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Networked control system
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Outline

Lecture 1: Motivating applications and challenges

Lecture 2: Wireless control systems

Take-home message

Lecture 1: Motivating applications and challenges
— Networked control systems have societal importance
— Many new applications with challenging problems

Lecture 2: Wireless control systems
— Everything will be wireless, including control systems

— Interesting research challenges on the intersection
between sensor networks, wireless communication,
and control theory
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Outline

Lecture 1: Motivating applications and challenges

Lecture 2: Wireless control systems

Energy consumption

INDUSTRY

35% RESIDENTIAL

21%

COMMERCIAL
TRANSPORTATION 17%
27%

More and better networked control reduces energy consumption

US Energy Information Administration
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Why now?

EUR
Tech Push
Sensing
Computation
Time
Network evolution
* Internet * Remote sensing * Closing the loop
* WWW * Monitoring environments * Cyber-physical systems

* Ubiquitous computing * Wireless sensor networks * Humans in the loop

Info Web |I Sensor Web I Control Web

The Internet Monitoring storm petrels at Great Duck Island The smart energy grid
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Networked Control Applications

Intelligent Transportation Smart Buildings

Information and
Communication
Technology

Smart Grid
~.
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Process Industry

Communication in process control
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technolol .
9y 3-15 psi 4-20mA 4-20mA Multiple Wireless
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Wireless sensor systems benefit from
* Lower installation and maintenance costs
* Increased sensing capabilities and flexibility

Major consequences for control system architectures
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Today’s industrial communication architecture

Centralized control system with low- =
Remote Clients

level loops closed over wired network T
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Towards wireless sensor and actuator network architecture

* Local control loops closed over wireless multi-hop network

* Potential for a dramatic change:
— From fixed hierarchical centralized system to flexible distributed
— Move intelligence from dedicated computers to sensors/actuators
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Control of froth flotation process
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* Froth flotation process concentrates
the metal-bearing mineral in the ore
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Wireless control of floatation process
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Radio Channel Measurements in
Industrial Environment

o * Rolling mill at Sandvik in Sweden
sy ¢ Study of 2.45 GHz radio channel properties
* Slow but substantial RSSI variations due to
mobile machines
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Satellite Intermodal communication
Passenger information
Temestrial remote connection
Mobile
Metropolitan Area )
Network (MAN) —=—

Vehicletovehicle

Fleet management Toll system

Wireless Local Area Network (WiFi) Traffic signals

Travel planning ~ Security systems

Cyber-Physical Systems Roadmap, German National Academy of Science and Engineering, 2011

Demands from Goods Road Transportation

* Goods transportation accounts for
30% of CO2 emissions
15% of greenhouse gas emissions

of the global fossil fuel combustion
* Expected to increase by 50% for 2000-2020

International Transport Forum (2010), EC (2006)

Life cycle cost for European heavy-duty vehicles

Maintainance &

Service: 7.3 %

Taxes/Tnsurance:,
9%

LOil: 1.5%

24% of long haulage trucks run empty

57% average load capacity
Dr. H. Ludanek, CTO, Scania

Salary: 309%
Total fuel cost 80 k€/year/vehicle
Schittler, 2003
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Technology Push

Sensor and commununication technology

Real-time traffic information
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Air Drag Reduction in Platooning
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Wolf-Heinrich & Ahmed (1998), Bonnet & Fritz (2000), Scania CV AB (2011)

10



Fuel-Optimal Goods Transportation

* Goods transported between cities over European highway network
e 2000 0000 long haulage trucks in EU (400 000 in Germany)
* Large distributed control systems with no real-time coordination today

Goal: Maximize total amount of platooning
with limited intervention in vehicle speed and route

Dasseldorf

;i»

Manaheim
*

Nurmberg
Stuttgart
*

Larson et al., 2013

Architecture for Future Coordinated Goods Transportation
A B E

Transport Planner

Route Optimization

Road Planner

Road Segment Optimization

Discrete Platoon
Coordination

A 4

Advanced Vebhicle Cruise Control ﬁ

i Alametal, 2012
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Look-ahead Cruise Control for Individual Vehicle

Entire horizon

Look—ahead horizon

i

A B Hellstrém, 2007

Adjust driving force to minimize fuel consumption based on road topology info:

The total fuel consumption over time 7 is:
T
p [0 du() 1o
Require knowledge of road grade a, not available in today’s navigators

-+ mgc, cos « + mg sm a) dt (3)
dv
mta = Feng - F,— Fad(v'd) - Fr(a) - Fg(O‘)
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— Mge, cos o — mg sin v

Implemented as reference change to existing cruise controller

Allam et al., 2011

Distributed Road Grade Estimation
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Sahlholm, 2011
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Look Ahead Cruise Control for Platoons

* How to jointly minimize fuel consumption for a platoon of vehicles?
o Uphill and downhill segments

* How to order vehicles according to weight and other performance criteria?
o Heavy and light vehicles

Alam et al., 2013

How to Control Vehicles in a Platoon?

* Platooning control applications require collaborative actions
* Vehicles need accurate estimates of neighboring vehicles’ states and actions

— Vebhicle-to-vehicle and vehicle-to-infrastructure communications
— Wireless communication standards, e.g., IEEE 802.11p
* Control performance is tightly coupled to how well
state information (position, velocity, braking etc) is
communicated across the platoon

* How does the communication influence the system performance?
* What is an efficient communication strategy for specific control tasks?

Extensive theoretical and practical studies since Levine & Athans, 1966
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When is it Fuel Efficient for a
Heavy-Duty Vehicle to Catch Up with a Platoon?

Break-even ratio

P

&
Ratiody / d

Air drag reduction|%)]

* Catch up costs fuel due to higher air drag at higher velocity
Distance to platoon d, needs to be small compared to total travel distance dy

-
.
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1005
Velocity increased [%)]

Tradeoff velocity increase during catch-up and air drag reduction during platooning

Liang et al., 2013

When is it Fuel Efficient for a

Heavy-Duty Vehicle to Catch Up with a Platoon?

Liang et al., 2013

7/3/13

14



Architecture for Future Coordinated Goods Transportation

A B
Transport Planner 3

Route Optimization

Road Planner

Road Segment Optimization

Discrete Platoon
Coordination

Advanced Vehicle Cruise Control

i Alametal, 2012

I * -
(
57
Hamburg
x
Berlin
Disseldorf
Kassel
Mannheim
*
Niimberg
Stuttgart

Larson et al., 2013
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Platoon merge and split

Heavy-duty vehicle traffic without platooning

Merge and split platoons at

. .o e highway intersections
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Larson et al., 2013

Distributed optimization of platooning

Heavy-duty vehicle traffic without platooning With platooning

. P, \
ese® fea 4 . . y
3 ! . Predictive control decisions at network vertices on whether it is beneficial

for a vehicle to catch up another vehicle at next intersection

Larson et al., 2013
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Numerical evaluations

25

I

Fuel saved compared to shortest path

20+

=
T

Frequency

=)
T

1=
T

o

2 25
Fuel Reduction in %

* German road network with 300 trucks
* Random starting points and destinations
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2000 4000 6000 8000
Number of HDVs

2-5% deployment enough for

substantial benefit

Stockholm-Zwolle Testsite

¢ Real-time fleet management
*  Platooning in real traffic

e Fuel reductions and safety

*  Driver acceptance

*  Public acceptance

Stockholm

Scania Transport Lab
Internal haulage company
20 trucks, 360.000 km/year
75 trailers, 92% loaded

65 drivers, 40 h work/week
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Platooning Demos in Media

Rapport on vehicle platooning developed by KTH and Scania (Oct, 2011)

—

€DISCOVErY  SHOWS VIDED GAMES SHOP  ADVENTURE CARSBBIKES GEARG(

Discovery Channel Videos: Earth 2050: Driven by Design

PhD student Assad Alam on
Discovery Channel (Jan, 2012)

Wireless control system

How share common network resources while
maintaining guaranteed closed-loop performance?

Sensors Controllers Actuators
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* How handle network imperfections: resource constraints, loss, conflicts, delays, outages?
* How move intelligence from a few central units to many distributed devices?
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