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Motivation

Networked control systems have time-varying
communications influencing their global performance

Network topology depends on
— Internal events: states, controls
— External events: disturbances, outages
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Truck Platooning for Fuel Reduction

Rapport on vehicle platooning developed by KTH and Scania (Oct, 2011)
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Platooning control applications require collaborative actions
— Fuel-efficient adaptive cruise controllers
— Collaborative route planning
— Autonomous safety maneuvers

Vehicles need accurate estimates of neighboring vehicles’ states and actions

Control performance is tightly coupled to how well data (position, velocity,

breaking estimates) are communicated across the platoon

How does the communication influence the system performance?
What is an efficient communication strategy for specific control tasks?
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Mathematical Model

Directed graph G = (V,€&)
Node set V = {1,2,...,n}
Arc e=(i,j) €&

Time-varying graph process

Or(w) = (V,&(w)),k=0,1,...

To each node i € V, associate a scalar state x;(k)

x; updates based on own computation and neighbor information

Nk =G eV: (i) € &} Ui}

Objective

Control the states to agreement: limy_, o |2;(k) — (k)| = 0 for all 4,5 € V

zi(k)
Also called consensus, rendezvous, formation, etc G.5)

Local update law

xi(k+1)= Z a;i(k)z;(k)

JENi(K)

Prototype model for a collaborative control problem with

coupled network and node dynamics

Related work on Markov chains, belief evolution, consensus algorithms, distributed control etc:
Hajnal (1958), Wolfowitz (1963), DeGroot (1974), Tsitsiklis, Bertsekas & Athans (1986), Jadbabaie,
Lin & Morse (2003), Moreau (2005), Ren & Beard (2005), Golub & Jackson (2007), Cao, Anderson &
Morse (2008), Acemoglu, Ozdaglar & ParandehGheib (2010), etc
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A Gossip Algorithm

At each k, select a pair of nodes that “gossip”:

sk 41) = {[ (k) + 2 (B)]/2 3 (i, ) or (4,7) is selected

x; (k) otherwise
Equivalently . e
z(k+1) = Agz(k)

where Ay € A with
A= {I — (Gi — ej)(ei — Ej)T/2 11,7 € V}

and e, is the unit vector

Can the gossiping pairs be selected to achieve finite-time convergence ?

Various bounds on the convergence time to asymptotic consensus, e.g., Karp et al. (2000),
Kempe et al. (2003), Boyd et al., (2006), Shah (2008), Liu et al. (2011)

Gossiping Convergence: Examples

wilk+1) = {[ vi(k) +x;(k)]/2 if (4,7) or (j,1) is selected

x; (k) otherwise

Convergence in 4 steps for n=4 nodes No finite-time convergence for n=3 nodes
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Finite-Time Convergence of Gossiping

Theorem: There exists a deterministic gossip algorithm {Ax}7°, that ensures
global finite-time convergence if and only if there exists an integer m > 0 such
that the number of nodes n = 2.

z(k+1) = Agz(k) ’ ’
[ c—>e

The proof is constructive and provides a gossip algorithm reaching (fastest?)
global convergence in (nlog, n)/2 steps

Shi et al. (2012)

Impossibility of Finite-Time Convergence

Theorem: Suppose there exists no integer m > 0 such that n = 2™. Then,
for almost all initial values, it is impossible to find a gossip algorithm {A;}7°,
that reaches finite-time convergence.

z(k+1) = Aga(k) ’ ’
[ c—>e

Shi et al. (2012)
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Distributed Averaging and Maximizing

zi(k+1) =na;(k) + o min a;(k) + (1 —nr — o) max x;(k)

JEN; (k) JEN (k)
e € [0,1] and ay, € [0,1 — 73] : ;
1 2
nk = 0, ai = 0: distributed maximizing > ¢

nr =0, ar = 1: distributed minimizing
e € (0,1], ag € [0,1 — ng]: distributed weighted averaging

Impossibilities of Convergence

(k1) = ek in (k) + (1 — 1 — (k
zi(k+1) nkx()+akj€%il(lk)%()+( U Oék)jé%}fk)%()

Averaging|algorithms: 7 € (0,1], ax € [0,1 — 1]

Theorem: For every averaging algorithm, finite-time convergence fails for all
initial conditions except for the consensus manifold.

Theorem: For every averaging algorithm, asymptotic convergence fails for
all initial conditions except for the consensus manifold if Y ;- (1 — n;) < oo.

These results are independent of the network topology
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Convergence of Maximizing Algorithms

(k1) = npai(k in xi(k)+ (1 —np — (k
zi(k+1) nkw()+akjerjrlvlir(1k)%()+( U ak)jénjvafk)%()

Maximizing|algorithms: vy = o =0

Theorem: Suppose G = G, is a fixed graph. Global finite-time convergence is
achieved if and only if G, is strongly connected.

Shi & J (2012)

Convergence of Averaging Algorithms

(k1) = ek in (k) + (1 — 1 — (k
zi(k+1) nkx()+akj€%il(lk)%()+( U Oék)jé%}fk)%()

Averaging|algorithms: 7y, € (0, 1], ag € [0,1 — ng] . .

2 3

Theorem: Suppose G = G, is a fixed graph and a = « > 0. Global
asymptotic convergence is achieved if and only if G, has a root.

Shi &J(2012)

10/2/12



Example

zi(k+1)=a min z;(k)+ (1 —«) max z;(k)

JEN (k)

e 0 < a < 1: global asymptotic consensus
e o =0 or = 1: global finite-time consensus
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State-Dependent Nearest-Value Graphs

Fix positive integer u

Neighbors of node i € V are nodes in the union of

N, (k) = {nearest p neighbors j € V with z;(k) < z;(k) and distinct values}

7

Nt (k) = {nearest p neighbors j € V with z;(k) > x;(k) and distinct values}

?

Motivated from recent studies of starlings collective behavior [Ballerini et al., PNAS, 2008]
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Finite-time Convergence

(k1) = npai(k in xi(k)+ (1 —np — (k
zi(k+1) nkx()+akjerjrlvlir(1k)%()+( U ak)jénjvafk)%()

Theorem: Consider a nearest-value graph and an averaging algorithm with
M =0 and ay € (0,1).

(i) If n < 2pu, then global finite-time consensus is achieved.

(ii) If n > 2u, then no finite-time consensus is achieved for almost all initial
conditions.

Finite-time convergence only with sufficiently many neighbors

Shi & J (2012)

Example
wilh+1) = min (k) + (1) max (k)

n =128 nodes and oo = 1/2
35
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Finite-time convergence for only for many neighbors: u>64

Shi & (2012)
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State-dependent Event-based
Scheduling of Measurement Communications

dynamics

Event-based broadcasting
(1) = 2i(t}), t € [th by

wi(t) == Y (#:(t) — (1)) 0<th<ti<th<---
thyr = inf{t - t >t} fi(t) > 0}
filt,ei(t)) = le(t)| — (co +cre™)
ei(t) = &;(t) — ai(¢)

Practical consensus is achieved if 0<a<A,(L)

Seyboth et al. (2011)

Event-based vs Periodic Communication
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Tmaz . largest stabilizing sampling period, see G. Xie et al., ACC2009

Seyboth et al. (2011)
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Event-based vs Periodic Communication
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Seyboth et al. (2011)

Conclusions

* Controls and communications are coupled in many applications
* Fundamental limits for some control objectives and network protocols
— Finite-time and asymptotic convergence, gossiping and averaging

* Tradeoffs between communication capacity and control computations

Extensions B /IDEG]

* Stochastic dynamics and networks
* PHY, MAC, NET models

http://www.ee.kth.se/~kallej
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Collaborative Road Grade Estimation

- omoo
% und:w ~| / 8 / ) &

v

B 6 i

RMS Road Grade Error

G

‘f Aggregated N=10, 100, 1000 profiles of lengths 50 to 500 km

N=10 N=100 N=1000
60 - 60 P~ 60—
58 58 58
!
56 ) 56
_ : .
g > faimo
o
g 54 . 54 Hamburg |
§ ) Berlin
52r (v 52
50 50 [Frankfus
fam Main
48 48
10 15 20 5 10 15 20 5 10 15 20
Longitude [degl Longitude [degl Longitude [degl

Sahlholm, 2011

0.40
032
025
0.20
0.16
013
0.10
0.08
0.06
0.05

10/2/12

12



