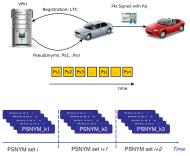


Cooperative Location Privacy in Vehicular Networks: Why Simple Mix-zones are not Enough

Mohammad Khodaei and Panos Papadimitratos Networked Systems Security Group (NSS) www.eecs.kth.se/nss

In IEEE Internet of Things (IoT) Journal

Security and Privacy for Vehicular Communication (VC) Systems¹

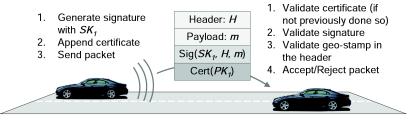

Basic Requirements

- Authentication & integrity
- Non-repudiation
- Authorization and access control
- Conditional anonymity
- Unlinkability (long-term)

Vehicular Public-Key Infrastructure (VPKI)

- Pseudonymous authentication
- Trusted Third Party (TTP):
 - Certification Authority (CA)
 - Issues credentials & binds users to their pseudonyms

¹ P. Papadimitratos, et al. "Securing Vehicular Communications - Assumptions, Requirements, and Principles," in ESCAR, Berlin, Germany, pp. 5-14, Nov. 2006. P. Papadimitratos, et al. "Secure Vehicular Communication Systems: Design and Architecture," in IEEE Communications Magazine, vol. 46, no. 11, pp. 100-109, Nov. 2008.



2/28

Security and Privacy for VC Systems (cont'd)

Beacon packet

- Sign packets with the private key, corresponding to the current valid pseudonym
- Verify packets with the valid pseudonym
- Cryptographic operations in a Hardware Security Module (HSM)

Security and Privacy for VC Systems (cont'd)

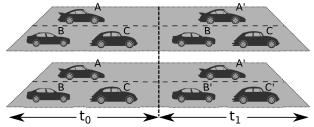
Domain A

- Vehicular Public-Key Infrastructure (VPKI)
- Root CA (RCA)
- Long Term CA (LTCA)
- Pseudonym CA (PCA)
- Resolution Authority (RA)
- Lightweight Directory Access Protocol (LDAP)
- Roadside Unit (RSU)
 - Vehicles registered with one LTCA (home domain)
 - PCA servers in one or multiple domains
 - Vehicles can obtain pseudonyms from any PCA
 - Establish trust among entities with a RCA or with cross-certification
 - Resolve (de-anonymize) a pseudonym with the help of an RA

Domain C

Cross-certification + Communication link + Message dissemination +

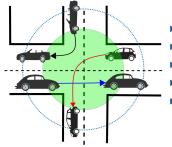
{Msq} P


Domain B

{Msq}_(Pi,.),P

Vehicle Traceability (Syntactic & Semantic Linking Attacks)

- Leveraging K-anonymity, obfuscating Cooperative Awareness Messages (CAMs), or silent period
 - Diminishing situational awareness, thus, affecting operation of safety applications
- Leveraging group signature schemes
 - Computation overhead; only mitigating syntactic linking attack
- Synchronous pseudonym updates
 - Only mitigating syntactic linking attack



Vehicle Traceability (Syntactic & Semantic Linking Attacks) (cont'd)

Cryptographic Mix-Zone (CMIX):

- Mitigating syntactic and semantic linking attacks
- Without affecting the operation of safety applications

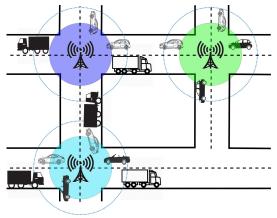
- Arrival rates
- Mix-zone geometries
- Physical constraints of the road layout
- Mobility patterns (e.g., velocity, acceleration)
- Vehicle density (e.g., sparse traffic conditions)

Challenges & Motivation

- Mix-zone geometries
- Mobility patterns (e.g., velocity, acceleration, etc.)
- Vehicle density (e.g., sparse traffic conditions)
- Arrival rates
- Physical constraints of the road layout
- Honest-but-curious entities

Adversarial Model

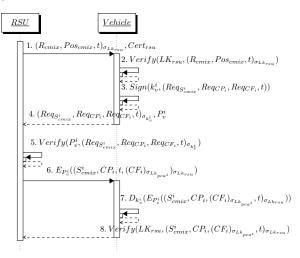
- External adversaries with wireless receivers, placed near each mix-zone, eavesdrop communication
- Internal adversaries:
 - Initiating the protocol continuously to impose extra overhead on the system (a DoS attack).
 - Opting in not changing their pseudonyms, or preventing others from changing their pseudonyms.
 - Colluding internal nodes could broadcast CAMs with the same ("chaff") pseudonym from two distinct location.
 - Colluding and sharing information that each of them individually collected, e.g., an *honest-but-curious* RSU with a single VPKI entity.



Requirements

- Privacy (anonymity and unlinkability)
- Availability
- Auditability and misbehavior detection
- Efficiency and scalability
- Notification on CMIX parameters

Mix-zones Construction with Decoy Traffic



- What about safety applications?
 - Dissemination of a signed Cuckoo Filter (CF)

Mix-zones Advertisement and Chaff Pseudonym Acquisition Protocols

11/28

Experimental Setup

- OMNET++ & Veins framework using SUMO
- Cryptographic protocols and primitives (OpenSSL): Elliptic Curve Digital Signature Algorithm (ECDSA)-256 and SHA-256 as per IEEE 1609.2 and ETSI standards
- V2X communication over IEEE 802.11p
- Placement of the mix-zones: "highly-visited" intersections with non-overlapping radio ranges

Figure: The LuST dataset, a full-day realistic mobility pattern in the city of Luxembourg (15KM x 15KM) [Codeca et al. (2015)].

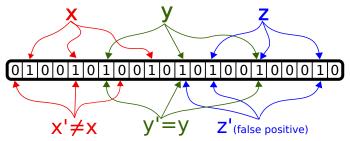
Experimental Setup (cont'd)

- One PCA for CF dissemination
- RSUs randomly assign a percentage of vehicles to be relaying ones
- For CF operations (insertion and membership test), we used PYBLOOM

Metrics:

- Average successful tracking through syntactic and semantic linking attacks
- Efficiency (latency)
- Resilience (internal adversaries)
- Resource consumption (computation/communication)

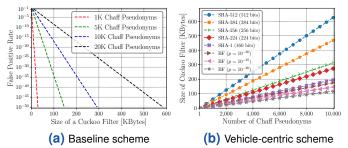
Table: Simulation parameters.


Parameters	Value	Parameters	Value
Beacon TX interval (7v)	0.2s, 0.5s, 1s	Number of RSUs	100
Carrier frequency	5.89 GHz	RSUs transmission range	600 meter
TX power	20mW	Number of Mix-zones	25
Physical layer bit-rate	18Mbps	Mix-zone advertisement TX interval (7mz)	0.5s, 1s
Sensitivity	-89dBm	Mix-zone transmission range	100 meter
Thermal noise	-110dBm	Number of eavesdropper	25
Area size	15 KM × 15 KM	Eavesdropping range	250 meter
Average trip duration	692.81s	Percentage of internal adversaries	10%-50%
Number of trips	287,939	CF distribution bandwidth (B)	50 KB/sec
Number of vehicles	138,259	CF TX interval	1s

Comparison:

- Cryptographic Mix-Zone (CMIX) [?] [Win-ITS'07]
- Chaff-based CMIX [?]
 [VNC'18]

Bloom Filter (BF) and Cuckoo Filter (CF): Construction & Membership Checks



BF/CF features:

- A space-efficient probabilistic data structure
- Fast membership checking
- No false negatives, but false positive matches are possible
- A query returns either "possibly in set" or "definitely not in set"
- No deletion is allowed in a BF; but CF supports deletion.

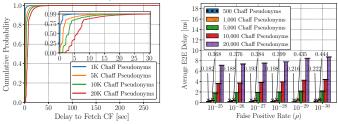

Quantitative Analysis

Figure: (a) The size of a CF as a factor of false positive rate. (b) The size of a CF as a factor of chaff pseudonyms numbers.

- For 5,000 chaff pseudonyms with $\rho = 10^{-30}$, the CF size is 87.75 KB.
- By employing SHA-256, the size of a fingerprint for 5,000 chaff pseudonyms becomes 156 KB; while by employing a CF, the size would be 73.13 KB (ρ = 10⁻²⁵).

(a) Communication Latency

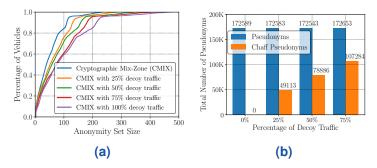

(b) Computation Latency

Figure: (a) Evaluation of end-to-end delay to broadcast CF of chaff pseudonyms to vehicles approaching mix-zones ($\rho = 10^{-30}$, $\mathbb{B} = 50 \text{KB/s}$).

(b) Computation overhead to validate a chaff pseudonym.

- ▶ With 1K chaff pseudonyms, 99% of the vehicles received a CF in 5 sec.
- The latency to validate 1,000 membership check chaff pseudonym with 1K pseudonyms in a CF ($\rho = 10^{-25}$) is ≈ 0.368 ms, i.e., the average latency to validate one chaff pseudonym is 0.000368 ms.

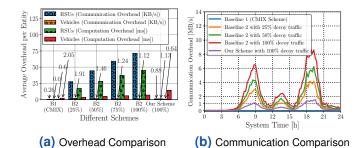
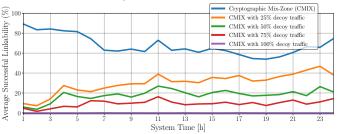


Figure: (a) CDF of anonymity set size for CMIX and our scheme. (b) Total number of disseminated pseudonyms and chaff pseudonyms ($\gamma_v = 0.5s$).

Figure: Comparison among CMIX (B1) [?], chaff-based CMIX (B2) [?], and our scheme: 1,000 chaff pseudonyms in a CF with $\rho = 10^{-25}$; beacon frequency: $\gamma_{mz} = 0.5$, $\gamma_{\nu} = 0.2$. (a) Computation and communication overhead comparison. (b) Communication overhead comparison, averaged every 300s.

Protocol 1 Syntactic and Semantic Linking Algorithm


```
procedure TRACKINGVEHICLES()
  2::::
34:5:
6:7:
           Classify eavesdropped beacons based on vehicle length
           Create a list with the first & last seen beacons for each identifier
           Filter out trivially linked pseudonyms (not changing psnyms)
           Latencv ← Estimated time to traverse a Mix-zone
           for Each B; in BEACON SET do
               B_i^f is the first seen message for beacon B_i
  8:
               B_i^l is the last seen message for beacon B_i
  9:
              for Each B_{i+1}^{f} in BEACON_SET do
10:
                  diff time \leftarrow time difference between B_{i+1}^{l} and B_{i}^{f}
11:
                  if diff time > 0 && diff time < Latency then
12:
                      if pseudo-id for B_i^l and B_{i+1}^f not seen together then
13:
                          if exists a road path from B_i^l to B_{i+1}^f then
14:
                             if path B_i^{l} \mapsto B_{i+1}^{f} is validated by Kalman Filter (KF) then
15:
                                 B_i^l and B_{i\perp 1}^f are correlated
16:
                             else
                                 B_i^l and B_{i+1}^f are not correlated
end if
                         end if
                      end if
                   end if
               end for
           end for
       end procedure
```



Syntactic and Semantic Linking Algorithm

In order to link two pseudonyms:

- An adversary places wireless receivers near each mix-zone (entry and exit points)
- An adversary tries to link one of the last seen beacon before entering a mix-zone to one of the first-seen beacon exiting the mix-zone
- Filtering out trivially linked pseudonyms
- Estimated time to traverse a mix-zone
- The two pseudonyms have not been seen together
- Considering the physical road layout (exists a path between the two)
- The second beacon (direction) is from an exit points of the mix-zone

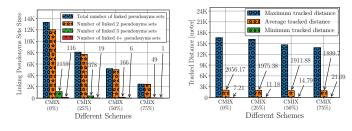


Figure: Average successful linkability comparison with the CMIX baseline scheme through conducting syntactic and semantic linking attacks.

- The probability of linking decreases when the traffic density increases.
- For the baseline scheme, one could link pseudonyms with high probability success rate.
- By introducing decoy traffic for 50% of vehicles, the probability of linking drops from 63% to 17% at system time 7.

(a)

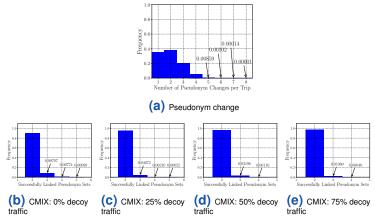

(b)

Figure: (a) Linking pseudonym sets for the baseline and our scheme.

- (b) Successful tracked distance for the baseline and our scheme.
 - Successfully linked pseudonyms set size is the number of pseudonyms, linked by the eavesdroppers, corresponding to the same vehicle.
 - The higher the percentage of decoy traffic is, the lower the number of linked pseudonyms sets becomes.

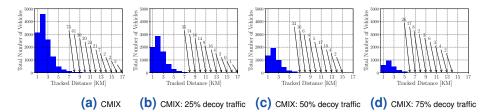


Figure: (a) Histogram of pseudonyms changes. (b) Histogram of successfully linked pseudonym sets for the baseline scheme (b), and our scheme (c-e).

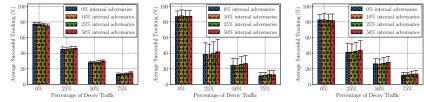


Figure: Histogram of tracked distances by eavesdroppers based on the linked pseudonyms sets for the baseline scheme (CMIX) and our scheme.

By introducing decoy traffic for vehicles exiting the mix-zones, the total number of vehicles, tracked by the eavesdroppers, drastically decreases.

(a) During Rush Hours
 (b) During Non-rush Hours
 (c) During 24 Hours
 Figure: Average successful linkability in the presence of non-cooperative vehicles, not changing their pseudonyms while crossing the mix-zones.

- Non-cooperative vehicles exit the mix-zone without changing pseudonyms; also, if chosen to be relaying vehicles, do not disseminate decoy traffic.
- Selection of such vehicles is independent of selection of relaying vehicles; in each scenario, different sets are selected to be non-cooperative.
- The average successful tracking is not considerably affected in the presence of non-cooperative vehicles.

Conclusions

- A novel scheme to protect user privacy regardless of the geometry of the mix-zones, mobility patterns, vehicle density, and arrival rates.
- Enhancing user privacy protection at the cost of low computation and communication overhead.
- Ensuring the operation of safety applications by the dissemination of decoy traffic.
- Our results show that the deployment of mix-zones can be cost-effective.

Future Works

- Investigating the resiliency of our scheme against a fraction of malicious vehicles or compromised RSUs that covertly send the CMIX symmetric key or the CFs to other (internal or external) adversaries.
- Extending our tracking algorithm towards tracking vehicles based on the physical properties of the wireless radio signals and investigate appropriate countermeasures to mitigate such a vulnerability.

Cooperative Location Privacy in Vehicular Networks: Why Simple Mix-zones are not Enough

Mohammad Khodaei and Panos Papadimitratos Networked Systems Security Group (NSS) www.eecs.kth.se/nss

In IEEE Internet of Things (IoT) Journal

