

Acknowledgments

Assad Alam Kuo-Yun Liang Per Sahlholm

Jonas Mårtensson Jeff Larson Valerio Turri Bart Besselink Farhad Farokhi Ather Gattami

General Motors vision 75 years ago

Demands from Goods Road Transportation

- Transport sector consumes 1/3 of EU energy
- 45% of all freight transport is on roads
- Road transport accounts for 20% of CO₂ emissions
- Emissions increased by 21% for 1990-2009

Eurostat (2011), EU Transport (2013)

Life cycle cost for European heavy-duty vehicle

24% of long haulage trucks run empty

• 57% average load capacity

Dr. H. Ludanek, CTO, Scania

Schittler, 2003; Scania, 2012

Technology Push

Sensor and commununication technology

Real-time traffic information

Vehicle platooning and semi-autonomous driving

Outline

- Introduction
- Architecture for fuel-optimized goods transport
- Cruise control for vehicle platoons
- Optimized transport planner
- Humans in the loop
- Conclusions

Fuel-Optimized Goods Transport

- Goods transported between cities over highway network
- 2 000 0000 heavy trucks in European Union (400 000 in Germany)
- Large distributed control systems with no real-time coordination today

7

Outline

- Introduction
- Architecture for fuel-optimized goods transport
- Cruise control for vehicle platoons
- Optimized transport planner
- Humans in the loop
- Conclusions

Collaborative Adaptive Cruise Control

- How to jointly minimize fuel consumption for a platoon of vehicles?
 - o Keep small relative distances vs. close to individual optimal trajectories?
 - o Uphill and downhill segments; heavy and light vehicles

Dynamics of vehicle i depend on distance $d_{i-1,i}$ to vehicle i-1:

Alam et al., 2013

Outline

- Introduction
- Architecture for fuel-optimized goods transport
- Cruise control for vehicle platoons
- Optimized transport planner
- Humans in the loop
- Conclusions

When and where to create platoons? Goal: Maximize total amount of platooning with limited intervention in vehicle speed and route Dougland Handrey Number Number Number Number Number 1, 2013

Larson et al., 2013

Position snapshot May 14 2013 7 634 Scania trucks 500 000 km² in Europe Trucks close in time and space (<r m) could adjust speed to platoon and then save 10% fuel during platooning Benefits: r = 0.2 km: 78 trucks platooned, 0.16% savings r = 5 km: 778 trucks platooned, 1.2% savings

Spontaneous vs Coordinated Platooning

Adjust truck departure times

Coordinated departure times enable much more platooning

Liang et al 2014

Outline

- Introduction
- Architecture for fuel-optimized goods transport
- Cruise control for vehicle platoons
- Optimized transport planner
- Humans in the loop
- Conclusions

Conclusions

- · Architecture for goods transportation
 - High-level optimization and scheduling of transport
 - Low-level control and coordination of truck platoons

Open problems

- Global vs local objectives: Who owns the performance metric?
- Local computing vs communication: When do it in the Cloud?
- Safety-critical systems: How guarantee real-time?
- · Large-scale testing and evaluations

http://people.kth.se/~kallej