

General Motors vision 76 years ago

Outline

- Societal need and enabling technology
- Cyber-physical systems
- Scientific challenges
- Cyber-physical transportation systems
- Conclusions

From Information to Action Networks

- Internet
- WWW
- Ubiquitous computing

The Internet

- Remote sensing
- Monitoring environments
- Wireless sensor networks

Sensor Web

Monitoring storm petrels at Great Duck Island

- Closing the loop
- Critical infrastructures
- Humans in the loop

Action Web

Renewables integrated into energy grid

Potential Savings with Smarter Systems

Transportation systems, buildings, and industry pollute and waste energy

Need for more and better sensing, monitoring, processing, optimization, and control

Smarter use of **information and communication technology** has great potentials: Savings in billion tonnes CO₂ equivalent (GtCO₂e)

- Predicted savings of up to 15% by 2020 (1990 levels)
- Emission reductions 5x the ICT sector's own footprint
- Transportation can save 2.2 GtCO₂e

SMART 2020: Enabling the low carbon economy in the information age, The Climate Group, Report, 2008

How to improve resource efficiency?

Outline

- Societal need and enabling technology
- Cyber-physical systems
- Scientific challenges
- Cyber-physical transportation systems
- Conclusions

Cyber-physical systems are engineered systems whose operations are <u>monitored and controlled</u> by a <u>computing and communication</u> core <u>embedded</u> in objects and structures in the physical environment.

US National Science Foundation

Cyber-physical systems challenges

Societal Scale

- Global and dense instrumentation of physical phenomena
- Interacting with a computational environment: closing the loop
- Security, privacy, usability

Distributed Services

- Self-configuring, self-optimization
- Reliable performance despite uncertain components, resilient aggregation

Programming the Ensemble

- Local rules with guaranteed global behavior
- Distributing control with limited information

Network Architectures

- Heterogeneous systems: local sensor/actuator networks and wide-area networks
- · Self-organizing multi-hop, resilient, energy-efficient routing
- Limited storage, noisy channels

Real-Time Operating Systems

- Extensive resource-constrained concurrency
- Modularity and data-driven physics-based modeling

1000 Radios per Person

- Low-power processors, radio communication, encryption
- Coordinated resource management, spectrum efficiency

Sastry & J, 2010

Outline

- Societal need and enabling technology
- Cyber-physical systems
- Scientific challenges
- Cyber-physical transportation systems
- Conclusions

Outline

- · Societal need and enabling technology
- Cyber-physical systems
- Scientific challenges
- Cyber-physical transportation systems
 - Architecture
 - Cooperative driving
 - Optimized transport planner
- Conclusions

Fuel-efficient and Safe Vehicle Platooning • Jointly minimize fuel consumption for a platoon of vehicles Keep small relative distances under strict safety constraints Platoon coordinator road mission planner database Non-linear HDVs model Constraints on state and input platoon coordinator Constraint on avarage speed Same speed profile for all HDVs $v^{s,*}(\cdot) \upharpoonright x_1(t)$ $\hat{x}_2(t)$ $v^{s,*}(\cdot), \tau_3 \upharpoonright x_3(t)$ reference speed profile, gap policy vehicle 2 vehicle 1 vehicle 3 controller controller controller Vehicle i controller Deviation from reference profile $a_1^*(t)$ $x_1(t)$ Linear HDV model Constraints on state and input Safety constraint Soft constraint on braking Turri et al., 2015

Position snapshot May 14 2013 Feasibility Study Based on Real Truck Data Position snapshot May 14 2013 Trajectories of 14 trucks Trajectories of 14 trucks **None of the position sampled every 10 min Trajectories of 14 trucks **Trajectories of 14 trucks **Trucks close in time and space (<r m) could adjust speed to platoon and then save 10% fuel during platooning **Larson et al., 2013

Outline

- Societal need and enabling technology
- Cyber-physical systems
- Scientific challenges
- Cyber-physical transportation systems
- Conclusions

Conclusions

- · Cyber-physical systems to tackle grand societal challenges
 - Real-time control of infrastructure resources
- Optimized cooperative driving for goods transportation
 - High-level optimization and scheduling of transport
 - Low-level control and coordination of truck platoons
- Open problems
 - Global vs local objectives: Who owns the performance metric?
 - Local computing vs communication: When do it in the Cloud?
- Large-scale testing and evaluations

http://people.kth.se/~kallej

Acknowledgments

Assad Alam Kuo-Yun Liang Per Sahlholm

Jonas Mårtensson Bart Besselink Valerio Turri Sebastian van de Hoef Farhad Farokhi Jeff Larson Håkan Terelius Ather Gattami Moul of Mila

Collaborative Cruise Control

- · How to jointly minimize fuel consumption for a platoon of vehicles?
 - o Keep small relative distances vs. close to individual optimal trajectories?
 - o Uphill and downhill segments; heavy and light vehicles

Dynamics of vehicle i depend on distance $d_{i-1,i}$ to vehicle i-1:

Alam et al., 2013

Cyber-Physical Security

Need analysis and design tools to understand and mitigate attacks

- Which threats should we care about?
- Which resources are more important to protect?
- What impact can we expect of an attack?
- How to create resilient systems?

Cross-disciplinary research agenda

- IT security (authentication, encryption, firewalls, etc.) is needed, but not sufficient
- Malicious actions can enter in the control loop, even if channels are secure

Grand societal challenges

- Impact on future infrastructure systems where everything is connected
- Systems need to be trusted by the general public

