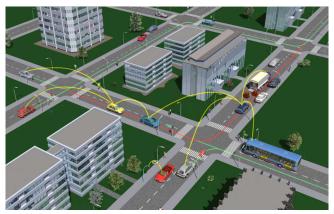


Scalable & Resilient Vehicle-Centric Certificate Revocation List Distribution in Vehicular Communication Systems

Mohammad Khodaei and Panos Papadimitratos Networked Systems Security Group (NSS)

www.eecs.kth.se/nss


Outline

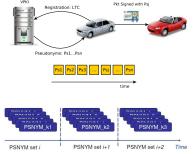
Challenges for Revocation in VC Systems

System Overview Security Protocols Qualitative Analysis Quantitative Analysis Conclusion

Vehicular Communication (VC) Systems

Figure: Photo Courtesy of the Car2Car Communication Consortium (C2C-CC)

Security and Privacy for VC Systems¹

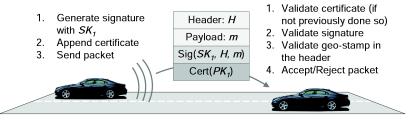

Basic Requirements [1, 2]

- Authentication & integrity
- Non-repudiation
- Authorization and access control
- Conditional anonymity
- Unlinkability (long-term)

Vehicular Public-Key Infrastructure (VPKI)

- Pseudonymous authentication
- Trusted Third Party (TTP):
 - Certification Authority (CA)
 - Issues credentials & binds users to their pseudonyms

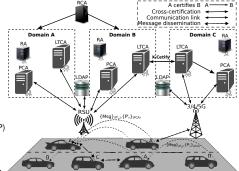
¹P. Papadimitratos, et al. "Securing Vehicular Communications - Assumptions, Requirements, and Principles," in ESCAR, Berlin, Germany, pp. 5-14, Nov. 2006. P. Papadimitratos, et al. "Secure Vehicular Communication Systems: Design and Architecture," in IEEE Communications Magazine, vol. 46, no. 11, pp. 100-109, Nov. 2008.



4/52

Security and Privacy for VC Systems (cont'd)

Beacon packet



- Sign packets with the private key, corresponding to the current valid pseudonym
- Verify packets with the valid pseudonym
- Cryptographic operations in a Hardware Security Module (HSM)

Secure & Privacy-preserving VC Systems

- Root Certification Authority (RCA)
- Long Term CA (LTCA)
- Pseudonym CA (PCA)
- Resolution Authority (RA)
- Lightweight Directory Access Protocol (LDAP)
- Roadside Unit (RSU)
- Trust established with RCA, or through cross certification

Figure: VPKI Overview

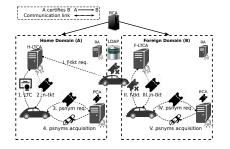
Challenges & Motivation

Traditional PKI vs. Vehicular PKI

- Dimensions (5 orders of magnitude more credentials)
- Balancing act: security, privacy, and efficiency
 - Honest-but-curious VPKI entities
 - Performance constraints: safety- and time-critical operations (rates of 10 safety beacons per second)
- Mechanics of revocation:
 - Highly dynamic environment with intermittent connectivity
 - Short-lived pseudonyms, multiple per entity
 - Resource constraints

Challenges and Motivation (cont'd) Revocation challenges:

- Efficient and timely distribution of Certificate Revocation Lists (CRLs) to every legitimate vehicle in the system
- Strong privacy for vehicles prior to revocation events to every vehicle
- Computation and communication constraints of On-Board Units (OBUs) with intermittent connectivity to the infrastructure
- Peer-to-peer distribution is a double-edged sword: abusive peers could "pollute" the process, thus degrading the timely CRL distribution


Outline

Challenges for Revocation in VC Systems System Overview Security Protocols Qualitative Analysis Quantitative Analysis Conclusion

System Model and Assumptions

Figure: Pseudonym acquisition overview in the home and foreign domains.

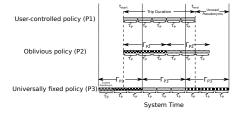


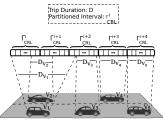
Figure: Pseudonym Acquisition Policies.

M. Khodaei, H. Jin, and P. Papadimitratos. IEEE T-ITS, vol. 19, no. 5, pp. 1430-1444, May 2018.

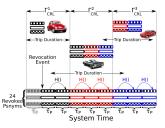
System Model and Requirements

Adversarial Model:

- Excluding revoked pseudonym serial numbers from a CRL
- Adding valid pseudonyms by forging a fake CRL (piece)
- Preventing legitimate vehicles from obtaining genuine and the most up-to-date CRL (pieces) or delaying the distribution
- Harming user privacy by the VPKI entities


Requirements:

- Fine-grained authentication, integrity, and non-repudiation
- Unlinkability (perfect-forward-privacy)
- Availability
- Efficiency
- Explicit and/or implicit notification on revocation events



Vehicle-Centric CRL Distribution

Figure: CRL as a Stream:

$$\begin{split} &V_{1} \text{ subscribes to } \{\Gamma_{CRL}^{i}, \Gamma_{CRL}^{i+1}, \Gamma_{CRL}^{i+2}\}; \\ &V_{2} : \{\Gamma_{CRL}^{i}, \Gamma_{CRL}^{i+1}\}; \\ &V_{3} : \{\Gamma_{CRL}^{i+2}\}; \\ &V_{4} : \{\Gamma_{CRL}^{i+3}\}; \\ &V_{5} : \{\Gamma_{CRL}^{i+4}\}. \end{split}$$

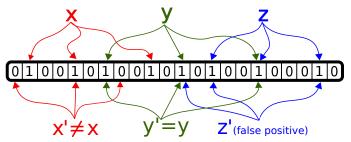


Figure: A vehicle-centric approach: each vehicle only subscribes for pieces of CRLs corresponding to its trip duration.

Bloom Filter Construction & Membership Checks

Bloom Filter (BF) features:

- A space-efficient probabilistic data structure
- Fast membership checking
- No false negatives, but false positive matches are possible
- A query returns either "possibly in set" or "definitely not in set"
- No deletion is allowed in a BF; (Cuckoo Filter (CF) supports deletion)

Vehicle-Centric CRL Distribution (cont'd)

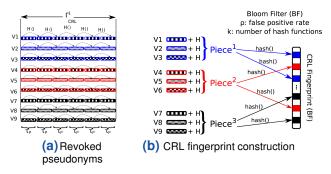
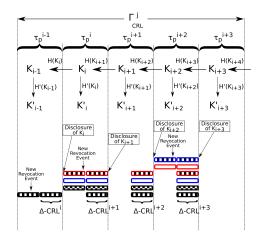


Figure: CRL piece & fingerprint construction by the PCA.


CRL Fingerprint:

- A signed fingerprint is broadcasted by RSUs
- Also integrated in a subset of recently issued pseudonyms
- A notification about a new CRL-update (revocation) event

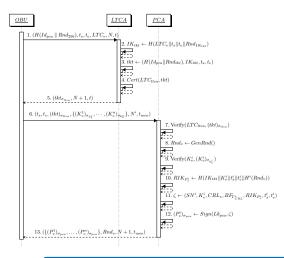
Vehicle-centric \triangle -CRL distribution

Outline

Challenges for Revocation in VC Systems System Overview Security Protocols Qualitative Analysis

Quantitative Analysis

Conclusion


Notation Used in the Protocols

Notation Description Notation Description $(P_v^i)_{pca}, P_v^i$ a valid psnym signed by the PCA Append() appending a revoked psnym SN to CRLs (K_{u}^{i}, k_{u}^{i}) psnym pub./priv. key pairs BFTest() BF membership test long-term pub./priv. key pairs p. K false positive rate, optimal hash functions (Kpca; Lkpca) (msq)_{a...} signed msg with vehicle's priv. key interval to issue time-aligned psnyms LTC interval to release CRLs Long Term Certificate **C**_{CRI} a fresh, starting, ending timestamp RIK revocation identifiable key tnow. ts. te max, bandwidth for CBL distribution Ttimeout response reception timeout B n-tkt, (n-tkt)Itca a native ticket R revocation rate total number of CRL pieces in each F CBL Idrea, Idres request/response identifiers Ν SN psnym serial number number of remaining psnyms in each batch n Sign(Lkca, msg) signing a msg with CA's priv, key k index of the first revoked psnym CRL Verify(LTC_{ca}, msg) verifying with the CA's pub. key CRL version GenRnd(), rand(0, * GEN. a random number, or in range Null or empty vector $H^{\kappa}(), H$ hash function (k times), hash value k, j, m, ζ temporary variables

Table: Notation Used in the Protocols.

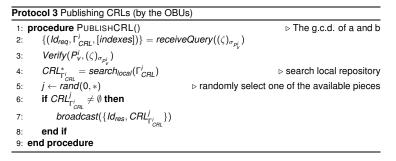
Pseudonym Acquisition Process

1: if <i>i</i> = 1 then	_
2: SN ⁱ	←
$H(RIK_{P_{v}^{i}} H^{i}(Rnd_{v}))$	
3: else	
4: SN ⁱ	←
$H(SN^{i-1} H^i(Rnd_v))$	
5: end if	

Issuing Pseudonyms (by the PCA)

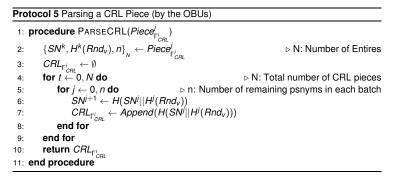
Protocol 1 Issuing Pseudonyms (by the PCA)

```
1: procedure ISSUEPSNYMS(Req)
            Req \rightarrow (\mathit{Id}_{req}, \mathit{ts}, \mathit{te}, (\mathit{tkt})_{\sigma_{\mathit{ltca}}}, \{(K_v^1)_{\sigma_{\mathit{k_v^1}}}, \cdots, (K_v^n)_{\sigma_{\mathit{k_v^n}}}\}, \textit{nonce}, \mathit{t_{now}})
 2:
          Verify(LTC_{ltca}, (tkt)_{\sigma_{ltca}})
 3:
 4.
         Rnd_{v} \leftarrow GenRnd()
            for i:=1 to n do
 5:
                   Begin
 6:
                         \operatorname{Verify}(K_{v}^{i},(K_{v}^{i})_{\sigma_{vi}})
 7:
                         RIK_{P_v^i} \leftarrow H(IK_{tkt}||K_v^i||t_s^i||t_e^i||H^i(Rnd_v))
 8:
                         if i = 1 then
 9:
                                SN^i \leftarrow H(RIK_{P^i_v}||H^i(Rnd_v))
10:
                         else
11:
                                SN^{i} \leftarrow H(SN^{i-1}||H^{i}(Rnd_{v}))
12.
                         end if
13:
                        \zeta \leftarrow (SN^i, K_v^i, CRL_v, BF_{\Gamma_{CDI}^i}, RIK_{P_v^i}, t_s^i, t_e^i)
14:
                        (P_v^i)_{\sigma_{nca}} \leftarrow Sign(Lk_{pca}, \zeta)
15:
                   End
16:
            return (Id_{res}, \{(P_v^1)_{\sigma_{res}}, \dots, (P_v^n)_{\sigma_{res}}\}, Rnd_v, nonce+1, t_{now})
17:
18: end procedure
```



CRL Construction (by the PCA)

Protocol 2 CRL Construction (by the PCA) 1: procedure GENCRL($\Gamma_{CBI}^{i}, \mathbb{B}$) 2: $Piece_{\Gamma_{CBI}^{i}} \leftarrow \emptyset$ repeat 3: $\{SN_P^k, H_{Bnd_v}^k, n\} \leftarrow fetchRevokedPsnyms(\Gamma_{CBL}^i)$ \triangleright k: the revoked 4: if $SN_P^k \neq Null$ then 5: $Piece_{\Gamma_{OP}^{i}} \leftarrow Append(\{SN_{P}^{k}, H_{Bnd_{v}}^{k}, n\})$ 6٠ end if 7: until $SN_{P}^{k} == Null$ 8: $size(Piece_{\Gamma_{CRL}^{i}})$ $N \leftarrow$ \triangleright calculating number of pieces with a given \mathbb{B} 9: for $i \leftarrow 0$. N do \triangleright N: number of pieces in Γ_{CPI}^{i} 10. $\textit{Piece}_{\Gamma_{CRL}^{i}}^{j} \leftarrow \textit{Split}(\textit{Piece}_{\Gamma_{CRL}^{i}}, \mathbb{B}, \textit{N})$ ▷ splitting into N pieces 11: end for 12: return { $(Piece_{\Gamma_{ion}}^{1}), \ldots, (Piece_{\Gamma_{ion}}^{N})$ } 13: 14: end procedure

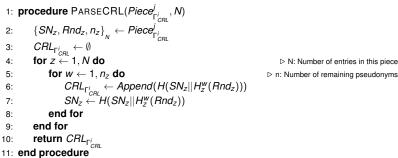
Publishing CRLs (by the OBUs)


Subscribing to CRL Pieces (by the OBUs)

Protocol 4 Subscribing to CRL Pieces (by the OBUs) 1: procedure SUBSCRIBECRL(Γ_{CBI}^{i}, N) $resp_{final} \leftarrow \emptyset, j \leftarrow 0, t \leftarrow t_{now} + T_{timeout}$ 2: 3: repeat $\zeta \leftarrow (Id_{reg}, \Gamma^{i}_{CBI}, [missing pieces indexes])$ 4: 5 $(\zeta)_{\sigma_v} \leftarrow Sign(k_v^i, \zeta)$ broadcast($(\zeta)_{\sigma_{P_{v}^{i}}}, P_{v}^{i}$) 6: $Piece_{\Gamma_{i}}^{j} \leftarrow receiveBefore(t)$ 7: if $BFTest(Piece_{\Gamma_{CRI}^{i}}^{j}, BF_{\Gamma_{CRI}^{i}})$ then 8: $resp_{final} \leftarrow Store(Piece_{\Gamma^i}^j)$ storing in local repository 9: 10. end if 11: $i \leftarrow i + 1$ until i > N12: 13. return respinal 14: end procedure

Parsing a CRL Piece (by the OBUs)

CRL Publish/Subscribe



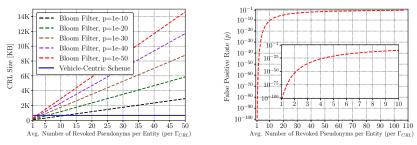
\triangle -CRL Construction (by the PCA)

1: **procedure** GENDELTACRL(
$$\Gamma_{CRL}^{j}$$
, K_{i} , \mathbb{B} , t_{now})
2: $Piece_{\Gamma_{I_{CRL}}^{j}} \leftarrow \emptyset$
3: **repeat** > Fetching revoked pseudonym, not included in base-CRL
4: $SN_{P} \leftarrow fetchRevokedPsnyms(\Gamma_{CRL}^{j}, i, t_{now})$
5: **if** $SN_{P} \neq Aull$ **then**
6: $Piece_{\Gamma_{CRL}^{j}} \leftarrow Append(SN_{P})$
7: **end if**
8: **until** $SN_{P} = Null$
9: $K_{i-1} \leftarrow H(K_{i})$ > Calculating the key for interval $i-1$
10: $K_{i}^{\prime} \leftarrow H'(K_{i})$ > Calculating the key for interval i
11: $N \leftarrow \begin{bmatrix} size(Piece_{\Gamma_{CRL}^{j}}^{\Delta_{i}}) \\ \mathbb{B} \end{bmatrix}$ > Calculating number of pieces
12: **for** $w \leftarrow 0$, N **do** > N: number of pieces
13: $\zeta \leftarrow Split(Piece_{\Gamma_{CRL}^{j}}^{\Delta_{i}}, \mathbb{B}, N)$
14: $Piece_{\Gamma_{CRL}^{j}}^{M} \leftarrow \{\zeta ||MAC(K_{i}^{\prime}, \zeta)||K_{i-1}\}$
15: **end for**
16: **return** { $(Piece_{\Gamma_{CRL}^{j}}^{\Delta_{i}}), \dots, (Piece_{\Gamma_{CRL}^{j}}^{\Delta_{i}})$ }

Parsing a CRL Piece (by the OBUs)

Outline

Challenges for Revocation in VC Systems System Overview Security Protocols Qualitative Analysis Quantitative Analysis Conclusion


Qualitative Analysis

- ✓ Fine-grained authentication, integrity, and non-repudiation: signed fingerprints
- ➤ ✓ Unlinkability (perfect-forward-privacy): multi-session pseudonym requests, timely-aligned pseudonym lifetime, utilization of hash chains
- ► ✓ Availability: leveraging RSUs and car-to-car epidemic distribution
- ➤ ✓ Efficiency: Efficient construction of fingerprints, fast validation per piece, and implicitly binding of a batch
- ✓ Explicit and/or implicit notification on revocation events: Broadcasting signed fingerprints, also integrated into a subset of recently issued pseudonyms

Qualitative Analysis (cont'd)

(a) CRL size comparison (b) C^2RL [6] as a factor of false positive rate Figure: (a) CRL size comparison for C^2RL and vehicle-centric scheme (10,000 revoked vehicles). (b) Achieving vehicle-centric comparable CRL size for the C^2RL scheme.

- ► $m_{BF} = -\frac{N \times M \times \ln p}{(\ln 2)^2}$, N is the total number of compromised vehicles, M is the average number of revoked pseudonyms per vehicle per Γ_{CBI} .
- Significant improvement over C²RL: 2.6x reduction in CRL size when M = 10 and $p = 10^{-30}$.

Qualitative Analysis (cont'd)

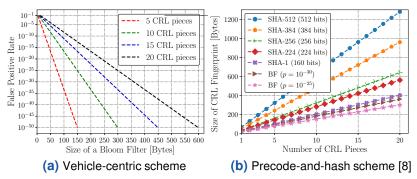
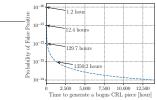


Figure: Extra overhead for CRL fingerprints.



Qualitative Analysis (cont'd)

- BF trades off communication overhead for false positive rate
- BF size increases linearly as the false positive rate decreases

An adversary targeting the BF false positive rate:

- Excluding revoked pseudonym serial numbers from a CRL
- Adding valid pseudonyms by forging a fake CRL (piece)

Figure: Query-only attack on the CRL fingerprints; adversary's computational power is 1.6×10^{18} *TH/sec*.

With Antminer-S9 (14TH/s,3,000), $\Gamma_{CRL} = 1$ hour and $p = 10^{-20}$ (K = 67):

► 132,936 Antminer-S9 (\$400M) to generate a bogus piece in 1 hour $\left(\frac{10^{20} \times 67}{14 \times 10^{12}}\right)$

With AntPool (1, 604, 608 TH/s): 70 minutes to generate a fake piece!

• With $p = 10^{-22}$ (K = 73): 5 days ($\frac{10^{22} \times 73}{1.6 \times 10^{18}} = 126h$)

• With
$$p = 10^{-23}$$
 (K = 76): 55 days ($\frac{10^{23} \times 76}{1.6 \times 10^{18}} = 1,319h$)

Qualitative Analysis (cont'd)-

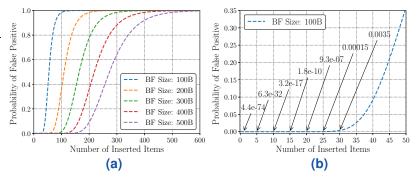
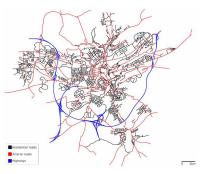


Figure: Chosen-insertion attack on the CRL fingerprint.

Outline


Challenges for Revocation in VC Systems System Overview Security Protocols Qualitative Analysis Quantitative Analysis Conclusion

Quantitative Analysis

- OMNET++ & Veins framework using SUMO
- Cryptographic protocols and primitives (OpenSSL): Elliptic Curve Digital Signature Algorithm (ECDSA)-256 and SHA-256 as per IEEE 1609.2 and ETSI standards
- V2X communication over IEEE 802.11p
- Placement of the RSUs: "highly-visited" intersections with non-overlapping radio range:
- Comparison with the *baseline* scheme [9]: under the same assumptions and configuration with the same parameters
- Evaluation of: efficiency (latency), resilience (to pollution/DoS attacks), resource consumption (computation/communication)

Figure: The LuST dataset, a full-day realistic mobility pattern in the city of Luxembourg (15KM x 15KM) [Codeca et al. (2015)].

Quantitative Analysis (cont'd)

Parameters	Value	Parameters	Value	
CRL/Fingerprint TX interval	0.5s/5s	Pseudonym lifetime	30s-600s	
Carrier frequency	5.89 GHz	Area size	15 KM imes 15 KM	
TX power	20mW	Number of vehicles	138,259	
Physical layer bit-rate	18Mbps	Number of trips	287,939	
Sensitivity	-89dBm	Average trip duration	692.81s	
Thermal noise	-110dBm	Duration of simulation	4 hour (7-9, 17-19)	
CRL dist. Bandwidth (B)	10, 25, 50 KB/s	Г	1-60 min	
Number of RSUs	100	Γ _{CRL}	60 min	

Table: Simulation Parameters (LuST dataset).

Table: LuST Revocation Information ($\mathbb{R} = 1\%$, $\mathbb{B} = 10KB/s$).

Pseudonym Lifetime	Number of Psnyms	Number of Revoked Psnyms	Average Number per Г _{CRL}	Number of Pieces
<i>⊤P</i> =30s	3,425,565	34,256	1,428	12
<i>⊤P</i> =60s	1,712,782	17,128	710	6
τ _P =300s	342,556	3,426	143	2
<i>⊤P</i> =600s	171,278	1,713	72	1

Quantitative Analysis (cont'd)

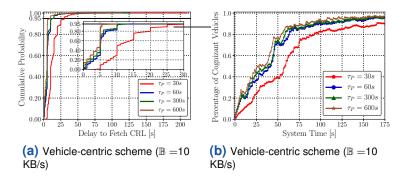
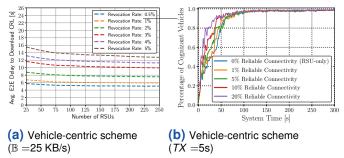



Figure: (a) End-to-end latency to fetch CRL pieces. (b) Percentage of cognizant vehicles.

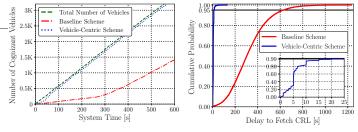


Figure:(a) Average end-to-end delay to download CRLs. (b) Dissemination of CRL fingerprints.

- Total number of pseudonyms is 1.7M ($\tau_P = 60s$).
- Signed fingerprint of CRL pieces periodically broadcasted only by RSUs [8], or broadcasted by RSUs (365 bytes with TX = 5s) and, in addition, integrated into a subset of pseudonyms with 36

bytes of extra overhead ($p = 10^{-30}$, $\mathbb{R} = 0.5\%$).

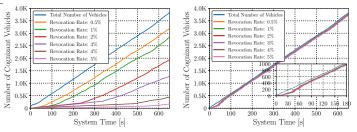
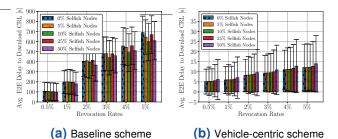

(a) 7:00-7:10 am ($\mathbb{B} = 25$ KB/s) (b) 7-9 am, 5-7 pm ($\mathbb{B} = 25$ KB/s)

Figure: End-to-end delay to fetch CRLs ($\mathbb{R} = 1\%$, $\tau_P = 60$ s). Converging more than 40 times faster than the state-of-the-art:

• Baseline scheme: $F_x(t = 626s) = 0.95$

• Vehicle-centric scheme: $F_x(t = 15s) = 0.95$



(a) Baseline scheme ($\mathbb{B} = 50$ KB/s) (b) Vehicle-centric scheme ($\mathbb{B} = 50$ KB/s)

Figure: Cognizant vehicles with different revocation rates.

- T: the total number of pseudonyms; \mathbb{R} : the revocation rate.
- $\blacktriangleright\,$ Size of CRLs for the Baseline: $\mathbb{T}\times\mathbb{R},$ linearly increases with \mathbb{R}
- Size of an *effective CRL* for vehicle-centric: $\frac{\mathbb{T} \times \mathbb{K}}{|\Gamma_{CRL}|}$, where $|\Gamma_{CRL}|$ is the number of intervals in a day, e.g., $|\Gamma_{CRL}|$ is 24 when $\Gamma_{CRL} = 1h$.

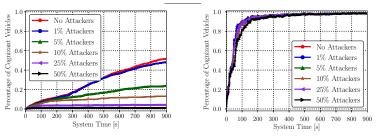
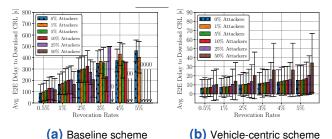


Figure: Resilience comparison against selfish nodes with different revocation rates (7:00-7:30, $\tau_p = 30s$, $\mathbb{B} = 50KB/s$).

Selfish nodes do not perform any "active" attacks; rather, they become silent and they never respond to a CRL piece request.



(a) Baseline scheme ($\mathbb{B} = 25 \text{ KB/s}$) (b) Vehicle-centric scheme ($\mathbb{B} = 25 \text{ KB/s}$)

Figure: Resilience comparison against DoS attacks.

- Attackers periodically broadcast fake CRL pieces once every 0.5 second.
- The resilience to pollution and DoS attacks stems from three factors:
 - A huge reduction of the CRL size
 - Efficient verification of CRL pieces
 - Integrating the fingerprint of CRL pieces in a subset of pseudonyms

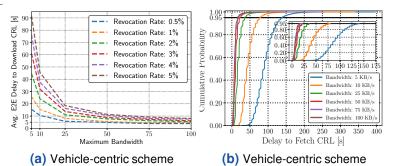


Figure: Resilience comparison against pollution and DoS attacks with different revocation rates (7:00-7:10, $\tau_{D} = 30s$, $\mathbb{B} = 50KB/s$).

- Attackers periodically broadcast fake CRL pieces once every 0.5 second.
- The resilience to pollution and DoS attacks stems from three factors:
 - A huge reduction of the CRL size
 - Efficient verification of CRL pieces
 - Integrating the fingerprint of CRL pieces in a subset of pseudonyms

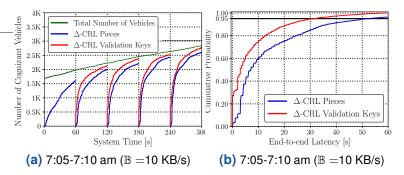
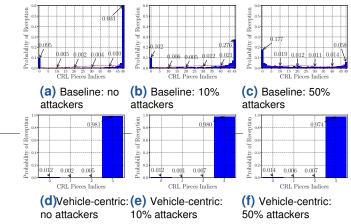


Figure: (a) Bandwidth-delay trade off ($\tau_P = 60s$). (b) CDF of end-to-end delay with different bandwidth ($\tau_P = 30s$, $\mathbb{R} = 5\%$).

Figure: End-to-end delay to fetch Δ -CRL pieces and validation keys for vehicle-centric scheme ($\tau_P = 60 \text{ sec.}, \mathbb{R} = 5\%$, $\gamma_{key} = 0.5, \gamma_{piece} = 2$).

Figure: End-to-end delay to fetch CRLs ($\tau_P = 60s$, $\mathbb{R} = 1\%$).


(a) CDF of delays under a DoS attack

(b) Probability of failure

Figure: (a) CDF of latency to successfully obtain CRL pieces (50% attackers). (b) CRL download failure ratio as a function of DoS attackers ($\tau_P = 30s$, $\mathbb{B} = 50KB/s$).

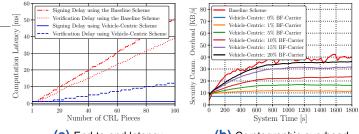


Figure: Probability of successful CRL pieces reception ($\tau_P = 30s$, $\mathbb{B} = 50KB/s$). (a) and (d): no attacks. (b), (c), (e), (f): under a DoS attack.

(a) End-to-end latency

(b) Cryptographic overhead

Figure: (a) Computation latency comparison. (b) Security overhead comparison, averaged every 30s (\mathbb{R} =1%, \mathbb{B} = 50KB/s).

- Cryptographic protocols were executed on a VM (dual-core 2.0 GHz).
- Signed fingerprint broadcasted every 5s via RSUs (365 bytes long), also integrated into a subset of pseudonyms (36 bytes extra overhead,

 $p = 10^{-30}$).

Outline

Challenges for Revocation in VC Systems System Overview Security Protocols Qualitative Analysis Quantitative Analysis Conclusion

Conclusion

- A practical framework to effectively distribute CRLs in VC systems
- Highly efficient, scalable, and resilient design

 Viable solution towards catalyzing the deployment of the secure and privacy-protecting VC systems

Bibliography

- P. Papadimitratos and et al, "Securing Vehicular Communications-Assumptions, Requirements, and Principles," in ESCAR, Berlin, Germany, Nov. 2006.
- [2] -----, "Secure Vehicular Communication Systems: Design and Architecture," IEEE Comm. Mag., vol. 46, no. 11, pp. 100-109, Nov. 2008.
- [3] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, "A Security Credential Management System for V2V Communications," in *IEEE VNC*, Boston, MA, Dec. 2013.
- [4] V. Kumar and et al, "Binary Hash Tree based Certificate Access Management for Connected Vehicles," in ACM WiSec, Boston, USA, July 2017.
- [5] M. Khodaei, H. Jin, and P. Papadimitratos, "SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems," *IEEE T-ITS*, vol. 19, no. 5, pp. 1430–1444, May 2018.
- [6] M. Raya and et al, "Certificate Revocation in Vehicular Networks," *Technical Report, EPFL, Switzerland*, 2006.
- [7] S. Tarkoma and et al, "Theory and Practice of Bloom Filters for Distributed Systems," IEEE Communications Surveys & Tutorials, vol. 14, no. 1, pp. 131--155, Apr. 2011.
- [8] V.-T. Nguyen and et al, "Secure Content Distribution in Vehicular Networks," arXiv preprint arXiv:1601.06181, Jan. 2016, Accessed Date: 30-July-2017.
- J.-J. Haas, Y.-C. Hu, and K.-P. Laberteaux, "Efficient Certificate Revocation List Organization and Distribution," *IEEE JSAC*, vol. 29, no. 3, pp. 595--604, 2011.
- [10] M. Khodaei and P. Papadimitratos, "Efficient, Scalable, and Resilient Vehicle-Centric Certificate Revocation List Distribution in VANETs," in ACM WiSec, Stockholm, Sweden, June 2018.

Scalable & Resilient Vehicle-Centric Certificate Revocation List Distribution in Vehicular Communication Systems

Mohammad Khodaei and Panos Papadimitratos Networked Systems Security Group (NSS)

www.eecs.kth.se/nss

In IEEE Transactions on Mobile Computing (TMC), 2020.

