

Networked Control and Autonomy

Karl Henrik Johansson
KTH Royal Institute of Technology
Stockholm, Sweden

2013 Summer School of Information Engineering June 30 – July 6, 2013 in Bressanone, Italy

Slides available at http://www.ee.kth.se/~kallej

Networked control system

Outline

Lecture 1: Motivating applications and challenges

Lecture 2: Wireless control systems

Take-home message

Lecture 1: Motivating applications and challenges

- Networked control systems have societal importance
- Many new applications with challenging problems

Lecture 2: Wireless control systems

- Everything will be wireless, including control systems
- Interesting research challenges on the intersection between sensor networks, wireless communication, and control theory

Outline

Lecture 1: Motivating applications and challenges

Lecture 2: Wireless control systems

Towards wireless sensor and actuator network architecture

- Local control loops closed over wireless multi-hop network
- Potential for a dramatic change:
 - From fixed hierarchical centralized system to flexible distributed
 - Move intelligence from dedicated computers to sensors/actuators

Radio Channel Measurements in Industrial Environment

- Rolling mill at Sandvik in Sweden
- Study of 2.45 GHz radio channel properties
- Slow but substantial RSSI variations due to mobile machines

Fuel-Optimal Goods Transportation

- Goods transported between cities over European highway network
- 2 000 0000 long haulage trucks in EU (400 000 in Germany)
- Large distributed control systems with no real-time coordination today

Look-ahead Cruise Control for Individual Vehicle

Adjust driving force to minimize fuel consumption based on road topology info:

The total fuel consumption over time T is:

$$\int_{-T}^{T} \delta(t) \int_{-T}^{T} dv(t) \int_{-T$$

Require knowledge of road grade α , not available in today's navigators $+ mgc_r\cos\alpha + mg\sin\alpha$ dt (3)

$$\begin{split} m_t \frac{\mathrm{d}v}{\mathrm{d}t} &= F_{eng} - F_b - F_{ad}(v,d) - F_r(\alpha) - F_g(\alpha) \\ &= F_{eng} - F_b - \frac{1}{2}\rho_a A_a c_D v^2 \phi(d) \\ &- mg c_r \cos \alpha - mg \sin \alpha \end{split}$$

Implemented as reference change to existing cruise controller

Allam et al., 2011

Look Ahead Cruise Control for Platoons

- · How to jointly minimize fuel consumption for a platoon of vehicles?
 - o Uphill and downhill segments
- How to order vehicles according to weight and other performance criteria?
 - Heavy and light vehicles

Alam et al., 2013

How to Control Vehicles in a Platoon?

- Platooning control applications require collaborative actions
- · Vehicles need accurate estimates of neighboring vehicles' states and actions
 - Vehicle-to-vehicle and vehicle-to-infrastructure communications
 - Wireless communication standards, e.g., IEEE 802.11p
- Control performance is tightly coupled to how well state information (position, velocity, braking etc) is communicated across the platoon

- How does the communication influence the system performance?
- What is an efficient communication strategy for specific control tasks?

Extensive theoretical and practical studies since Levine & Athans, 1966

When is it Fuel Efficient for a Heavy-Duty Vehicle to Catch Up with a Platoon?

- Catch up costs fuel due to higher air drag at higher velocity
- ullet Distance to platoon d_p needs to be small compared to total travel distance d_d
- Tradeoff velocity increase during catch-up and air drag reduction during platooning

Liang et al., 2013

When is it Fuel Efficient for a Heavy-Duty Vehicle to Catch Up with a Platoon?

Liang et al., 2013

Wireless control system

How share common network resources while maintaining guaranteed closed-loop performance?

How handle network imperfections: resource constraints, loss, conflicts, delays, outages?
How move intelligence from a few central units to many distributed devices?