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Course Outline

Jul 20: What is a cyber-physical system?
Jul 20: Event-based control of networked systems
Jul 22: Cyber-secure networked control systems

Aug 3: Distributed control of multi-agent systems

Aug 7, 11:30am, IAS Lecture Theater: IAS Lecture
“Cyber-physical systems: why connecting the
physical world?”
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Distributed control of multi-agent systems

Outline

Introduction
Distributed control: local model information
Distributed control: local interactions

Conclusions
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Outline

Introduction

Distributed control: local model information
— Why cannot we assume global model information?
— How robust can networked controllers be?

Distributed control: local interactions
— How much network interaction is needed?
— How fast convergence is possible?

Conclusions
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Multi-Layer Dynamic Network Models
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Collaborating drivers

Operator supervision

Traffic flow optimization

Autonomous vehicle platoons

Wireless communication infrastructure

Vehicle-to-vehicle information flows




Research Challenges

How deal with incomplete global knowledge of plant model?

How robust can networked controllers be to such uncertainties?
How much local interaction is needed to propagate information?
Tradeoff between convergence speed and number of neighbors?
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Example

r1(k+1) = anxi(k) + arawa (k) + vy (k) e 2 2
l‘2(l€ + 1) = aglml(k) + CLQQ.’L‘Q(]{?) + ’LLQ(IC) J B ; ||$(]{3)|| - ||U(k)”

Keep J small, when

Controller 1 knows only a1 and ajs

Controller 2 knows only as; and age
ur(k) = —anzy (k) — a1222(k) achieves J < 2J*
Ug(k) = 7&21501(]{?) — a221'2(k') o

No limited plant model information strategy can do better.

Langbort & Delvenne, 2011

Why Limited Plant Model Information?
Complexity MS control

. . . . 2 an =
Controllers are easier to implement and maintain "4 g =

. . . . g‘.,_v‘)?'ﬂﬂ/"'. ‘{:#-Ev_?ﬁ“.l.;ﬂ 5
if they mainly depend on local model information gﬁ,,ﬁl\,“){,Mg A

g S e
& e ' S90S =

¥ o L R

| The model of other subsystems is not
available at the time of design

Privacy

Competitive advantages not to share
private model information
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Networked Control System

Plant Graph
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Networked Control System

Gy G

Plant Graph Control Graph

Networked Control System

Gp (% Ge
Plant Graph Control Graph Design Graph
] 1 J
Physical Constraints Model Information Limitations




Plant Graph

x;(k+1) = Ayx; (k) + Z A;jxi(k) + Byu; (k)
=

. — n
Plant: P = (4,B,xy) E4XBX R x; € R" and u; € RM

Plant Graph

x;(k +1) = Ayx; (k) + zAijxj(k) + By, (k)
T

. — n
Plant: P = (4,B,x,) E#XBX R x; € R and u; € R%

A={A€RV"4;; = 0 € R""forall1 <i,j < qsuchthat(sp);; = 0}

Gp
( E 2 1 1 0 A1 A1z Op xn,
Sp = [0 1 1] A= Onzxn1 A22 A23
0 1 1 0n3><n1 A32 A33
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Plant Graph

x;(k +1) = Ayx; (k) + ZAijxj(k) + Bjui(k)
=

. = n . .
Plant: P = (4,B,xy) € #X 8X R x; € R" and u; € R

A={A€ERY"A4; = 0€R""foralll<ij < qsuchthat(sp);; = 0}

Gp
% 7 1 1 0 A1 A1z 0111X113
Sp = [0 1 1] A= Onzxn1 A22 A23
0 11 Ongxn, Aszz  Asz

8={BER™"|g(B)=2¢B;;=0€ R forall1 <i#j<q}

Bll Onlxnz 0n1x113
B = 0n2><n1 BZZ Onz><n3
0n3><n1 0113Xn2 B33
2 p
ey P PN
\

Control Graph i)

u(k) = Kx(k)

Z={ K € R™"|K;; = 0 € R""" forall 1 <i,j < q such that (sg);; = 0}

Gy
Q/@ 1 0 O Kll Onlxnz 0711 XNg
Sx=11 1 0 K=| Kx K3, 0, xn,

0nyxny K3 K33

03/08/15
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The map [Ii1

K =T(P) =T(4,B)

Tiq] is only a function of {[4;1 441, Bj;| (s¢)ij # 0}

The map [Iix

[F31 F32

K =T(P) =T(4,B)

Tiq] is only a function of {[4;1 + Aj], Bj;| (s¢)ij # 0}

GC
Q [100]
Se=lo 1 1
01 1

I[33] is a function of {[A21 Az  Az3], By, [A31 A3z Ass], Bss}

03/08/15
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Climate Control Example

.,l , @—?—T—@—?—g
1.?][—)5_2_ Plant Graph: I I
_u_,_;m_._

8 9 10 1 @

”“L]E} Design Gra h-Q Q Q Q Q Q
= T @@ @

Performance Metric

The competitive ratio of a control design method T is defined as

Jp(T(4, B))
Pre? T (k" (P))

rp(F) = su

13



Performance Metric

The competitive ratio of a control design method T is defined as
rp(l“) = SUpPpep M
Jp(K*(P))
A control design method I’ is said to dominate another control design method T if
Jp(I'(4,B)) < Jp(T(4,B)),  forall P = (A4,B,x0) €P
with strict inequality holding for at least one plant.

When no such I exists, we say that I is undominated.

Performance Metric

The competitive ratio of a control design method T is defined as

Jp(T'(4,B))

0 = SPrep T kP

A control design method I is said to dominate another control design method T if
Jp(T'(4,B)) < Jp(T(4,B)),  forall P = (4,B,x0) €P
with strict inequality holding for at least one plant.

When no such I’ exists, we say that I' is undominated.

J(K) = ) x ()T Qx(k) + ) u(i)" Ru(k)
k=1 k=0
Q and R are block-diagonal positive definite matrices.

03/08/15
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Performance Metric

The competitive ratio of a control design method T is defined as

Jp(T'(4,B))

rp[[‘) = SUpPpep m

A control design method I’ is said to dominate another control design method T if
Jp(T'(4,B)) < Jp(T(4,B)),  forall P =(4,B,xp) € P
with strict inequality holding for at least one plant.

When no such I exists, we say that I' is undominated.

Jp(K) = Z x(K)TQx (k) + Z u(k)TRu(k)
k=1 k=0
Q and R are block-diagonal positive definite matrices.

Remark: When Gy is a complete graph

K*(P) = —(R +BTXB ) 1BTXxA
ATXA — ATXB(R+BTXB)™'BTXA —X+0=0

Assumptions

* All subsystems are fully actuated:
B e R and g(B) =€ > 0.

Gp
* Gp contains no isolated node. Ci ?
Ge
* G, contains all self-loops. Q §

e To simplify the presentation, fixe=1and Q =R =1.

03/08/15

15



Problem Formulation

Find the best control design strategy with limited model information:

min (")
€

re@
of ap e

Characterize the influence from
- Plant structure (G)
- Controller communication (Gg)
- Model limitation (G.)

Farokhi et al., 2013

Deadbeat Control Design

r*(A4,B)=-B"'4A

Subcontroller i depends only on subsystem i's model:
[F34,B) - TH(AB)]|=-B

1[‘,4!,1 e Al

ii

z(k + 1) = Az(k) + Bu(k) ; z(0) = o,

03/08/15

16



Deadbeat Control Design

Lemma: k26, = n(r?) =2

¥ o«

Farokhi et al., 2013

Deadbeat Control Design

Lemma: Gx26G = (%) =2

8§ o«

* Gk 2 Gp means Eg 2 Ep, so more controller communications than plant

interactions

Farokhi et al., 2013

03/08/15
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Deadbeat Control Design

Lemma: 626, = 15(r*) =2

d‘@

* Gg 2 Gp means Egx 2 Ep

Gy

* Jp(T2(4,B)) < 2Jp(K*(P)), so deadbeat never worse than twice the optimal
controller

Farokhi et al., 2013

Deadbeat Control Design

Lemma: Gx26G = (%) =2

d@

* Gg 2 Gp means Egx 2 Ep

Gy

* Jp(T2(4,B)) = 2Jp(K*(P))

If enough controller communication, then a simple (deadbeat)
controller is quiet good

Farokhi et al., 2013

03/08/15
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Proof sketch of Deadbeat Lemma (1/2)

Show that
]p(l"A(A,B))<2
Je(K*(P)) —
Note
Jp(T2(4,B)) _ ,Jp(T*(4,B))

]P (K*(P)) ]P (K:;entralized(P))

Jp(T2(A,B)) = xTATB"TB ™ Ax,
Jp (Kéentratizea(P)) = x3 (X — Do, =ATXA—ATXB(I + BTXB) 'BTXA+1

aB)=e=1 = [ Jp(T2(4B)) < xFATAx,
1 1
oB)ze=1 = X2oAA+] = | Jo(Kamd ) 2 5 75ATAT,)

Proof sketch of Deadbeat Lemma (2/2)

Show that upper bound of J,(T'2(4, B))/J»(K*(P)) is achieved
No isolated node in G, = 3i,j:i# jand (sp);; # 0
Fix i, € I; and j, € I; and consider P = (e;,e],1,¢;,)

]P (Kt;ntralized(P)) S]P(K’(P))
K:entra]ized(P) = _%eileji

GK = GP = K:entralized(P) ex
]P(K:éntralized(P)) ZIP(K*(P))
Jp(T2(4,B)) _ 9

]P(K:entralized(P)) =]P(Kk(P)) =% = Jp(K*(P)) -

03/08/15
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Plant Graphs with no Sinks

Gp Gy Ge
% (@ o ¢
Gp has no sink

Theorem: Gy 2 Gp = Dz r;,,(l"A) VIree
Gc is fully disconnected

When G, has no sink, there is no control design strategy I' with a better
competitive ratio rp(I) = suppep Jp(T(4,B))/Jp(K*(P)) than deadbeat I'*

Farokhi et al., 2013

Plant Graphs with no Sinks

Gp Gy G
Pc@ (ﬁ) o ¢
Gp has no sink

Theorem: Gg 2 Gp = D2 rp(l"A) VIeEg
Gc is fully disconnected

Gg 2 Gp } -

- A -
Ge is fully disconnected Gp has no sink < T2 is undominated

When G, has no sink, there is no control design strategy T that is always
better than deadbeat 2 for all P.

Farokhi et al., 2013

03/08/15
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Modified Deadbeat Control Design

When G, has ¢ = 1 sinks, let its adjacency matrix be

(SP)ll O(q—c)xq
(Sp)ar (Sp)22
Introduce the modified deadbeat control design strategy:

Sp:

2@ B I2(A,B)] —Bi'[Ain - Aig] i is not a sink
i1(4, iq\“4 - _(I+Bg£XiiBii)_13i7i‘Xii[Ai1 o Al i is a sink

-1
AL XAy — ATXyBy (I + BEXyBy) BiXuAy — Xy +1=0

2 (Sp)11 %0

Lemma: 2 2(r°) =
Gg 2 Gp = 7p(r ) {1 (Sp)11 = 0and (Sp),>, =0

Farokhi et al., 2013

Plant Graphs with Sinks

Gp Gy Gc
@@9 Qgg @ &
(Sp)1; is nondiagonal

Theorem: Gx 2 Gp = 1) 2 rp(l"e) VIEE
Gc is fully disconnected

* (Sp)1; nondiagonal means that the subgraph from removing sinks has at least

one edge between two nodes w 5)

[ When G, has at least one sink, there is no control design strategy I' with a

better competitive ratio than modified deadbeat I'®

J

Farokhi et al., 2013

03/08/15
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Plant Graphs with Sinks

Gp Gy Ge
Gv/@') % @ ¢
(Sp)11 is nondiagonal

Theorem: Gx 2 Gp = 1D ziI°) Vvree
Gc is fully disconnected

o : .
Gc is fully disconnected} = I is undominated

When G, has at least one sink, there is no control design strategy T that is
always better than modified deadbeat r® for all P.

Farokhi et al., 2013

Example

Gp Gk é é)

[xl(k + 1)] _ [011 ﬂlz] [Xl(k)] + [1 0] [lll(k) [u1(k)] _ [ku k12] [X1(k)
0 1

x,(k +1) 0 azllx,(k) u, ()]’ w, (k)] lkay  keaal by (K)
o K*(P)=—-(+X)'xA ATXA—ATX(I+X)'XA +1=X
- o) =[5 o7 Jp(T2(4, B)) < 2/p(K*(P)
- ren) =[5t 0r Jp(r°C4, B) < Jp(r2(4,B)) = 2/p(K* (P))
@ -2+ a4 and undominated
R

03/08/15
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Disturbance Accommodation

z(k + 1) = Az(k) + B(u(k) + w(k)) ; z(0) = =0,
w(k + 1) = Dw(k) ; w(0) = wp

Deadbeat controller with deadbeat observer is undominated

_ 2l

_ —1D2

2 (4,B,D) = |.1 |

—B~1(A+D)

Corresponds to PI control for step disturbance (D=I)

z(k + 1) = Dz(k) — B-*D?x(k) ||
u, (k) = z(k) — B~*Dx(k)

Statistical model information

Designs with full model information (FMI), limited (exact) model information (LMI),

statistical model information (SMI)
Example
zi(k+1) |_|a11(k) aw2(k)|[2z1(k) | [1 O ui(k)
[-Tz(k +1) ]_[am(k) 022(k)][932(k) ]+[0 1 ][Uz(k) ]
]E{an} = 2.0 and ]E{(an — IE{an})Q} =04,
]E{alg} = 1.0 and E{(a12 — E{alg})Q} = 0.1,

Etc.
T pLMI
xg P zg 2
sup =1.008 <141/ =2,
zockr Tg PPMIzg /
T pSMI
sup 20-__T0 _ 5 3607.

=
zochn Ty PMizg

Farokhi & J, TAC, 2015

03/08/15
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Adaptive Controllers

Consider a general (nonlinear) adaptive controller with limited model information
u(k) = K(F)
k—
Fi = o({z(t)} o U {u(t)};20)
Then, there exists a control design method K = [‘*(P) such that
Jp(T*(P)) = Jp(K*(P))

where K* (P) is the optimal controller with full model information

* Itis possible to achieve a competitive ratio equal to one for an adaptive
controller with limited plant model information
* Proofis constructive, uses adaptation algorithm of [Campi & Kumar, 1998]

Farokhi & J, SCL, 2015

Outline

Introduction
Distributed control: local model information

Distributed control: local interactions
— How much network interaction is needed?

— How fast convergence is possible?

Conclusions

03/08/15
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Mathematical Model

Directed graph G = (V,€)
Nodeset V = {1,2,...,n}
Arc e=(i,j) €&

Time-varying graph process

Gr(w) = (V,&(w)),k=0,1,...

To each node i € V, associate a scalar state x;(k)

x; updates based on own computation and neighbor information

Nik)={jeV: (j,i) € E&}U{i}

Objective

Control the states to agreement: limy_, o |2;(k) — (k)| = 0 for all 4,5 € V

zi(k)
Also called consensus, rendezvous, formation, etc ()

Local update law

zi(k+1)= Z a;j(k)x;(k)

JEN(K)

Prototype model for a collaborative control problem with

coupled network and node dynamics

Related work on Markov chains, belief evolution, consensus algorithms, distributed control etc:
Hajnal (1958), Wolfowitz (1963), DeGroot (1974), Tsitsiklis, Bertsekas & Athans (1986), Jadbabaie,
Lin & Morse (2003), Moreau (2005), Ren & Beard (2005), Golub & Jackson (2007), Cao, Anderson &
Morse (2008), Acemoglu, Ozdaglar & ParandehGheib (2010), etc

03/08/15
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Symmetric Gossip Algorithm

At each k, select a pair of nodes that “gossip”:

sk 41) = {[ (k) + 2 (B)]/2 3 (i, ) or (4,7) is selected

x; (k) otherwise
Equivalently . e
z(k+1) = P (k), . .
where

e e \T
Pke{[—(ez ”)(;l ) :i,jeV}

with e,, being the n-dimensional unit vector whose m’th component is 1.

Various bounds on the convergence time to asymptotic consensus, e.g., Karp et al. (2000),
Kempe et al. (2003), Boyd et al., (2006), Shah (2008)

Gossiping Convergence: Examples

wilk+1) = {[ vi(k) +x;(k)]/2 if (4,7) or (j,1) is selected

x; (k) otherwise

Convergence in 4 steps for n=4 nodes No finite-time convergence for n=3 nodes
for all initial values

for almost all initial values

@ O
OOINO
D @O 6

03/08/15
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Definition of Finite-time Convergence
z(k +1) = Pya(k)
A symmetric gossip algorithm {P;}5° converges globally in finite time if there exists an

integer T > 0 such that
rank(Pr... Ry) = 1.

Finite-Time Convergence of
Symmetric Gossiping

Theorem

There exists a symmetric gossip algorithm that converges globally in finite

time if and only if n = 2™ for some integer m > 0.

z(k +1) = Pra(k)
- w’—>e

Shi et al., 2015
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Finite-Time Convergence of
Symmetric Gossiping

Theorem

There exists a symmetric gossip algorithm that converges globally in finite
time if and only if n = 2™ for some integer m > 0.
“ /]

Proof a(k+1) = Pur(k)

Sufficiency: Induction over n

Necessity: Contradiction using a particular initial value

Proof is constructive: for n = 2™ it provides a fastest algorithm
converging in (nlogy, n)/2 steps

Shietal., 2015

Impossibility of Finite-Time Convergence of
Symmetric Gossiping

Theorem

Suppose there exists no integer m > 0 such that n = 2™. Then for almost
all initial values (under standard Lebesgue measure), it is impossible to find a
symmetric gossip algorithm to reach finite-time convergence under the given

initial value.

Initial value ; P
@ (1B

yields finite-time convergence, but is an exception. 6’0 e

Shi et al., 2015

03/08/15
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Asymmetric Gossip Algorithm

zi(k+1) = z;(k) £t
1 1 i i

zj(k+1)= §.TL(/€) + §rj(k) ¢ —e

Equivalently
z(k +1) = Prz(k),
where
o — e Ve — e )T (e — e )T
PkG{I—%Ii.jGV}U{]—MILJEV}

with e,, being the n-dimensional unit vector whose m’th component is 1.

Finite-Time Convergence of
Asymmetric Gossiping

Theorem

For any network with n nodes, there always exists a gossip algorithm with

asymmetric updates that converges globally in finite time.

[ ] L ]
2(k + 1) = Pea(k)

- io—}oj
L ] L ]
Consider a network with n = 2™ + r nodes for 0 < r < 2™. A fastest gossip

algorithm allowing asymmetric updates reaches convergence using mn + 2r

node updates.

Shi et al., 2015

03/08/15
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Other Distributed Averaging Algorithms

zi(k+1) =na;(k) + o min a;(k) + (1 —nr — o) max x;(k)

JEN; (k) JEN (k)
e € [0,1] and ay, € [0,1 — 73] : ;
1 2
nk = 0, ai = 0: distributed maximizing > ¢

nr =0, ar = 1: distributed minimizing
e € (0,1], ag € [0,1 — ng]: distributed weighted averaging

Impossibilities of Convergence

(k1) = ek in (k) + (1 — 1 — (k
zi(k+ 1) = nraq( )4-akjéggi)$y()‘+( U Ow)jgﬁﬁi)my()

Averaging algorithms: 7, € (0,1], ax € [0,1 — 1]

Theorem: For every averaging algorithm, finite-time convergence fails for all
initial conditions except for the consensus manifold.

Theorem: For every averaging algorithm, asymptotic convergence fails for
all initial conditions except for the consensus manifold if Y ;- (1 — n;) < oo.

Shi & J, ACC, 2013

03/08/15
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Convergence of Maximizing Algorithms

(k1) = npai(k in xi(k)+ (1 —np — (k
zi(k+1) nkx()+akjerjrlvlir(1k)%()+( U ak)jénjvafk)%()

Maximizing algorithms: Mk = o =0

Theorem: Suppose G = G, is a fixed graph. Global finite-time convergence is
achieved if and only if G, is strongly connected.

Shi &J, ACC, 2013

Convergence of Averaging Algorithms

i(k+1) = i(k i (K 1—n, — (K
zi(k+ 1) = nraq( )4-akjéxg&)$y()‘+( U 0%)j£%ﬁi)$y()

Averaging algorithms: 7y, € (0, 1], ag € [0,1 — 7]

2 3

Theorem: Suppose G = G, is a fixed graph and a = « > 0. Global
asymptotic convergence is achieved if and only if G, has a root.

Shi & J, ACC, 2013

03/08/15
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Example

zi(k+1)=a min z;(k)+ (1 —«) max z;(k)

jGNi(k) jGNl(k)
6 5
e 0 < a < 1: global asymptotic consensus
e o =0 or = 1: global finite-time consensus O
° 2 3

451
4
35F
max;ey (k) =3
min;ey z;(k) 29 a =0,0.05,0.10, ...,0.50 |
il ]
15F
B

051

0 L L
0 1 2 3 4 5 6 7 8 9

State-Dependent Nearest-Value Graphs

Fix positive integer u
Neighbors of node i € V are nodes in the union of

N, (k) = {nearest p neighbors j € V with z;(k) < z;(k) and distinct values}

7

Nt (k) = {nearest p neighbors j € V with z;(k) > x;(k) and distinct values}

?

.1'3(]6) =2

Motivated from recent studies of bird collective behavior [Ballerini et al, PNAS, 2008]:

In fact, we discover that each bird interacts on average with a fixed number of neighbours (six-seven),
rather than with all neighbours within a fixed metric distance.

03/08/15
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Finite-time Convergence

zi(k+1) =na;(k) + o min a;(k) + (1 —nr — o) max x;(k)

JEN; (k) JEN (k)

Theorem: Consider a nearest-value graph and an averaging algorithm with

M =0 and ay € (0,1).

(i) If n < 2pu, then global finite-time consensus is achieved.

(ii) If n > 2u, then no finite-time consensus is achieved for almost all initial

conditions.

Finite-time convergence only with sufficiently many neighbors

Shi &J, ACC, 2013

Example
wilh+1) = min (k) + (1) max (k)

n =128 nodes and oo = 1/2
35
30

251
maX;ey IZ(k) -

miney z;(k) 7|

03/08/15
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Outline

* Introduction
e Distributed control: local model information

Distributed control: local interactions

Conclusions

Conclusions

Global plant model information is seldom available in
cyber-physical control systems

A framework to study the effect of (very) limited exchange
of plant model information on the performance

Simpler control strategies vs more communication:

TS JET

Finite-time convergence of some low-order protocols

http://people.kth.se/~kallej

03/08/15
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[What about dynamic controllers? J

What about under-actutated subsystems?
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Networked Control System

Plant Graph:

xill +1) = A1) + ) Ay () + Baws(00) +{Hawi () ~”

VE3!
Plant: P = (A,B,H) E#X X% x; € R™, u; € R™, and w; € R™

Control Graph: G

K= [‘2.: g’; = Cx(zl — Ag) 1By + Dy
x={K ElKi]- =0 € (RL,)™™ foralll < i,j < q such that (sg);; = 0}

Ge
Design Graph: K=T(P)= F(A'B Q
Hyj| (s¢)ij # 0}.

The map [Tix  Tig] is only a function of {[4j1 4], Bj;, H;

Performance Metric

The competitive ratio of a control design method T is defined as

J»(T(4,B
() = SUPpep %

]P(K) = ”Twy(z)ni

T,y(2) is the closed-loop transfer function from exogenous input w(k) to output

y () =[] xG0) + ] uco

¢ and D are full-rank block-diagonal square matrices.

03/08/15
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Assumptions

* All subsystems are fully actuated:
B e R and g(B) =€ > 0.

Gp
* Gp contains no isolated node. (i

Gp Gy Gc
* Gp, Gk, Go contain all self-loops. W % Q

* To simplify the presentation, fix e=1and C =D =1.

Modified Deadbeat Undominated by
Dvnamic Controllers

G aﬂf (i 6)
g’ @ %

Gy is a complete graph

Theorem: G is fully disconnected

} = (1) =1p(T®) vree¢ & reisundominated

Gp is acyclic
Gx 2 Gp = () = 1p(r®) vreeg & reisundominated
Gc is fully disconnected

If enough controller communication, static controller I'®(4, B) suffices to
outperform more complex controller

This is true even though K*(P) is dynamic

03/08/15

37



Extension to Under-actuated Systems

Gp ’ \ Gy

@ @

2 ={BER™"|g(B)2¢€B;;=0€R"™foralll <i=+j<gq}

* If node i is a sink, assume:
-rank(B;) =m; <n;
- (44, Byy) is controllable
- span(Aij) C span(By) for all j =i
¢ If node i is not a sink, assume:
-my =

Example: Vehicle Platooning

Regulating inter-vehicle distances dio and dos

01 (%) —p1/m1 O 0 0 0 vi(t) 7 [b1/m1 0 0
dia(t) 1 0o -1 o0 0 d1a(t) 0 0 0 |[ui(t)
2(t) |= 0 0 —p2/m2 0O 0 v2(t) 0 ba/mz2 0 || u2(t)
das (t) 0 0 1 0 =1 ||da2s(t) 0 0 0 || us(t)
03(t) 0 0 0 0 —p3/ms IL v3(t) 0 0 bg/ms

01 = 02 = 03 =0.1 and bl :bg:bg:l.o

w1 ()
wa(t)
w3 (t)
wa(t)
ws(t)
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Example: Vehicle Platooning

Regulating inter-vehicle distances dy5 and das

01(t) T [—e1fmy) 0 0 0 0 vi(t) 7 [bifm) 0 0 w1 (t)
dya2(t) 1~ 0 -1 0 0 | d=@® 0~ 0 0 |[ur®)] | walt)
() [ o 0—pgafma 0 0 va(t) 0 bafma 0 || u2(t) B wa(t)
dos (t) 0 0 1 0 -1 da3(t) 0 h; 0 [ us () wa(t)
D3(t) 0 0 0 0 —Qg/win.g\ w3 (t) 0 0 b3/"{n,‘ wg (t)
o1 =02 =p3=0.1 and by =bg = b3 =1.0
vy (t)
‘Ul(t) dlg(t) Ug(t)
uq (k) = T1(m) | di2(t) uz(k) =Ta2(m) | va(t) uz(k) =T3(m) | das(t)
va(t) das(t) v3(t) | Gk
v3(t)

where m = [my ma mg]T € [0.5,1.00%.

Example: Vehicle Platooning

Regulating inter-vehicle distances dyo and dos

01(t) | r—erfmy 0 0 0 0 vi(t) ] [bafmy 0O 0 w1 (t)

dy2(t) 1~ 0 -1 0 0 dq2(t) 0~ 0 0 wa (t)

we(t) [ 0 0—g2fmy 0 0 v2(t) 0 by [@\ 0 ws (t)

dasz (1) 0 0 1 0 -1 ||d2a(t) 0 0 wa (t)

v3(t) 0 0 0 0 —ga/\:rng;\ v3(t) 0 0 b3/\m 3 wr (t)
o1 292293:0.1 and bl =b2=b3=1.0

2(t) = [ dia(t) das(t) wi(t) wa(t) wus(t) |'

Find control design strategy I' that

ml_i‘n ch‘c:X ||Tzw (33 r, m)“oo

where m = [mq mo mg]T € [0.5, 1.0]3 and T belongs to the set of polynomials of m,;,
i=1,2,3, up to the second order.
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Example: Vehicle Platooning

Control Design with Local Model Information
Q maxqeq ||[Tew (s;000%% 0| = 4.7905
* 25.8%
Control Design with Limited Model Information
maxaed ||Tew (s;l"limimd, a) ||oo = 3.5533
e
5.4%
Control Design with Full Model Information
maxaed ||[Tew (80 a) || =3.3596
Go
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