

Event-Based Control of Multi-Agent Systems

Karl H. Johansson

ACCESS Linnaeus Center & School of Electrical Engineering

KTH Royal Institute of Technology, Sweden

IEEE Int'l Conference on Event-based Control, Communication, and Signal Processing Krakow, 17-19 June 2015

Acknowledgements

Presentation based on joint papers with students

Antonio Adaldo, Georg Kiener, Chithrupa Ramesh, Georg Seyboth

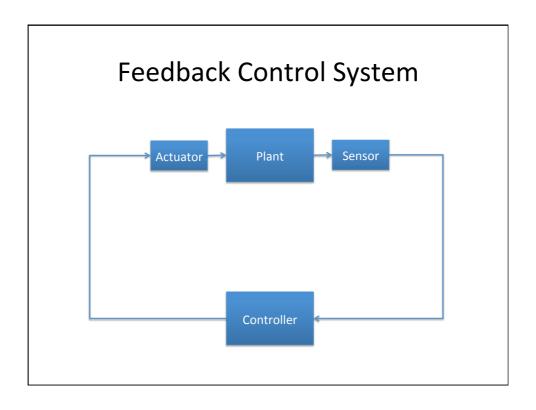
postdocs

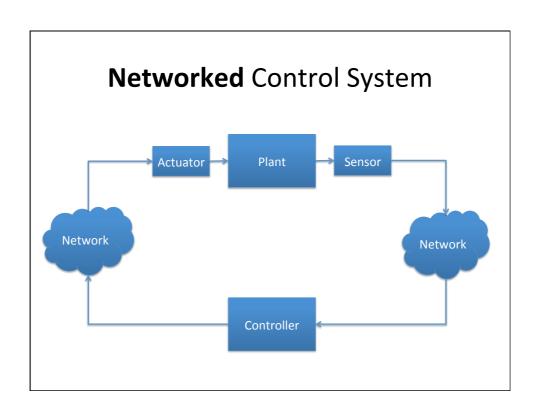
Daniel Lehmann, Davide Liuzza, Maben Rabi and colleagues

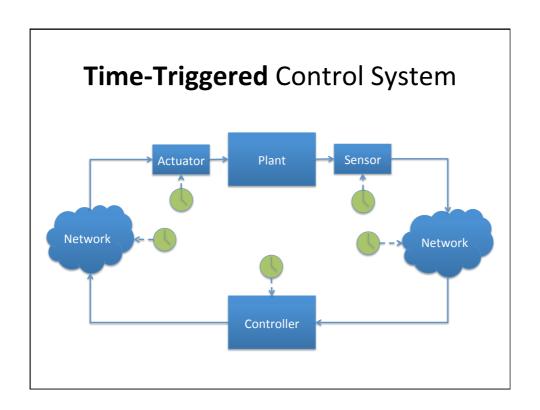
Dimos Dimarogonas, Henrik Sandberg

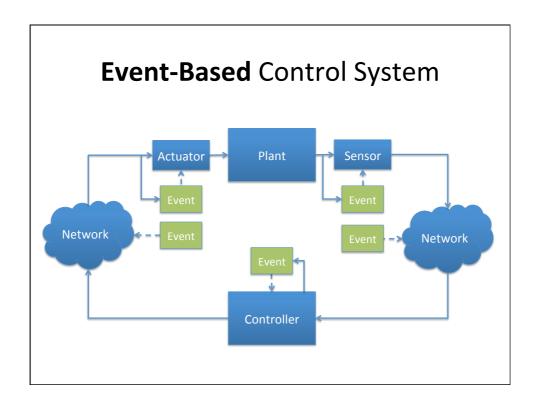
together with collaborations and inspiring discussions with more.

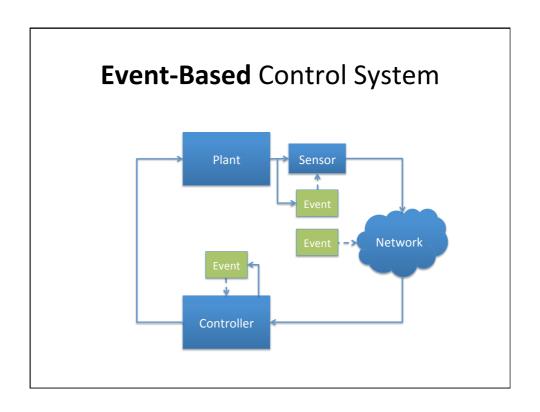
Funding sources:

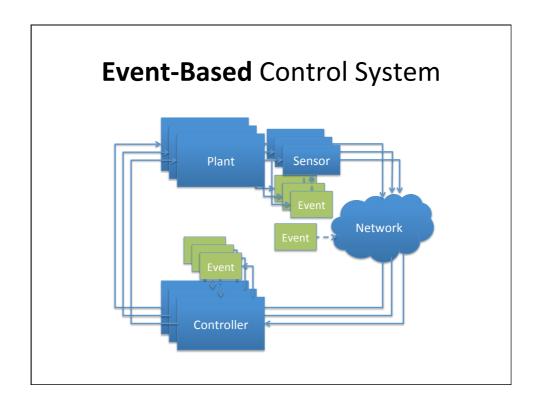


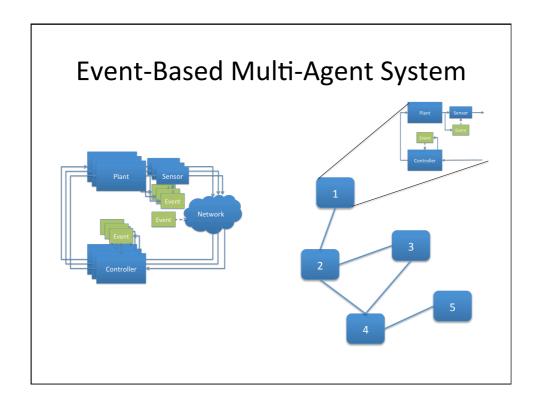




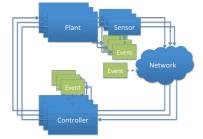








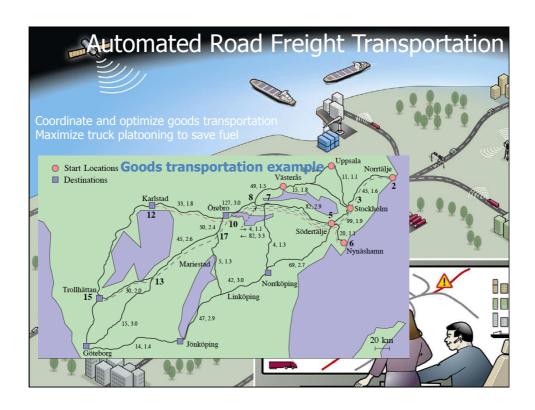
Goal: Guarantee Control Performance under Limited Resources

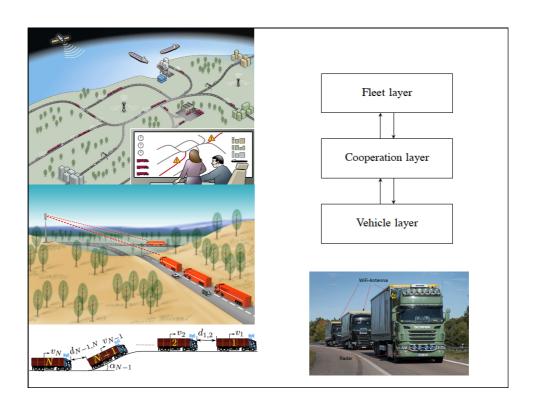


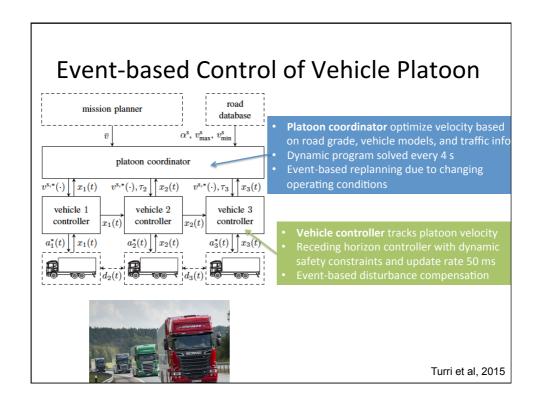
Resources

- Sensing
- Sensor communication
- Network
- Actuation
- (Computing)

- Introduction
- Motivating applications
- Optimal event-based control
- Distributed event-based control
- Implementation aspects
- Conclusions

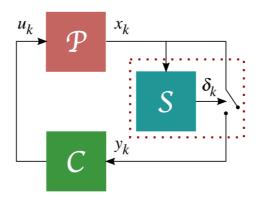






- Introduction
- Motivating applications
- Optimal event-based control
- Distributed event-based control
- · Implementation aspects
- Conclusions

Optimal Event-Generation and Control



Stochastic Control Formulation

$$x_{k+1} = Ax_k + Bu_k + w_k$$

Scheduler:

$$\begin{aligned} & \delta_k = f_k(\mathbb{I}_k^{\mathbb{S}}) \in \{0, 1\} \\ & \mathbb{I}_k^{\mathbb{S}} = \left[\{x\}_0^k, \{y\}_0^{k-1}, \{\delta\}_0^{k-1}, \{u\}_0^{k-1} \right] \end{aligned}$$

Controller:

$$\begin{aligned} u_k &= g_k(\mathbb{I}_k^{\mathbb{C}}) \\ \mathbb{I}_k^{\mathbb{C}} &= \left[\{y\}_0^k, \{\delta\}_0^k, \{u\}_0^{k-1} \right] \end{aligned}$$

Decision makers

Cost criterion:

ost criterion:

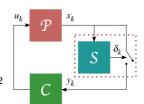
$$J(f,g) = \mathrm{E}[x_N^T Q_0 x_N + \sum_{s=0}^{N-1} (x_s^T Q_1 x_s + u_s^T Q_2 u_s)]$$
• Non-classical information pattern
• Hard to find optimal solutions in general
• Special cases lead to tractable problems

Cf., Witsenhausen, Hu & Chu, Varaiya & Walrand, Borkar, Mitter & Tatikonda, Rotkowitz etc

Example

Plant

$$x_{k+1} = x_k + u_k + w_k, \quad x_0 = 2, Ew_k^2 = 0.7^2$$



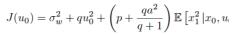
Certainty equivalent controller

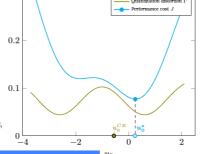
$$u_k^{\text{CE}} = -K_k^{\text{CE}} \left(E[x_k | \{y_k\}_0^k, \{u_k\}_0^{k-1}] + E[w_k | \{y_k\}_0^k, \{u_k\}_0^{k-1}] \right)$$

Event-generator encodes state as 0.3

$$\xi(x_k) = \begin{cases} 1, & \text{if } x_k \in (\infty, -\theta) \\ 2, & \text{if } x_k \in (-\theta, \theta) \\ 3, & \text{if } x_k \in (\theta, \infty) \end{cases}$$

 \mathbf{Cost} for time-horizon N=1



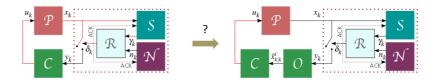


Optimal performance is not obtained by a certainty equivalent controller

Rabi et al, 2015

Condition for Certainty Equivalence

Corollary: The optimal controller for the system $\{\mathcal{P}, S(f), \mathcal{C}(g)\}$, with respect to the cost J is certainty equivalent if the scheduling decisions are not a function of the applied controls.

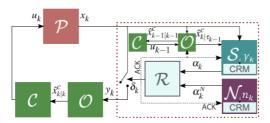


Certainty equivalence achieved at the cost of optimality

Bar-Shalom & Tse, 1974; Ramesh et al., 2011

20

Architecture with Certainty Equivalent Controller

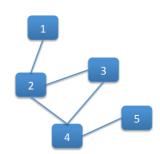


Ramesh et al., 2012, 2013

- Introduction
- Motivating applications
- Optimal event-based control
- Distributed event-based control
- Implementation aspects
- Conclusions

Distributed Event-Based Control

- How to implement event-based control over a distributed system?
- Local control and communication, but global objective



Approach: Consider a prototype distributed control problem and study it under event-based communication and control

Average Consensus Problem

Multi-agent system model

lacksquare Group of N agents

$$\dot{x}_i(t) = u_i(t)$$

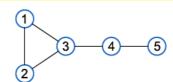
Communication graph G
 A: undirected, connected

Adjacency matrix A with $a_{ij} = 1$ if agents i and j adjacent, otherwise $a_{ij} = 0$

Degree matrix D is the diagonal matrix with elements equal to the cardinality of the neighbor sets N_i

Objective: Average consensus

$$x_i(t) \stackrel{t \to \infty}{\longrightarrow} a = \frac{1}{N} \sum_{i=1}^{N} x_i(0)$$



Consensus protocol

$$u_i(t) = -\sum_{j \in N_i} (x_i(t) - x_j(t))$$

Closed-loop dynamics

$$\dot{x}(t) = -Lx(t)$$

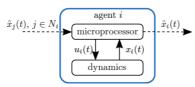
with Laplacian matrix $oldsymbol{L} = D - A$

Event-based implementation?

Olfati-Saber & Murray, 2004

Event-Based Average Consensus

Event-based scheduling of measurement broadcasts:



Event-based broadcasting

$$\hat{x}_i(t) = x_i(t_k^i), \ t \in [t_k^i, t_{k+1}^i]$$
$$0 \le t_0^i \le t_1^i \le t_2^i \le \cdots$$

Consensus protocol

$$u_i(t) = -\sum_{j \in N_i} (\hat{x}_i(t) - \hat{x}_j(t))$$

Measurement errors

$$e_i(t) = \hat{x}_i(t) - x_i(t)$$

Closed-loop

$$\dot{x}(t) = -L\hat{x}(t) = -L(x(t) + e(t))$$

Disagreement

$$\delta(t) = x(t) - a\mathbf{1}, \qquad \mathbf{1}^T \delta(t) \equiv 0$$
 Seyboth et al, 2013

Trigger Function for Event-Based Control

Trigger mechanism: Define trigger functions $f_i(\cdot)$ and trigger when

$$f_i\left(t, x_i(t), \hat{x}_i(t), \bigcup_{j \in N_i} \hat{x}_j(t)\right) > 0$$

Defines sequence of events: $t_{k+1}^i = \inf\{t: \, t > t_k^i, f_i(t) > 0\}$

Extends [Tabuada, 2007] single-agent trigger function to multi-agent systems

Find f_i such that

- $|x_i(t) x_j(t)| \to 0, t \to \infty$
- no Zeno (no accumulation point in time)
- few inter-agent communications

Cf., Dimarogonas et al., De Persis et al., Donkers et al., Mazo & Tabuada, Wang & Lemmon, Garcia & Antsaklis, Guinaldo et al.

Seyboth et al, 2013

Event-Based Control with Constant Thresholds

$$\dot{x}(t) = u(t), \qquad u(t) = -L\hat{x}(t)$$

Theorem (constant thresholds)

Consider system (1) with undirected connected graph G. Suppose that

$$f_i(e_i(t)) = |e_i(t)| - c_0,$$

with $c_0 > 0$. Then, for all $x_0 \in \mathbb{R}^N$, the system does not exhibit Zeno behavior and for $t \to \infty$.

$$\|\delta(t)\| \le \frac{\lambda_N(L)}{\lambda_2(L)} \sqrt{N} c_0.$$

Proof ideas:

Analytical solution of disagreement dynamics yields

$$\|\delta(t)\| \le e^{-\lambda_2(L)t} \|\delta(0)\| + \lambda_N(L) \int_0^t e^{-\lambda_2(L)(t-s)} \|e(s)\| ds$$

lacktriangle Compute lower bound au on the inter-event intervals Seyboth et al, 2013

Event-Based Control with Exponentially Decreasing Thresholds

$$\dot{x}(t) = u(t), \qquad u(t) = -L\hat{x}(t) \tag{1}$$

Theorem (exponentially decreasing thresholds)

Consider system (1) with undirected connected graph G. Suppose that

$$f_i(t, e_i(t)) = |e_i(t)| - c_1 e^{-\alpha t},$$

with $c_1 > 0$ and $0 < \alpha < \lambda_2(L)$. Then, for all $x_0 \in \mathbb{R}^N$, the system does not exhibit Zeno behavior and as $t \to \infty$,

$$\|\delta(t)\| \to 0.$$

Remarks

- Asymptotic convergence: $|x_i(t) x_j(t)| \to 0, t \to \infty$
- $\lambda_2(L)$ is the rate of convergence for continuous-time consensus, so threshold need to decrease slower

Seyboth et al, 2013

(1)

Event-Based Control with Exponentially Decreasing Thresholds and Offset

$$\dot{x}(t) = u(t), \qquad u(t) = -L\hat{x}(t) \tag{1}$$

Theorem (exponentially decreasing thresholds with offset)

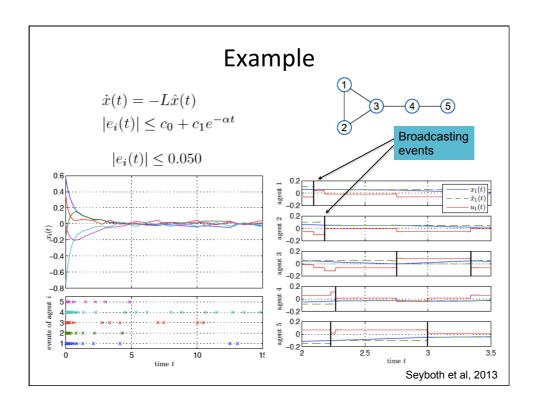
Consider system (1) with undirected connected graph G. Suppose that

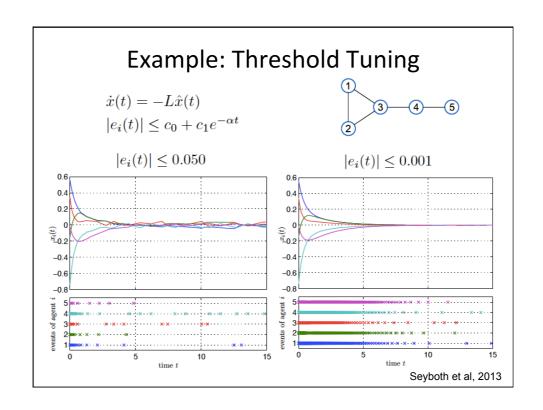
$$f_i(t, e_i(t)) = |e_i(t)| - (c_0 + c_1 e^{-\alpha t}),$$

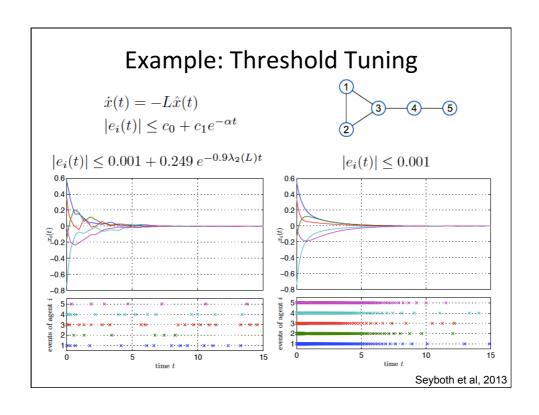
with $c_0, c_1 \geq 0$, at least one positive, and $0 < \alpha < \lambda_2(L)$. Then, for all $x_0 \in \mathbb{R}^N$, the system does not exhibit Zeno behavior and for $t \to \infty$,

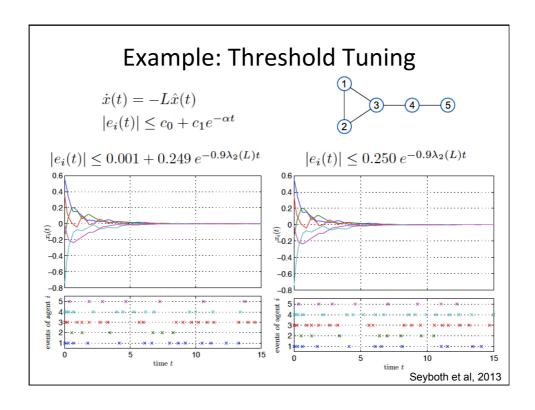
$$\|\delta(t)\| \le \frac{\lambda_N(L)}{\lambda_2(L)} \sqrt{N} c_0.$$

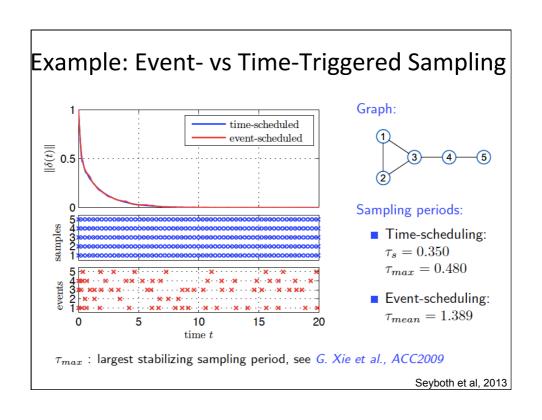
Seyboth et al, 2013

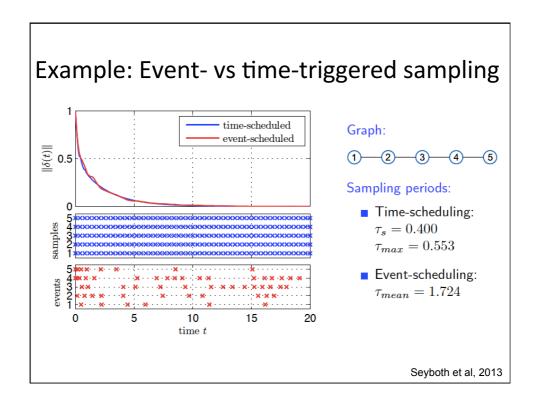


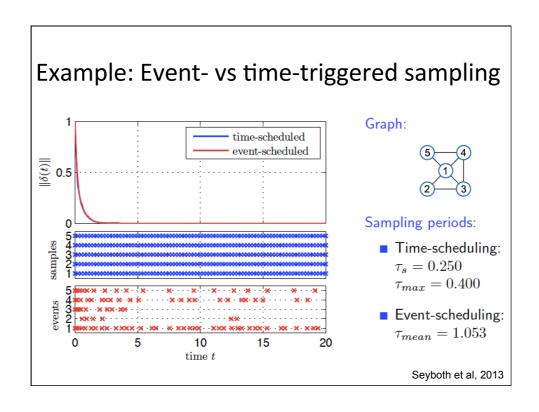




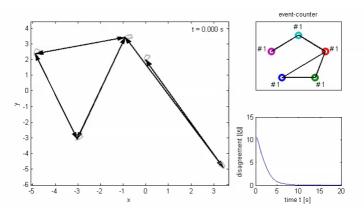








Event-Based Formation Control



- Non-holonomic mobile robots under feedback linearization
- · Event-based communication based on threshold for double-integrator network

Seyboth et al, 2013

Extensions

- How to estimate $\lambda_2(L)$ in a distributed way?
 - Aragues et al., 2014
- How to handle **general** agent **dynamics**?
 - Guinaldo et al. 2013

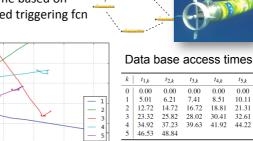
- · How to handle network delays and packet losses?
 - Guinaldo et al., 2014
- Pinning (leader-follower) control and switching networks
 - Adaldo et al., 2015
- Event-triggered pulse width modulation
 - Meng et al., 2015
- Event-triggered cloud access
 - Adaldo et al., 2015

Event-triggered Cloud Access

· Agent dynamics with unknown drift disturbance

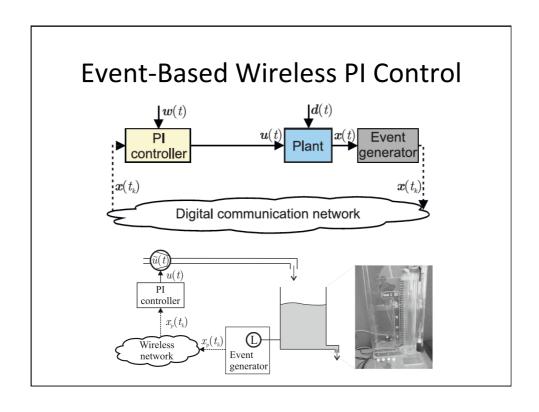
$$\dot{x}_i(t) = u_i(t) + \omega_i(t), \quad i = 1, \dots, N,$$

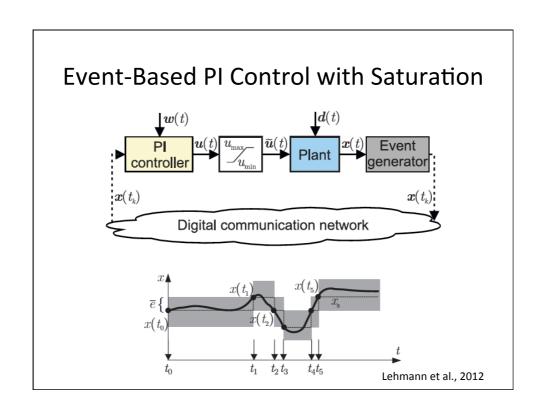
- Agents exchange state, control, disturbance, and timing data through a shared data base
- Schedule next data base access time based on dynamic estimates and event-based triggering fcn



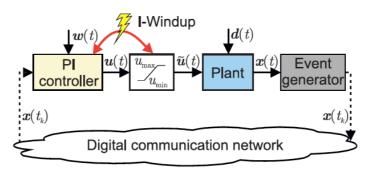
Adaldo et al., 2015

- Introduction
- Motivating applications
- Optimal event-based control
- Distributed event-based control
- Implementation aspects
- Conclusions



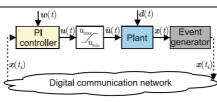


Event-Based PI Control with Saturation



- Industrial applications are generally affected by actuator limitations.
 - 1. Does actuator saturation affect event-triggered PI control?
 - 2. Under what conditions can we guarantee stability?
 - 3. How to overcome potential effects of actuator saturation?

Example



► Plant:

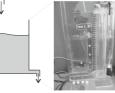
$$\dot{x}(t) = 0.1x(t) + \tilde{u}(t) + 0.1d(t), \quad x(0) = 0$$

$$y(t) = x(t)$$

Exogenous signals:

$$w(t) = \bar{w} = 1.5$$

$$d(t) = \bar{d} = 0.1$$



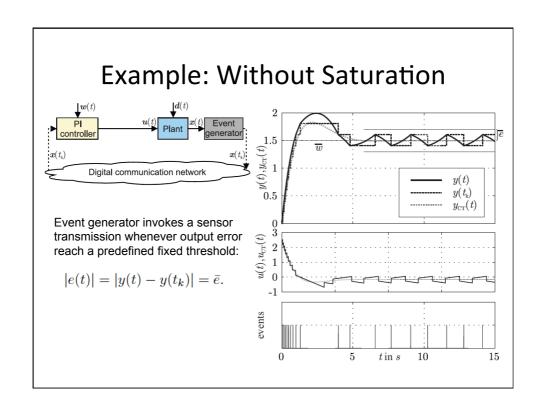
Actuator saturation:

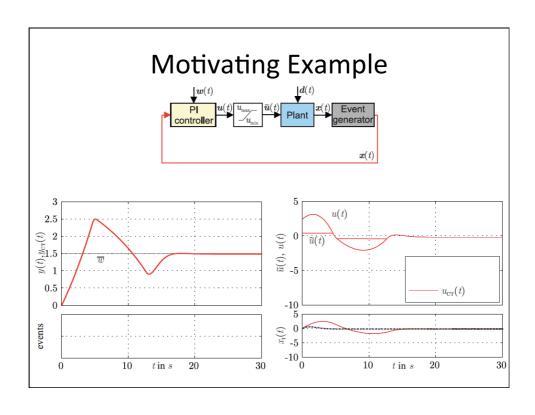
$$\tilde{u}(t) = \left\{ \begin{array}{ll} 0.4, & \text{for } u(t) > 0.4; \\ u(t), & \text{for } -0.4 \leq u(t) \leq 0.4 \\ -0.4, & \text{for } u(t) < -0.4; \end{array} \right.$$

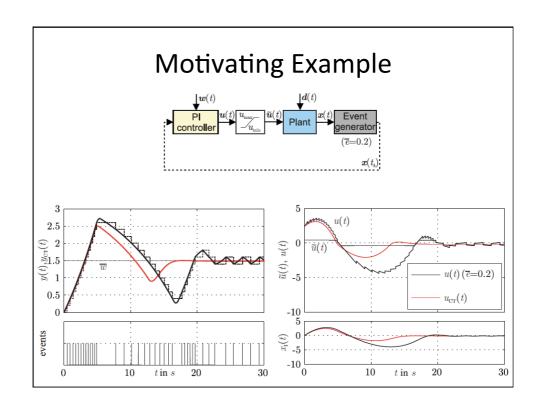
► PI controller

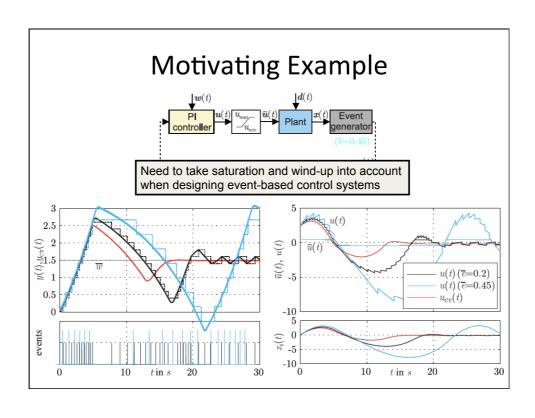
$$\dot{x}_{\rm I}(t) = y(t) - w(t), \quad x_{\rm I}(0) = 0$$

 $u(t) = -x_{\rm I}(t) - 1.6(y(t) - w(t))$









Mathematical Model

► Plant:

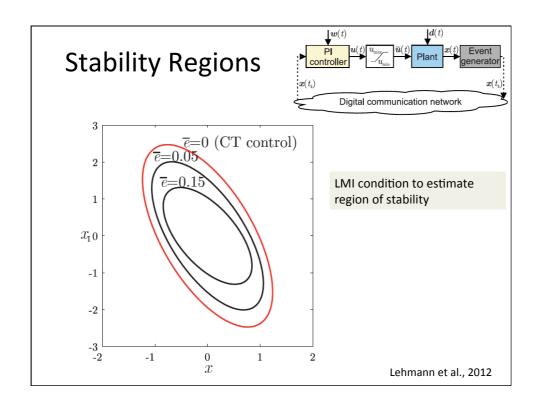
$$\begin{split} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\tilde{\boldsymbol{u}}(t) + \boldsymbol{E}\boldsymbol{d}(t), \quad \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ \tilde{\boldsymbol{u}}(t) &= \operatorname{sat}(\boldsymbol{u}(t)) \\ \operatorname{sat}(u_i(t)) &= \begin{cases} u_0, & \text{for } u_i(t) > u_0 \\ u_i(t), & \text{for } -u_0 \leq u(t) \leq u_0 \quad \forall i \in \{1, 2, ..., m\} \\ -u_0, & \text{for } u_i(t) < -u_0 \end{cases} \end{split}$$

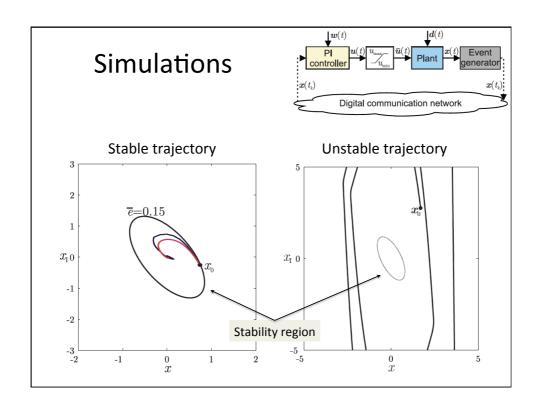
- ▶ Event generator: $\| {m x}(t) {m x}(t_k) \| = \bar e$
- PI controller:

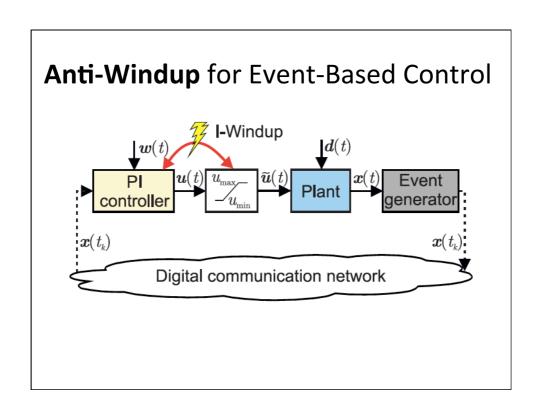
$$\dot{x}_{\mathrm{I}}(t) = x(t) - e(t) - w(t), \quad x_{\mathrm{I}}(0) = x_0$$

$$u(t) = K_{\mathrm{I}}x_{\mathrm{I}}(t) + K_{\mathrm{P}}(x(t) - e(t) - w(t))$$

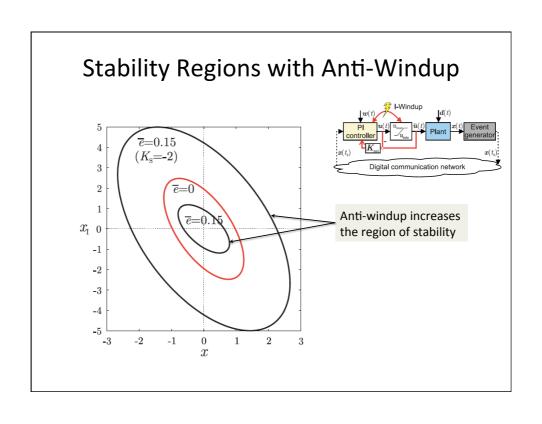
- ▶ State error: $e(t) = x(t) x(t_k)$
- For the sake of simplicity: w(t) = d(t) = 0

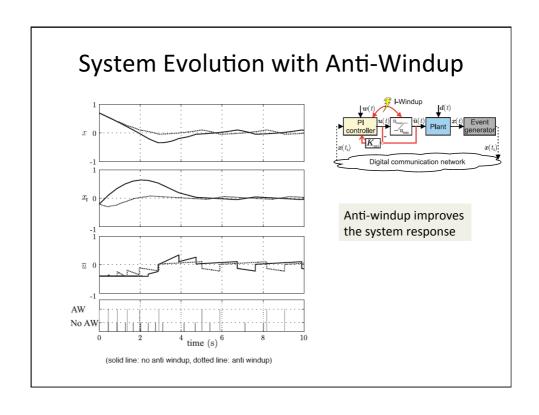


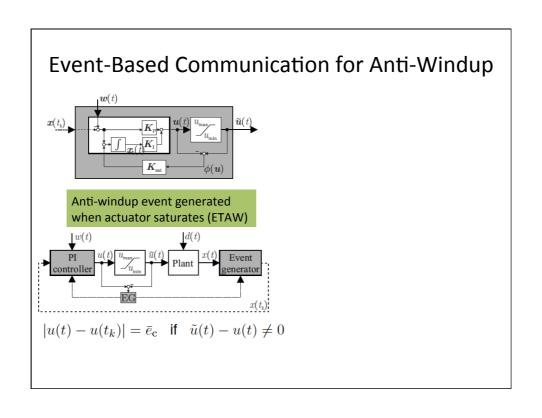




Anti-Windup for Event-Based Control I-Windup u(t) u(t







Outline

- Introduction
- Motivating applications
- Optimal event-based control
- Distributed event-based control
- Implementation aspects
- Conclusions

Conclusions

- Event-based control of multi-agent systems
- Hard to jointly optimize event condition and control law
- Certain architectures lead to strong results
- Applications in goods transportation, mobile robotics, and wireless automation
- Event-based revisions of classical control architectures: event-based anti-windup, feedforward, cascade control

http://people.kth.se/~kallej