is compared to the signature (on the
receiver side). Such code could be bug prone and consume
developer time. It is also difficult to always remember to
verify signatures and message-integrity codes before use. It
has been found [23] that for every thousand lines of code an
additional 7.4 defects are added to a software system. A system
to generate the code for signing, verifying and accessing the
keys automatically would alleviate much of this chore work
and the critical security bugs likely to spawn from it. This extra
work to program custom signature code for every custom data
structure message in every language will have a heavy cost in
terms of both developer time and money for large networked
vehicular software systems.

Contributions: We propose a plugin for the language-
neutral Protocol Buffer [24] serialisation framework, to au-
tomatically generate the code for adding and checking the

Generated Go Code

type SteeringCommand struct {

 state protoimpl.MessageState

 sizeCache protoimpl.SizeCache

...

}

func (x *SteeringCommand) Reset() {

 *x = SteeringCommand{}

 if protoimpl.UnsafeEnabled {

 mi := &file_proto_msgTypes[0]

…

}

Generated C++ Code
…

Protocol Buffer Message

syntax = "proto3";

package example.v1;

message SteeringCommand {

 float steering_angle = 1;

}

Generated Java Code
…

Fig. 2: Code Compilation of Steering Command Protocol
Buffer Message into Multiple Languages.

signatures of arbitrary nested V2X data structures. Protocol
Buffer was chosen due to the strong tooling for code gen-
eration and multi-language support, as well as its use in the
automotive and V2X software [22], [25]. A code linter [26]
was also written to ensure that for any data type, generated
using this plugin, the data structure is signed and verified at
the points of serialisation and deserialisation. This framework
can co-exist with, and lead to improved tooling for standards
such as IEEE 16.09 [3]. The code is open-sourced under the
MIT licence, available on Github1.

II. IMPLEMENTATION

Protocol Buffers [24] are a serialised structured data format
developed by Google. As shown in Fig. 2, structured message
types are defined by a ‘.proto’ file, which can be compiled into
native code with relevant objects for one of many languages,
e.g., C++, Go, Java, Rust, JS. Custom plugins can be added
to the Protocol Buffer compiler to add extra functionality.
This was chosen chiefly because it is the main format used
in several autonomous systems [22], [25]. Einride is apply-
ing a microservice architecture both for the remote operator
station and the autonomous vehicle, with a large number of
services communicating using Protocol Buffers over gRPC
Remote Procedure Call (gRPC), Lightweight Communications
and Marshalling (LCM) and UDP. Einride’s technology is
primarily written in Go with some components written in Rust
and C. Some of the advantages of Protocol Buffers are the
language agnostic nature, automatic code generation support
and performance [27]. There is particularly strong support for
code generation and protoc-gen-go, which translates ‘.proto‘
files into Go code. This code generation facilitates communi-
cation among entities regardless of programming language, by
generating corresponding Application Programming Interfaces
(APIs). Code generation, in this use-case, could automatically
write the code needed to handle the signatures and message
integrity codes for any message with any nested data structure.

Custom Protocol Buffer Compiler Plugin: A custom
Protocol Buffer option was created, as shown in Listing 1,

1https://github.com/einride/protoc-gen-messageintegrity

Listing 1: ProtoBuf Message with Signature Option Enabled.
message SteeringCommand {
float steering_angle = 1;
bytes signature = 2 [(integrity.v1.signature)={

behaviour: SIGNATURE_BEHAVIOUR_REQUIRED}];
}

Listing 2: SecProtobuf Plugin Generated Code for Protobuf
Message (as Specified in Listing 1).
func (x *SteeringCommand) Sign() error {
keyID := os.Getenv(MessageIntegrityKeyID)
return verification.Sign(x, keyID)

}

func (x *SteeringCommand) Verify()(bool,error){
keyID := os.Getenv(MessageIntegrityKeyID)
return verification.Validate(x, keyID)

}

to mark a field that stores a signature. This allows metadata
to specify if the signature is required to be signed and
verified. Additionally, a custom Protocol Buffer compiler was
created to generate additional Go code for the generated Go
message types as shown in Listing 2. This generated code
adds functionality to sign the Protocol Buffer messages and
verify the signatures using keys stored in a location specified
by plugin configuration. The generated code uses the standard
Go crypto library. Based on the implementation, a developer
simply needs to call msg.Sign() and msg.Verify() instead of
manually writing the code to sign and verify an enveloped
signature each time.

Within the plugin, several message integrity
verification packages were created, supporting Hash-
based Message Authentication Code (HMAC)-SHA256,
Rivest–Shamir–Adleman (RSA) (2048 key size) and Elliptic
Curve Digital Signature Algorithm (ECDSA) (256 key size).
The system was designed to be extensible; other protocols
can be added to the plugin in a similar manner.

Custom Protocol Buffer Compiler Plugin: A custom
plugin for the Protocol-Buffer-to-Go compiler (protoc-go) was
created. This plugin adds Sign and Verify methods to any
generated Go type corresponding to a protocol buffer message
that has the custom option enabled in it. This has the effect
of automatically adding message integrity-checking code to
all Go source language types that require message integrity
checking. The compiler plugin is executed as part of the
protoc-gen-go compiler command, as in Listing 3, as part of
the normal build process.

Linter: A custom code analysis tool (linter) for the Go
programming language was created to ensure correct usage of
SecProtobuf. It traverses the abstract syntax tree of source code
files to make its analysis about the correct usage of SecProto-
buf. The linter can be integrated into an Integrated Develop-
ment Environment (IDE) or executed from the command line

Listing 3: Compiling ProtoBuf Message with SecProtobuf.
#!/bin/bash
$ protoc --proto_path=src --go_out=gen --

messageintegrity_out=gen --go_opt=paths=
source_relative src/
steering_command_example.proto

Listing 4: Calling Static Analysis Linter on a Go Source File.
#!/bin/bash
$ integritylint example.go

TABLE I: The Processing Overhead for Serialisation and
Deserialisation.

Run (De)serialisation HMAC ECDSA
Sign 0.000254 ms 0.002165 ms 2.104739 ms
Verify 0.000206 ms 0.001976 ms 0.125568 ms

interface (as seen in Listing 4). The tool first identifies any data
types generated based on Protocol Buffer messages with the
custom SecProtobuf option set to REQUIRED. The linter
ensures that any instance of those types is always signed and
verified where required. The tool will throw a linter error if an
instance of one of these types is serialised/deserialised before
it is signed/verified; e.g., an error is thrown if V erify() is
not called right after deserialisation. This takes away an entire
class of errors due to developers forgetting to sign or verify
messages where required.

III. EVALUATION

All of the benchmarks were conducted on a Intel(R)
Core(TM) i7-7700HQ CPU @2.80GHz with 16 GB of RAM
with the components running on Ubuntu 20.04. The vehicle
software stack was running on a set of containers using Docker
v20.10.7 [28]. Benchmarks to measure the delay caused by
using generated signing and verifying on protocol buffer
messages are shown in Table I.

The latency due to the (de)serialisation process and HMAC-
SHA256 is ten times faster than the same process for the
ECDSA module, as expected, and would work well under tight
performance requirements. The different algorithms evaluated
here are not being directly compared, rather their performance
is shown to illustrate the functionality and viability of our
plugin use.

Of the protocols provided by the plugin, it was found that
the HMAC component met performance requirements for the
intra-vehicle system it was designed for (sub 1 ms latency
to serialise + deserialise + generate + verify). Meanwhile the
components that provide non-repudiation and authentication,
RSA and ECDSA respectively, are better suited to use cases
with less stringent performance requirements.

We found that there was limited effect on the payload
size of the signatures added by the protoc-message-integrity
plugin. The increase in payload size is proportional to the

0 200 400 600 800 1000
payload (bytes)

20
30
40
50
60
70
80
90

100
sig

na
tu

re
 %

 o
f p

ay
lo

ad
Sec ProtoBuf
ASN1

Fig. 3: The proportion of the payload taken up by the signa-
tures as the payload is increased.

signature length encoded in Packed Encoding Rules (PER)
ASN.1 (259 bytes on average) for ECDSA public/private key
pairs (256 key sizes as per the standard [3]). Fig. 3 shows,
as expected, that the overhead is proportionally higher for
small messages. Note that the only difference between the
two is that ASN.1 encoding takes a constant 6 bytes extra
than ProtoBuf. For example, a 32-bit steering angle message
(See Fig. 1) is proportionally overshadowed by the signature
that is added. For more complex messages with large byte
arrays, the signature overhead is less significant.

IV. CONCLUSIONS & FURTHER WORK

An implementation of a Protocol Buffer plugin to generate
code for signing and verifying messages at the point of
serialisation and deserialisation was created. In addition, a
code linter was created to ensure messages with the correct
metadata are always signed and verified. This framework
is more broadly relevant to heterogeneous software systems
beyond VC systems, where the numbers of messages and
nodes are at scale. Unlike signature generation and validation
in XML and ASN.1, SecProtobuf automatically generates
custom code for each data type and can be statically analysed
to ensure signatures are always used correctly.

The plugin can be expanded to include additional func-
tionality, e.g., integration with a Public-Key Infrastructure
(PKI) system [13], [29]. The efficiency of the linter could
be optimised to make fewer passes over code being analysed
before it reports its findings. Furthermore, one can prepare
similar plugins for other encoding formats, e.g., ASN.1 to
automate WAVE message signatures and message integrity
codes. Evaluation against additional adversarial payloads as
well as performance using an On-Board Unit (OBU) with
asymmetric hardware support, e.g., NexCom OBU [9] are
ongoing and future work.

REFERENCES

[1] S. Jafarnejad, L. Codeca, W. Bronzi, R. Frank, and T. Engel, “A car
hacking experiment: When connectivity meets vulnerability,” in IEEE
globecom workshops (GC Wkshps), San Diego, CA, USA, Dec. 2015.

[2] A. Ghosal and M. Conti, “Security issues and challenges in V2X: A
Survey,” Computer Networks, vol. 169, p. 107093, Jan. 2020.

[3] “IEEE Standard for Wireless Access in Vehicular Environments
(WAVE)–Certificate Management Interfaces for End Entities,” IEEE Std
1609.2.1-2020, pp. 1–287, Dec. 2020.

[4] ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Definitions,” ETSI Tech. TR-102-638, Jun.
2009.

[5] PKI-Memo, “C2C-CC,” http://www.car-2-car.org/, Feb. 2011.
[6] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger,

M. Raya, Z. Ma, F. Kargl, A. Kung, and J.-P. Hubaux, “Secure
Vehicular Communication Systems: Design and Architecture,” IEEE
Communications Magazine, vol. 46, no. 11, pp. 100–109, Nov. 2008.

[7] A. Kung., “Security Architecture and Mechanisms for V2V/V2I, SeVe-
Com,” https://sevecom.eu/Deliverables/Sevecom Deliverable D2.1 v3.
0.pdf, Feb. 2008.

[8] P. Papadimitratos, L. Buttyan, J.-P. Hubaux, F. Kargl, A. Kung, and
M. Raya, “Architecture for Secure and Private Vehicular Communica-
tions,” in IEEE ITST, Sophia Antipolis, Jun. 2007.

[9] PRESERVE-Project, www.preserve-project.eu/, Jun. 2015.
[10] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A Security

Credential Management System for V2V Communications,” in IEEE
VNC, Boston, MA, Dec. 2013.

[11] “Vehicle Safety Communications Security Studies: Technical Design of
the Security Credential Management System,” https://www.regulations.
gov/document?D=NHTSA-2015-0060-0004, July 2016.

[12] M. Khodaei and P. Papadimitratos, “The Key to Intelligent Transporta-
tion: Identity and Credential Management in Vehicular Communication
Systems,” IEEE Vehicular Technology Magazine, vol. 10, no. 4, pp. 63–
69, Dec. 2015.

[13] M. Khodaei, H. Jin, and P. Papadimitratos, “SECMACE: Scalable and
Robust Identity and Credential Management Infrastructure in Vehicular
Communication Systems,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 19, no. 5, pp. 1430–1444, May 2018.

[14] “Intelligent Transport Systems (ITS); Security; Security Services and
Architecture,” ETSI Standard TS 102 731, Sept. 2010.

[15] “Intelligent Transport Systems — Dedicated Short Range Communica-
tion (DSRC) — DSRC Application Layer,” International Organization
for Standardization, Standard, Nov. 2020.

[16] D. Eastlake, J. Reagle, D. Solo, F. Hirsch, and T. Roessler, “XML-
signature syntax and processing,” W3C recommendation, vol. 12, Feb.
2002.

[17] “ASN.1 encoding rules: Specification of Packed Encoding Rules (PER),”
International Organization for Standardization, Geneva, CH, Standard,
Feb. 2021.

[18] “Abstract Syntax Notation One (ASN.1): Specification of basic no-
tation,” International Organization for Standardization, Geneva, CH,
Standard, Feb. 2021.

[19] V. Kumar and W. Whyte, “Performance Analysis of Existing 1609.2
Encodings v ASN.1,” SAE International Journal of Passenger Cars-
Electronic and Electrical Systems, vol. 8, no. 2015-01-0288, pp. 356–
363, Apr. 2015.

[20] P. Papadimitratos, V. Gligor, and J.-P. Hubaux, “Securing Vehicular
Communications-Assumptions, Requirements, and Principles,” in ES-
CAR, Berlin, Germany, Nov. 2006.

[21] R. Ward and B. Beyer, “Beyondcorp: A New Approach to Enterprise
Security,” login, vol. 29, pp. 5–11, Dec. 2014.

[22] Einride Tech, https://www.einride.tech/, Jul. 2021.
[23] S. McConnell, “Gauging Software Readiness with Defect Tracking,”

IEEE Software, vol. 14, no. 3, p. 136, Jun. 1997.
[24] K. Varda, “Google Protocol Buffers: Google’s data interchange format,”

http://code.google.com/apis/protocolbuffers/.
[25] “We’re building the World’s Most Experienced Driver”, https://waymo.

com/, Jul. 2021.
[26] A. Gosain and G. Sharma, “Static Analysis: A Survey of Techniques

and Tools,” in Intelligent Computing and Applications, Feb. 2015.
[27] G. Kaur and M. M. Fuad, “An Evaluation of Protocol Buffer,” in

Proceedings of the IEEE SoutheastCon, Concord, NC, USA, Mar. 2010.
[28] D. Merkel, “Docker: lightweight linux containers for consistent devel-

opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, May
2014.

[29] M. Khodaei, H. Noroozi, and P. Papadimitratos, “Scaling Pseudonymous
Authentication for Large Mobile Systems,” in ACM WiSec, Miami, FL,
USA, May 2019.

http://www.car-2-car.org/
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
https://sevecom.eu/Deliverables/Sevecom_Deliverable_D2.1_v3.0.pdf
www.preserve-project.eu/
https://www.regulations.gov/document?D=NHTSA-2015-0060-0004
https://www.regulations.gov/document?D=NHTSA-2015-0060-0004
https://www.einride.tech/
http://code.google.com/apis/protocolbuffers/
https://waymo.com/
https://waymo.com/

	Introduction
	Implementation
	Evaluation
	Conclusions & Further Work
	References

