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Event-Based Multi-Agent System

Goal: Guarantee Control Performance
under Limited Resources
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Event-based Control of Vehicle Platoon

__________________________

-------------------------- Platoon coordinator optimize velocity based
l on road grade, vehicle models, and traffic info

Dynamic program solved every 4 s

Event-based replanning due to changing

R IECIEEC R E TR EXC)  operating conditions

platoon coordinator

vehicle 1 vehicle 2 vehicle 3
controller z1(t) controller x2(t) controller

Vehicle controller tracks platoon velocity
Receding horizon controller with dynamic
safety constraints and update rate 50 ms

Event-based disturbance compensation

Turri et al, 2015
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Optimal Event-Generation and Control

Stochastic Control Formulation

Plant:
X1 = AXg+ Bug +wy
Scheduler:
S
P [ oection maters |
S _ _ _ Decision makers
T = ({00 81 ]
Controller:
C
we = gr(I)

I = [0, (83 ]

Cost criterion: * Non-classical information pattern
¢ Hard to find optimal solutions in general

N—1
_ T T T
J(f,8) = ElxyQoxn + ZZ) (g Qs +ug Qaus)| 8 Special cases lead to tractable problems
=

Cf., Witsenhausen, Hu & Chu, Varaiya & Walrand , Borkar, Mitter & Tatikonda, Rotkowitz etc




Example

Plant
Thy1 = Tp +up +wy, o =2, Bwi = 0.7

Certainty equivalent controller
up® = =K (Blae{yr} 6, {un}o '] + Blwel{ye}s, {ur ks )

0.3

Event-generator encodes state as
1, if z1 € (00, —0)

E(zk) =492, if 2 € (—6,0) 02

3, if z € (6,00)

Cost for time-horizon N =1 i

2

qa 2 |

J(ug) = 02, + qu + + —— | E |27 |20, w cE .
(0) w qug p q 1 [1|0 { Ug U

Rabi et al, 2015

Condition for Certainty Equivalence

Corollary: The optimal controller for the system {?P,S(f),C(g)}, with
respect to the cost ] is certainty equivalent if the scheduling decisions
are not a function of the applied controls.

Certainty equivalence achieved at the cost of optimality

20
Bar-Shalom & Tse, 1974; Ramesh et al., 2011
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Architecture with Certainty Equivalent Controller

Ramesh et al., 2012, 2013
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Distributed Event-Based Control

How to implement event-based

control over a distributed system?

Local control and communication,

but global objective

Approach: Consider a prototype distributed control problem
and study it under event-based communication and control

Average Consensus Problem

Multi-agent system model

m Group of N agents
a(t) = ui(t)

m Communication graph G
A: undirected, connected

Adjacency matrix A with
a;; = 1 if agents ¢ and j adjacent,
otherwise a;; = 0

Degree matrix D is the
diagonal matrix with elements equal to
the cardinality of the neighbor sets N;

Objective: Average consensus
t— o0 1 N
;l?i(t) — a4 = N Zi:l :I?i(O)

06

)

Consensus protocol
ui(t) = =3 jen, (@i(t) — 2;5(t))
Closed-loop dynamics
#(t) = —Lx(t)
with Laplacian matrix L = D — A

Event-based implementation? |  oati-saper & Murray, 2004

17/06/15
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Event-Based Average Consensus

Event-based scheduling of measurement broadcasts:

agent ¢

Event-based broadcasting
B5(t) = zi(t}), t € [th,th 4
0<ti<ti<ti<-...

m Closed-loop

m Disagreement

§(t)=xz(t)—al, 178(t)=0  Seybothetal, 2013

Trigger Function for Event-Based Control

Trigger mechanism: Define trigger functions f;(-) and trigger when

fi [ towa(t).2:(0), | 2500 | >0

JEN;
Defines sequence of events:  t} ,, = inf{t: t >}, f;(t) > 0}

Extends [Tabuada, 2007] single-agent trigger function to multi-agent systems

Find f; such that

o |z;(t) —z;(t)] > 0,t— o0

e 10 Zeno (no accumulation point in time)
e few inter-agent communications

Cf., Dimarogonas et al., De Persis et al., Donkers et al., Mazo & Tabuada,
Wang & Lemmon, Garcia & Antsaklis, Guinaldo et al.
Seyboth et al, 2013
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Event-Based Control with Constant Thresholds
() = u(t), u(t) = —Li(t) (1)
Theorem (constant thresholds)

Consider system (1) with undirected connected graph G. Suppose that
fi(ei(t)) = |ei(t)| — co,

with co > 0. Then, for all zo € RN, the system does not exhibit Zeno
behavior and for t — oo,

An(L) H—0—O®
[6@)]| < m\/ﬁco- 9’

Proof ideas:
m Analytical solution of disagreement dynamics yields

t
15(8)]| < e=2@*5(0)| + An (L) / e DE=) | o(s) | ds
0

m Compute lower bound 7 on the inter-event intervals  Seyboth et al, 2013

Event-Based Control with
Exponentially Decreasing Thresholds
(t) = u(t), u(t) = —Lz(t) (1)
Theorem (exponentially decreasing thresholds)

Consider system (1) with undirected connected graph G. Suppose that

fi(t,ei(t)) = |ei(t)] — cre™,

with ¢; > 0 and 0 < a < Xo(L). Then, for all zo € RN, the system does
not exhibit Zeno behavior and ast — oo,

[6®)I — 0.

Remarks

e Asymptotic convergence: |z;(t) — x;(t)] = 0, t — 0o

e )\y(L) is the rate of convergence for continuous-time consensus,
so threshold need to decrease slower

Seyboth et al, 2013
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Event-Based Control with

Exponentially Decreasing Thresholds and|Offset

(t) = u(t), u(t) = —Li(t) (1)

Theorem (exponentially decreasing thresholds with offset)

Consider system (1) with undirected connected graph G. Suppose that

fi(t, ei(t)) = les(t)] — (co + c1e7),

with cg,c1 > 0, at least one positive, and 0 < o < A\o(L). Then, for all
zo € RY, the system does not exhibit Zeno behavior and for t — oo,

18] < *A%’x/ﬁ

Seyboth et al, 2013

Example

agent 2 agent 1
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Seyboth et al, 2013
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Example: Threshold Tuning

‘ ) @
@(t) = —La(t) .9 OO,
lei(t)] < co + cre™ @)

les(t)] < 0.050 les(t)] < 0.001

events of agent i S
events of agent 7

time ¢

Seyboth et al, 2013

Example: Threshold Tuning

O
i(t) = —Li(t) ’o &—®

lei(t)] < o+ cre™@t @)

les(t)] < 0.001 + 0.249 e~ 0-9A2(L)¢ les(t)] < 0.001

06

events of agent @ I
- N WA O ®

time ¢ time ¢

Seyboth et al, 2013
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events of agent i

lei(t)] < 0.001 + 0.249 ¢=0-9%2(L)t

Example: Threshold Tuning

i(t) = —Li(t)

Pecse

@

lei ()] < 0.250 ¢=0-9%2 (L)t

time ¢

Seyboth et al, 2013

Example: Event- vs Time-Triggered Sampling

sl

samples

events

0.5

time-scheduled
event-scheduled

0 1

I 7

]

3 .

4

3

3

< 0

1 P ¢ o
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time ¢

Graph:
@)

.eee

@

Sampling periods:
m Time-scheduling:
7s = 0.350
Tmaz = 0.480

m Event-scheduling:
Tmean = 1.389

Tmaz - largest stabilizing sampling period, see G. Xie et al., ACC2009

Seyboth et al, 2013
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1 !
time-scheduled
: event-scheduled
SToosl\
50.5 :
0 L 1
5% 5 5
E %- MIIOO
o, O
5 2000000 XX KX HKIHIKXHK XX KX KKXKKNIKNNKXX
g 17 P
Bfocs -2 - o -1 R [
2 Awex-x- - - M- XX K- LMK SR XX X% X
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D 2RX K R X - R SRR XM K-
O {Ex-ox---- R R Horoo-o R RREREEEE
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Example: Event- vs time-triggered sampling

Graph:
O—@—0B@—0—6

Sampling periods:

m Time-scheduling:
7. = 0.400

Tmaz = 0.553

m Event-scheduling:
Tmean = 1.724

Seyboth et al, 2013

Example: Event- vs time-triggered sampling

1 !
time-scheduled
: event-scheduled
s : -
05 SR EEE R LR RRIEREERERE
0
5
2 2
= 3
20 9 o
g 2 ,
g 1 ; X ;
Swoocx % -x-x- Tx x Xl- XX N - I % - - %
12 A 20¢- HXK K X K- - X% KK - - - KK - K- XK - X -
B SO0 M RHI0E - S
gz-xx»x-x-uwv-, ------------ e K - e o
D ] 00000 K- X HHNK 2 <206 - H XHHEOL - - X K X I0CH - 2K - X - K 3¢
0 5 10 15 20
time ¢

Graph:
B
o
@G—3
Sampling periods:

m Time-scheduling:
7s = 0.250
Trmaz = 0.400

m Event-scheduling:
Tmean = 1.053

Seyboth et al, 2013
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Event-Based Formation Control

event-counter

t=0000s | #1

#1 #1

H A b NS 0 = N W

disagreement ||5]|
o (5] 3

5 -4 -3 2 -1 0 1 2 3 0 5 10 15 20
X time t [s]

* Non-holonomic mobile robots under feedback linearization
* Event-based communication based on threshold for double-integrator network

Seyboth et al, 2013

Extensions

* How to estimate A,(L) in a distributed way?,
— Aragues et al., 2014
* How to handle general agent dynamics?
— Guinaldo et al. 2013
* How to handle network delays and packet losses?
— Guinaldo et al., 2014
* Pinning (leader-follower) control and switching networks
— Adaldo et al., 2015
* Event-triggered pulse width modulation
— Meng et al., 2015

* Event-triggered cloud access
— Adaldo et al., 2015

19
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Event-triggered Cloud Access

Agent dynamics with unknown drift disturbance

() =wi(t) +@it), i=1,...,N, @
Agents exchange state, control, disturbance, and \ /
timing data through a shared data base PRI & SN P PSS SN

Schedule next data base access time based on 7
dynamic estimates and event-based triggering fcn

Data base access times

k| ng oY% Bk Ik Isk
0| 000 000 0.00 000 0.00
1| 501 6.21 7.41 8.51 10.11
5
3
4
5

211272 1472 1672 1881 21.31
312332 2582 28.02 3041 3261
413492 3723 39.63 41.92 4422
5] 46.53 4884

Adaldo et al., 2015

QOutline

* Introduction

* Motivating applications

* Optimal event-based control

* Distributed event-based control

* Implementation aspects

¢ Conclusions

17/06/15

20



Event-Based Wireless Pl Control

yv(t) ¢d(t)
PI u(t w_(g Event

controller Flant generator:
Digital communication network
'[Z(tu |
1
u(t) y
P s
controller , T
ml‘(tk) \ ME
Wireless 7”:(tt) ®_ |l :
network Event v B
generator

Event-Based PI Control with Saturation

¢w(t) ¢d( )
PI

u()[ e, ﬁ(tlz =()[ Event
g controller_2 Z_ Plant _29enerator'§
(1) a(t);

: Digital communication network

Lehmann et al., 2012
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Event-Based Pl Control with Saturation

#w(t d(t)

PI z(Y)| Event
™ controller FEL generator|:
(1) (1)

I Digital communication network

» Industrial applications are generally affected by actuator limitations.

1. Does actuator saturation affect event-triggered PI control?
2. Under what conditions can we guarantee stability?
3. How to overcome potential effects of actuator saturation?

0 120
Pl |u(B)] % |Ell =(H[ Event
Exa m p | e .| controllerH { H HELL ’_glgen\;ratorh
fa(t) (1),
a(t) 0.1z(¢) + u(t) + 0.1d(t), z(0)=0
y(t) = =(t)

Exogenous signals:

v

i

v

Actuator saturation:

v

0.4, for w(t) > 0.4;
w(t) =< wu(t), for —0.4<wu(t)<0.4;
—0.4, foru(t) < —0.4;

Pl controller

v

i) = y(t)—w(t), @x(0)=0
u(t) = —ar(t) - L6(y(t) — w(t))

17/06/15
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ia(1)

w(?)

( ) ( 2
Pl ult () Event
s Pt S ponrtr
: ¢ 1.5
: — — S 1
Digital communication network =
=
0

Event generator invokes a sensor
transmission whenever output error
reach a predefined fixed threshold:

Example: Without Saturation

d(t

a(t);

3 TRl

events

Motivating Example

¢w([,) ‘d(l)
Pl [w(B] oy |ult z({)[ Event
controller —/{ _2 Plant 'Igenerator

Uer (1)

17/06/15
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events

Motivating Example

0
PI

#ao

By
1" | controller Uy
H

Plant

=(O["Event |
enerator:

(2=0.2)

[ AT RN

0 10 tins 20 30

I L

Motivating Example

0
PI

*d( t)

Ry
i | controller
i

Plant

=(O["Event |
enerator|:

Need to take saturation and wind-up into account
when designing event-based control systems

0 tin s 30

u(t) (e=0.2) |}
u(t) (¢=0.45)
Uer (1)

li] s
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Mathematical Model

» Plant:
z(t) = Az(t)+ Bu(t)+ Ed(t), x(0)=zg
u(t) = sat(u(t))
uQ, for w;(t) > wuo
sat(ui(t)) = ui(t), for —ug <wu(t) <wg Vie{l,2,..,m}
—up, for ui(t) < —Ug
» Event generator: ||x(t) — x(tx)| =€
» Pl controller:
z1(t) = x(t)—e(t) —w(t), x1(0) =z
u(t) = Kizi(t) + Kp(x(t) —e(t) —w(t))
» State error: e(t) = x(t) — x(tx)
» For the sake of simplicity: w(t) =d(t) =0

w(t)

10
ol . T 8] =()[ Event
Stability Regions  lews] 0 [ il

(1) (1)

: Digital communication network _

e=0 (CT control)

LMI condition to estimate
region of stability

wot

Lehmann et al., 2012

17/06/15
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Simulations

Stable trajectory

¢w( t)

Event }

generator|

fa(1)

I Digital communication network

0
([t a(t (t
>| contpr:)ller|12| X H Plant [~

(1)}

Unstable trajectory

\V

20

Stability region

|
2 -5

Pl
5’ controller

¢d( f)

Plant

x(t

Event

generator(:

(1)

2(t,);

: Digital communication network

17/06/15

26



Anti-Windup for Event-Based Control

I-Windup

¢y(t
Pl

4
" | controller

a(t

x(t

Event |
generator]:

2(t):

' Digital communication network

Cf., anti-windup for conventional control systems [Astrém & Hagglund, 1995]

Stability Regions with Anti-Windup

= [ w = ot

8
=}

Pl

ia(t)

1 1 ] 1 1
(28 — wW V] —
]

ﬁ Uy u
i controller '!I
' HEL

Digital communication network

Anti-windup increases
the region of stability

17/06/15
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System Evolution with Anti-Windup

Pl

i”| controller '
H h

a(t)

! . : N );
1 i ; i i : Digital communication network >
1

: : : ; Anti-windup improves
1 the system response

AW i {
NoAWE || ' [P 11 T
0 2 4time(s)6 8 10

(solid line: no anti windup, dotted line: anti windup)

Event-Based Communication for Anti-Windup

u(t)| v a(t)

=

b(u)

Anti-windup event generated
when actuator saturates (ETAW)

ng #Kﬂ
PI

it (D[~ Event

controller Plant enerator| !
A ]

i : T

. o
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Conclusions
Event-based control of multi-agent systems
Hard to jointly optimize event condition and control law
Certain architectures lead to strong results

Applications in goods transportation, mobile robotics,
and wireless automation

Event-based revisions of classical control architectures:
event-based anti-windup, feedforward, cascade control

http://people.kth.se/~kallej
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