

Distributed Event-Based Control

Karl H. Johansson ACCESS Linnaeus Center Royal Institute of Technology, Sweden

Based on joint work with Guodong Shi, Georg Seyboth, Dimos Dimarogonas, Mikael Johansson

Workshop on Event-Based Control and Optimization TUM Institute for Advanced Study, Oct 1-2, 2012

Motivation

Networked control systems have time-varying communications influencing their global performance

Network topology depends on

- Internal events: states, controls
- External events: disturbances, outages

Need for integrated design of control and communication

Networked Control in Platooning

- Platooning control applications require **collaborative actions**
 - Fuel-efficient adaptive cruise controllers
 - Collaborative route planning
 - Autonomous safety maneuvers
- Vehicles need accurate estimates of neighboring vehicles' states and actions
- Control performance is tightly coupled to how well data (position, velocity, breaking estimates) are communicated across the platoon
- How does the communication influence the system performance?
- What is an efficient communication strategy for specific control tasks?

Mathematical Model

Directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

Node set
$$V = \{1, 2, \dots, n\}$$

Arc
$$e = (i, j) \in \mathcal{E}$$

Time-varying graph process

$$\mathcal{G}_k(\omega) = (\mathcal{V}, \mathcal{E}_k(\omega)), k = 0, 1, \dots$$

 x_i updates based on own computation and neighbor information

$$\mathcal{N}_i(k) = \{j \in \mathcal{V} : (j,i) \in \mathcal{E}_k\} \cup \{i\}$$

Objective

Control the states to agreement: $\lim_{k\to\infty} |x_i(k) - x_j(k)| = 0$ for all $i, j \in \mathcal{V}$

Also called consensus, rendezvous, formation, etc

Local update law

$$x_i(k+1) = \sum_{j \in \mathcal{N}_i(k)} a_{ij}(k) x_j(k)$$

 $x_i(k)$

Prototype model for a collaborative control problem with coupled network and node dynamics

Related work on Markov chains, belief evolution, consensus algorithms, distributed control etc:
Hajnal (1958), Wolfowitz (1963), DeGroot (1974), Tsitsiklis, Bertsekas & Athans (1986), Jadbabaie,
Lin & Morse (2003), Moreau (2005), Ren & Beard (2005), Golub & Jackson (2007), Cao, Anderson &
Morse (2008), Acemoglu, Ozdaglar & ParandehGheib (2010), etc

A Gossip Algorithm

At each k, select a pair of nodes that "gossip":

$$x_i(k+1) = \begin{cases} [x_i(k) + x_j(k)]/2 & \text{if } (i,j) \text{ or } (j,i) \text{ is selected} \\ x_i(k) & \text{otherwise} \end{cases}$$

Equivalently

$$x(k+1) = A_k x(k)$$

where $A_k \in \mathcal{A}$ with

$$\mathcal{A} = \{ I - (e_i - e_j)(e_i - e_j)^T / 2 : i, j \in \mathcal{V} \}$$

and e_m is the unit vector

Can the gossiping pairs be selected to achieve finite-time convergence?

Various bounds on the convergence time to asymptotic consensus, e.g., Karp et al. (2000), Kempe et al. (2003), Boyd et al., (2006), Shah (2008), Liu et al. (2011)

Gossiping Convergence: Examples

$$x_i(k+1) = \begin{cases} [x_i(k) + x_j(k)]/2 & \text{if } (i,j) \text{ or } (j,i) \text{ is selected} \\ x_i(k) & \text{otherwise} \end{cases}$$

Convergence in 4 steps for n=4 nodes

No finite-time convergence for n=3 nodes

Finite-Time Convergence of Gossiping

Theorem: There exists a deterministic gossip algorithm $\{A_k\}_{k=0}^{\infty}$ that ensures global finite-time convergence if and only if there exists an integer $m \geq 0$ such that the number of nodes $n = 2^m$.

The proof is constructive and provides a gossip algorithm reaching (fastest?) global convergence in $(n \log_2 n)/2$ steps

Shi et al. (2012)

Impossibility of Finite-Time Convergence

Theorem: Suppose there exists no integer $m \geq 0$ such that $n = 2^m$. Then, for almost all initial values, it is impossible to find a gossip algorithm $\{A_k\}_{k=0}^{\infty}$ that reaches finite-time convergence.

Shi et al. (2012)

Distributed Averaging and Maximizing

$$x_i(k+1) = \eta_k x_i(k) + \alpha_k \min_{j \in \mathcal{N}_i(k)} x_j(k) + (1 - \eta_k - \alpha_k) \max_{j \in \mathcal{N}_i(k)} x_j(k)$$

$$\eta_k \in [0, 1] \text{ and } \alpha_k \in [0, 1 - \eta_k]$$

 $\eta_k \equiv 0, \, \alpha_k \equiv 0$: distributed maximizing

 $\eta_k \equiv 0, \, \alpha_k \equiv 1$: distributed minimizing

 $\eta_k \in (0,1], \, \alpha_k \in [0,1-\eta_k]$: distributed weighted averaging

Impossibilities of Convergence

$$x_i(k+1) = \eta_k x_i(k) + \alpha_k \min_{j \in \mathcal{N}_i(k)} x_j(k) + (1 - \eta_k - \alpha_k) \max_{j \in \mathcal{N}_i(k)} x_j(k)$$

Averaging algorithms: $\eta_k \in (0, 1], \ \alpha_k \in [0, 1 - \eta_k]$

Theorem: For every averaging algorithm, **finite-time** convergence fails for all initial conditions except for the consensus manifold.

Theorem: For every averaging algorithm, **asymptotic** convergence fails for all initial conditions except for the consensus manifold if $\sum_{k=0}^{\infty} (1 - \eta_k) < \infty$.

These results are independent of the network topology

Convergence of Maximizing Algorithms

$$x_i(k+1) = \eta_k x_i(k) + \alpha_k \min_{j \in \mathcal{N}_i(k)} x_j(k) + (1 - \eta_k - \alpha_k) \max_{j \in \mathcal{N}_i(k)} x_j(k)$$

Maximizing algorithms: $\nu_k \equiv \alpha_k \equiv 0$

Theorem: Suppose $\mathcal{G}_k \equiv \mathcal{G}_*$ is a fixed graph. Global finite-time convergence is achieved if and only if \mathcal{G}_* is strongly connected.

Shi & J (2012)

Convergence of Averaging Algorithms

$$x_i(k+1) = \eta_k x_i(k) + \alpha_k \min_{j \in \mathcal{N}_i(k)} x_j(k) + (1 - \eta_k - \alpha_k) \max_{j \in \mathcal{N}_i(k)} x_j(k)$$

Averaging algorithms: $\eta_k \in (0,1], \ \alpha_k \in [0,1-\eta_k]$

Theorem: Suppose $\mathcal{G}_k \equiv \mathcal{G}_*$ is a fixed graph and $\alpha_k \equiv \alpha > 0$. Global asymptotic convergence is achieved if and only if \mathcal{G}_* has a root.

Shi & J (2012)

$\begin{aligned} \textbf{Example} \\ x_i(k+1) &= \alpha \min_{j \in \mathcal{N}_i(k)} x_j(k) + (1-\alpha) \max_{j \in \mathcal{N}_i(k)} x_j(k) \\ \bullet \ 0 &< \alpha < 1 \text{: global asymptotic consensus} \\ \bullet \ \alpha &= 0 \text{ or } \alpha = 1 \text{: global finite-time consensus} \end{aligned}$

State-Dependent Nearest-Value Graphs

Fix positive integer μ

Neighbors of node $i \in \mathcal{V}$ are nodes in the union of

 $\mathcal{N}_i^-(k) = \{ \text{nearest } \mu \text{ neighbors } j \in \mathcal{V} \text{ with } x_j(k) < x_i(k) \text{ and distinct values} \}$

 $\mathcal{N}_i^+(k) = \{\text{nearest } \mu \text{ neighbors } j \in \mathcal{V} \text{ with } x_j(k) > x_i(k) \text{ and distinct values} \}$

Motivated from recent studies of starlings collective behavior [Ballerini et al., PNAS, 2008]

Finite-time Convergence

$$x_i(k+1) = \eta_k x_i(k) + \alpha_k \min_{j \in \mathcal{N}_i(k)} x_j(k) + (1 - \eta_k - \alpha_k) \max_{j \in \mathcal{N}_i(k)} x_j(k)$$

Theorem: Consider a nearest-value graph and an averaging algorithm with $\eta_k \equiv 0$ and $\alpha_k \in (0,1)$.

- (i) If $n \leq 2\mu$, then global finite-time consensus is achieved.
- (ii) If $n>2\mu,$ then no finite-time consensus is achieved for almost all initial conditions.

Finite-time convergence only with sufficiently many neighbors

Shi & J (2012)

Example

$$x_i(k+1) = \alpha \min_{j \in \mathcal{N}_i(k)} x_j(k) + (1-\alpha) \max_{j \in \mathcal{N}_i(k)} x_j(k)$$

n = 128 nodes and $\alpha = 1/2$

Finite-time convergence for only for many neighbors: µ≥64

Shi & J (2012)

State-dependent Event-based Scheduling of Measurement Communications

$$\dot{x}_i(t) = u_i(t)$$

$$u_i(t) = -\sum_{j \in N_i} (\hat{x}_i(t) - \hat{x}_j(t))$$

Event-based broadcasting

$$\hat{x}_i(t) = x_i(t_k^i), \ t \in [t_k^i, t_{k+1}^i]$$
$$0 \le t_0^i \le t_1^i \le t_2^i \le \cdots$$

$$t_{k+1}^i = \inf\{t: \ t > t_k^i, f_i(t) > 0\}$$

$$f_i(t, e_i(t)) = |e_i(t)| - (c_0 + c_1 e^{-\alpha t})$$

 $e_i(t) = \hat{x}_i(t) - x_i(t)$

Practical consensus is achieved if $0<\alpha<\lambda_2(L)$

Seyboth et al. (2011)

Event-based vs Periodic Communication

Graph:

Sampling periods:

- Time-scheduling: $\tau_s = 0.350$ $\tau_{max} = 0.480$
- Event-scheduling: $\tau_{mean} = 1.389$

 au_{max} : largest stabilizing sampling period, see *G. Xie et al., ACC2009*

Seyboth et al. (2011)

Conclusions

- · Controls and communications are coupled in many applications
- Fundamental limits for some control objectives and network protocols
 - Finite-time and asymptotic convergence, gossiping and averaging
- Tradeoffs between communication capacity and control computations

Extensions

- Stochastic dynamics and networks
- PHY, MAC, NET models

http://www.ee.kth.se/~kallej

