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Distributed Design of Robust Kalman Filters Over
Corrupted Channels

Xingkang He , Karl Henrik Johansson , Fellow, IEEE, and Haitao Fang

Abstract—We study distributed filtering for a class of uncertain
systems over corrupted communication channels. We propose a
distributed robust Kalman filter with stochastic gains, through
which upper bounds of the conditional mean square estimation
errors are calculated online. We present a robust collective ob-
servability condition, under which the mean square error of the
distributed filter is proved to be uniformly upper bounded if the
network is strongly connected. For better performance, we modify
the filer by introducing a switching fusion scheme based on a sliding
window. It provides a smaller upper bound of the conditional mean
square error. Numerical simulations are provided to validate the
theoretical results and show that the filter scales to large networks.

Index Terms—Sensor network, distributed filtering, robust
Kalman filter, corrupted channel.

I. INTRODUCTION

IN RECENT years, networked state estimation problems for
sensor networks are drawing more and more attention due

to their many applications [1]–[3]. Compared to the centralized
methods, distributed algorithms, implemented at each sensor, are
more resilient to network vulnerabilities, require less energy-
consuming communication, and are able to perform parallel
processing. Thus, a growing number of researchers are focusing
on the study of distributed state estimation problems [4]–[8].
System uncertainties and communication imperfections pose,
however, great challenges to the implementation and use of ex-
isting distributed filters. Thus, it is important to study distributed
robust filters for real-time state estimation of uncertain systems.

System uncertainties exist in most applications in both the dy-
namics and measurements. Multiplicative noise arises in many
situations [9]. When system dynamics suffer multiplicative
noise, it is challenging to design effective filters due to the state-
dependent uncertainty. The authors in [10] studied centralized
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estimation problems for systems with multiplicative noise and
parameter uncertainties. In [11], distributed fusion estimation
for systems with multiplicative and correlated noise was studied.
In [12], the authors studied distributed filtering for systems with
multiplicative noise in the dynamics when the network is given
by a complete graph. Measurement degradation usually comes
from sensor or communication limitations [12]–[14]. A detailed
study on Kalman filters with measurement degradations was
given in [15]. In [13], a distributed filter was proposed for a state-
saturated system with degraded measurements and quantization
effects. A robust estimation problem based on randomly dropped
measurements was studied in [16]. A distributed robust filter
was provided in [17] for a class of linear systems with uncertain
measurements. Moreover, to deal with random changes in model
structures and parameters in the real systems, some robust fil-
tering approaches were proposed for systems with unknown pa-
rameters under non-Gaussian measurement noise [18]–[20] and
for nonlinear uncertain Markov jump systems [21], [22]. Most of
the above results were studied in a centralized framework, and
for the distributed algorithms, few connections between filter
performance and system uncertainties were provided.

In the literature of distributed estimation over sensor net-
works [12]–[14], [23]–[28], a common assumption is that the
communications between sensors are noise-free. This is, how-
ever, difficult to fulfill in practice [29]. Uncertainty induced by
channel noise makes it more challenging to design and analyze
distributed filters. The authors in [30] investigated the design
of distributed filters with constant filtering gains and fusion
weights, and gave conditions to ensure the boundedness of
the mean square error (MSE). In [23], a distributed filter was
proposed by combining a diffusion step with the Kalman filter.
The filter performance was analyzed under the assumption that
each sub-system is observable, which is a restrictive condition
for high-dimensional systems. Time-varying distributed filters
can achieve better performance than static [31]–[33]. However,
authors of [31]–[33] all assumed perfect communication. Al-
though [34] studied the case that the state estimates suffer chan-
nel noise, the parameter matrices were required to be perfectly
transmitted. The design of distributed robust filters exposed to
corrupted communication channels needs further investigation.

The main contributions of this article are summarized in the
following.
� For systems suffering multiplicative stable noise and mea-

surements exposed to fading and additive noise, we design
a robust distributed Kalman filter able to handle corrupted
communication channels (Algorithm 1). The filter is shown
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TABLE I
MAIN SYMBOLS IN THIS ARTICLE: k AND m STAND FOR TIME INSTANTS, i AND j STAND FOR SENSOR LABELS

to be conditionally consistent in the sense that the MSE is
conditionally bounded.

� We extend traditional collective observability to robust
collective observability, under which the MSE of the dis-
tributed robust Kalman filter is proved to be uniformly up-
per bounded for any strongly connected network (Theorem
III.1).

� We modify the proposed distributed robust Kalman filer by
introducing a switching fusion scheme based on a sliding
window and past state estimates (Algorithm 2). Adap-
tive covariance intersection (CI) weights are obtained by
solving semi-definite programming (SDP) problems at the
preset intervals. It is proved that the modified filter inherits
the main properties of the distributed robust Kalman filter
(Theorem IV.1), but in addition provides a smaller upper
bound of the conditional MSE.

This article presents significant contributions compared to the
existing literature. In particular, first, compared to [12]–[14],
[23]–[27] where the communications are required to be noise-
free, or [34] where the transmitted state estimates suffer channel
noise, this article studies a more general case of channel corrup-
tion. We allow that both the transmitted estimates and parameter
matrices can be polluted by channel noise. Second, thisarticle
does not make the assumption that the nominal systems have
to be stable [12], [13], [25] or that each sub-system is observ-
able [14], [23], [24]. Moreover, different from [12], [13], [25],
the design of the filters in this article is based on the information
from the local sensor and the neighbor communications. Third,
compared with the existing results [12], [13], [25]–[27], [34],
using the neighbor estimates in a sliding window, the switching
fusion scheme of this article can utilize the state estimates more
efficiently.

The remainder of this article is organized as follows: Sec-
tion 2 presents the problem formulation. The filter design and
performance analysis are given in Section 3. Section 4 provides
the modified filter based on a sliding-window method. After
Section 5 gives numerical simulations, Section 6 concludes this
article.

Notations: Superscript T represents transpose. The notation
A ≥ B (A > B), where A and B are real symmetric matrices,

means that A−B is a positive semidefinite (positive definite)
matrix. We denote 1n an n-dimensional vector with all ele-
ments one, In the identity matrix with n rows and columns,
Rn the set of n-dimensional real vectors, and N the set of
natural numbers. The operator E{x} denotes the mathematical
expectation of the stochastic vector x, and Cov{x} = E{(x−
E{x})(x− E{x})T }. We use blockdiag{·} and diag{·} to
represent the diagonalizations of square matrix elements and
scalar elements, respectively. The trace of matrix P is denoted
by Tr(P ). For a real-valued matrix A, ρ(A) denotes the spectral
radius and ‖A‖2 =

√
ρ(ATA). The scalar λmax(B) is the max-

imal eigenvalue of the real-valued symmetric matrixB, and σ(·)
is the minimal σ-algebra operator generated by a collection of
subsets. For reading convenience, main symbols of this article
are provided in Table I.

II. PROBLEM FORMULATION

This section presents a motivating example followed by some
preliminaries together with the problem formulation.

A. Motivating Example

In a spatially distributed physical system, let the state vector
consist of elements over a large geographical area. The evolution
of the state is related to spatial and temporal dynamics. Sensors
located at different positions can collaborate based on their
intermittent measurements of partial elements of the state. The
state and the measurements are polluted by noise. A random
dynamic field driven by noise wk and monitored by a sensor
network is shown in Fig. 1, cf. [35]. The variable xi

k stands for
the temperature in station i at time k. Colors represent values
of xi

k. The problem considered in this article is how to design
a distributed robust filter based on the corrupted measurements
yk,i, k ∈ N, i = 1, . . . , 4, and the collaboration of the sensors,
such that the overall temperature field xk can be effectively
estimated by each sensor.

B. Preliminaries

Consider the system dynamics

xk+1 = (Ak + Fkεk)xk + wk, (1)
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Fig. 1. A random temperature field over a geographical area. The evolution
of the field is driven by some stochastic process wk . The right figure illustrates
that sensors obtain corrupted measurements of the temperature state, and com-
municate with other sensors over a network to achieve an estimate of the overall
state.

where xk ∈ Rn denotes the system state vector, wk ∈ Rn the
independent process noise with zero mean, εk ∈ R the indepen-
dent multiplicative noise also with zero mean. The matrices Fk,
k ∈ N, are non-singular matrices.

The system state is monitored by a sensor network with N
sensors

yk,i = γk,iCk,ixk + vk,i, i = 1, . . . , N, (2)

where yk,i ∈ Rmi stands for the measurement vector of sensor
i, vk,i ∈ Rmi the independent measurement noise with zero
mean and γk,i ∈ R the independent random fading factor in
the interval [0,1] with E{γk,i} = τk,i, where 0 < τk,i ≤ 1 is
a known scalar, all at time k = 1, 2, . . . .. The matrices Ak,
Fk, and Ck,i have appropriate dimensions and are known to
sensor i.

We model the sensor communications as a directed graph
G = (V, E ,A), which consists of nodes V = {1, 2, . . . , N},
links E ⊆ V × V , and the weighted adjacency matrix A =
[ai,j ], where ai,i > 0, ai,j ≥ 0,

∑
j∈V ai,j = 1. If ai,j > 0, j �=

i, there is a link (j, i) ∈ E , through which node i can directly
receive messages from node j. In this case, node j is called
a (in-)neighbor of node i and node i is called a out-neighbor
of node j. The (in-)neighbor set of node i, including itself, is
denoted by Ni. The graph G is called strongly connected if
for any two nodes i1, il, there exists a directed path from il to
i1 : (il, il−1), . . . , (i3, i2), (i2, i1). Let {x̃k,j , P̃k,j} be the pair
that node j communicates to its out-neighbor nodes at time k,
where x̃k,j ∈ Rn and P̃k,j ∈ Rn×n. Due to channel noise, the

pair {ˆ̃xk,i,j ,
¯̃Pk,i,j} received by node i from node j is

ˆ̃xk,i,j = x̃k,j + εk,i,j , j ∈ Ni

¯̃Pk,i,j = P̃k,j +Dk,i,j , j ∈ Ni,
(3)

where εk,i,j ∈ Rn and Dk,i,j ∈ Rn×n are the channel noise
processes. If P̃k,j is symmetric, Dk,i,j is reasonably assumed
to be symmetric. Because it is sufficient to transmit the upper

triangular part of the symmetric matrix P̃k,j . In Lemma III.2, we
will show that the transmitted matrix P̃k,j is indeed symmetric.

Let (Ω,F , P ) be the basic probability space, and Fk be a
filtration of the σ-algebra F . A discrete-time sequence {ξk}
is said to be adapted to the family of σ-algebras {Fk} if ξk
is measurable to Fk. We refer the reader [36] for details. We
require the following assumption.

Assumption II.1: The following conditions on noise and ini-
tial estimates hold.

1) The initial state x0, its estimates x̂0,i, and the noise εk,wk,
γk+1,i, vk+1,i, εk+1,i,j , Dk+1,i,j are independent both in
time and space, for all i, j ∈ V, k = 0, 1, . . . .

2) There exist known matrices Qk, Rk+1,i, P0 and scalars
μk, ϕk+1,i, such that for all i ∈ V , and k = 0, 1, . . . ,

E{wkw
T
k } ≤ Qk, inf

k∈N
Qk > 0, E{x0x

T
0 } ≤ P0

E{ε2k} ≤ μk, Cov{γk+1,i} ≤ ϕk+1,i

E{vk+1,iv
T
k+1,i} ≤ Rk+1,i

sup
k∈N

[
τ2k+1,iC

T
k+1,iR

−1
k+1,iCk+1,i

]
< ∞

E{(x̂0,i − x0)(x̂0,i − x0)
T } ≤ P0,i.

3) There exist positive semi-definite matrices Υi,j and Di,j

such that for all i ∈ V , j ∈ Ni, and k = 1, 2, . . . ,

sup{εk,i,jεTk,i,j} ≤ Υi,j ,−Di,j ≤ Dk,i,j ≤ Di,j ,

where the channel noise εk,i,j and Dk,i,j are in (3).
Note that the exact covariance information of the stochastic

uncertainties is not required. Bounds and statistics are known
only to individual sensors. Thus, the conditions in 2) of Assump-
tion II.1 are milder than [12], [13], [25], where each sensor was
assumed to have full knowledge on the statistics of the system.

Let x̂k be the estimate of the system state xk. Due to unknown
correlation between sensor estimates, the MSE of each sensor
can not be obtained in a distributed manner [14], [32], [33], [37].
We introduce the following definitions to consider the bounds
of MSE.

Definition II.1: [38] (Consistency) The pair {x̂k, Pk} is
consistent if there is a deterministic sequence {Pk} such that
E{(x̂k − xk)(x̂k − xk)

T } ≤ Pk.
Definition II.2: (Conditional consistency) The pair {x̂k, Pk}

is conditionally consistent if there is a sequence {Pk}, such that
E{(x̂k − xk)(x̂k − xk)

T |Kk} ≤ Pk, where Kk is a σ-algebra
and Pk is measurable to Kk.

Note that the consistency defined above is different from the
one in parameter identification, which instead is on asymptotic
convergence to the true parameters. The consistency definition
we use in this article [26], [27], [32], [33] provides two benefits.
First, the estimation error of each sensor can be evaluated online
by utilizing some probability inequalities [39]. Second, a CI-
based fusion method can be utilized in the filter design. We
introduce conditional consistency in Definition II.2 to cope with
channel noise. The idea is to use that the pair {x̂k, E{Pk}} is
consistent, if {x̂k, Pk} is conditionally consistent.
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C. Problem

In this article, we consider a three-step distributed filtering
structure. Each sensor i ∈ V , executes a state prediction, mea-
surement update and local fusion at each time:

x̄k,i = Ak−1x̂k−1,i

x̃k,i = x̄k,i +Kk,i(yk,i − τk,iCk,ix̄k,i)

x̂k,i =
∑
j∈Ni

Wk,i,j
ˆ̃xk,i,j ,

(4)

where x̄k,i, x̃k,i, and x̂k,i are the state estimates in prediction,
update, and fusion of sensor i at time k, respectively. Moreover,
ˆ̃xk,i,j given in (3) is the noisy estimate received by sensor i from
sensor j. Besides, Kk,i is the filtering gain parameter matrix,
Wk,i,j is the local fusion parameter matrix. BothKk,i andWk,i,j

remain to be designed.
Different from the existing results [12], [30], [33], [40],

measurements and measurement matrices are not transmitted in
our setting. The advantages of this protocol lie in several aspects
including privacy, security and energy saving.

In this article, we consider three essential subproblems:
(a) How to design the parameters Kk,i and Wk,i,j in the dis-

tributed filter (4), such that the filter is conditionally consistent?
(Lemmas III.2 and III.3)

(b) Which conditions on system structure and noise statistics
enable the mean square estimation error to be bounded? (Theo-
rem III.1)

(c) How to improve the performance of the filter (4) when
past estimates are available? (Algorithm 2, Proposition IV.1,
and Theorem IV.1)

III. DISTRIBUTED ROBUST KALMAN FILTER DESIGN

In this section, we first provide a distributed design of the filter
gain Kk,i and the fusion weight Wk,i,j of the filter (4). Then we
present our proposed distributed robust Kalman filter (DRKF)
algorithm. Finally, it is shown that the algorithm gives bounded
MSE.

Lemma III.1: Under Assumption II.1, it holds that
E{xkx

T
k } ≤ Πk, ∀k ∈ N, where Πk is recursively calculated

through Πk+1 = AkΠkA
T
k + μkFkΠkF

T
k +Qk, with Π0 =

P0, in which P0, μk, and Qk are in Assumption II.1.
Proof: See Appendix A. �
Lemma III.1 provides an upper bound of the mean square of

the system state x(t), which is accessible to each sensor based
on its system knowledge and useful in the algorithm design
and analysis as follows. Similar approaches are found in [10],
[41]. By employing the CI-method [38], the following lemma
provides a choice for the fusion weightWk,i,j giving conditional
consistency.

Lemma III.2: Consider system (1)–(2) satisfying Assump-
tion II.1. For the filter (4) withk ≥ 1 and i ∈ V , ifKk,i is adapted
to the channel noiseσ-algebraWk = σ(Dt,i,j , 1 ≤ t ≤ k, i, j,∈
V), and

Wk,i,j = ai,jPk,i(
¯̃Pk,i,j +Di,j +Υi,j)

−1, (5)

then the pairs {x̄k,i, P̄k,i}, {x̃k,i, P̃k,i}, {x̂k,i, Pk,i} are all con-
ditionally consistent given Wk, where

P̄k,i = Ak−1Pk−1,iA
T
k−1 + μk−1Fk−1Πk−1F

T
k−1 +Qk−1

P̃k,i = (I − τk,iKk,iCk,i)P̄k,i(I − τk,iKk,iCk,i)
T

+Kk,i

(
Rk,i + ϕk,iCk,iΠkC

T
k,i

)
KT

k,i

¯̃Pk,i,j = P̃k,j +Dk,i,j , j ∈ Ni

Pk,i =

⎛
⎝∑

j∈Ni

ai,j(
¯̃Pk,i,j +Di,j +Υi,j)

−1

⎞
⎠

−1

.

Proof: See Appendix B. �
Note that the design of the fusion weight Wk,i,j in

Lemma III.2 is fully distributed, and it depends on the communi-
cation noise bounds, i.e., Υi,j and Dk,i,j , which is an extension
to [12], [13], [25], [26], [34]. In the following lemma, we design
the filter gain Kk,i of filter (4) such that the bound of the
conditional MSE, i.e., P̃k,i, is minimized at each measurement
update.

Lemma III.3: The optimal solution K∗
k,i :=

argminKk,i
Tr{P̃k,i} is given by

K∗
k,i = τk,iP̄k,iC

T
k,iΞ

−1
k,i,

where Ξk,i = τ2k,iCk,iP̄k,iC
T
k,i +Rk,i + ϕk,iCk,iΠkC

T
k,i. Fur-

thermore, K∗
k,i is adapted to the channel noise σ-algebra Wk in

Lemma III.2.
Proof: See Appendix C. �
The designed filter gain in Lemma III.3 inherits the gain

of the optimal centralized robust filters in [10], [41], but here
it is stochastic and adapted to the channel noise σ-algebra
Wk = σ(Dt,i,j , 1 ≤ t ≤ k, i, j,∈ V). With the filter parameters
Kk,i andWk,i,j given in Lemmas III.2 and III.3, respectively, we
obtain the DRKF given in Algorithm 1. Different from [14], [37],
the implementation of this algorithm only depends on the local
measurement information {yk,i, Ck,i, Rk,i, ϕk,i, τk,i} and the

estimate pairs {ˆ̃xk,i,j , ¯̃Pk,i,j , j ∈ Ni} from neighbors. Thus, it
obeys a fully distributed design and implementation. For sensor
i, the computational complexity of Algorithm 1 at each time is
O(max{n3di,m

3
i }), where di is the cardinality of the set Ni,

and n and mi are the dimensions of the system state and sensor
measurement, respectively. The overall computational complex-
ity for all sensors is consequently O(max{Nn3di, Nm3

i }).
Thus, the algorithm is scalable to large networks. The perfor-
mance of the algorithm is degraded if the upper bounds in
Assumption II.1 are not tight. In systems with measurement
outliers [19], Algorithm 1 can be adapted to estimate the state by
developing appropriate scheme for discarding the measurement
outliers.

Next we find mild conditions to guarantee boundedness of
the MSE for Algorithm 1. For j > k, we denote the transition
matrix by Φj,k = Aj−1Φj−1,k, where Φk,k = In. We assume
robust collective observability in the following.
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Algorithm 1: Distributed Robust Kalman Filter (DRKF).
Initial setting:
{x̂0,i, P0,i,Π0,Di,j ,Υi,j , j ∈ Ni, i ∈ V}.
Prediction: For each sensor i:
x̄k,i = Ak−1x̂k−1,i,
P̄k,i =
Ak−1Pk−1,iA

T
k−1 + μk−1Fk−1Πk−1F

T
k−1 +Qk−1,

Πk = Ak−1Πk−1A
T
k−1 + μk−1Fk−1Πk−1F

T
k−1 +Qk−1.

Update: For each sensor i:
x̃k,i = x̄k,i +Kk,i(yk,i − τk,iCk,ix̄k,i),
Kk = τk,iP̄k,iC

T
k,i(τ

2
k,iCk,iP̄k,iC

T
k,i +Rk,i +

ϕk,iCk,iΠkC
T
k,i)

−1

P̃k,i = (I − τk,iKk,iCk,i)P̄k,i.
Fusion: For each sensor i:
x̂k,i = Pk,i

∑
j∈Ni

ai,j(
¯̃Pk,i,j +Di,j +Υi,j)

−1 ˆ̃xk,i,j ,

Pk,i = (
∑

j∈Ni
ai,j(

¯̃Pk,i,j +Di,j +Υi,j)
−1)−1,

where ˆ̃xk,i,j and ¯̃Pk,i,j are given in (3).

Assumption III.1: (Robust collective observability) There ex-
ists an integer N̄ > 0 and a constant α > 0 such that for k ∈ N,

N∑
i=1

k+N̄∑
j=k

ΦT
j,kC̄

T
j,iR̃

−1
j,i C̄j,iΦj,k ≥ αIn, (6)

where

C̄j,i = τj,iCj,i, j ∈ N, i ∈ V

R̃j,i = Rj,i +�jϕj,iCj,iC
T
j,i

�j = ‖P0‖2
j−1∏
i=0

ᾱi +

j∑
s=1

(
q̄s−1

j∏
l=s

ᾱl

)
+ q̄j

ᾱj = ‖Aj‖22 + μj‖Fj‖22
q̄j = ‖Qj‖2.

Assumption III.1 is based on the system structure and noise
statistics. It can be regarded as a distributed version of the
observability condition with multiplicative noise in [41]. The
condition does not require that each sub-system is observ-
able [14], [23], [24]. Moreover, if ϕk,i ≡ 0, ∀k ∈ N, i ∈ V ,
Assumption III.1 corresponds to the collective observability
condition for time-varying stochastic systems in [26].

A requirement on the multiplicative noise εk is needed. Recall
that μk is the bound of the variance of εk. Denote the time
sequence of non-zero multiplicative noise by

KT =

{
kt = min

μk>0
k|k ≥ kt−1, k, t ∈ N

}
. (7)

Assumption III.2: There exist positive scalars λ1, λ2, M and
 ∈ (0, 1), such that

λ1In ≤ AkA
T
k ≤ λ2In, k ∈ N (8)

l∏
t=s

ρkt
≤ Ml−s, 0 ≤ s ≤ l < ∞ (9)

sup
t∈N

‖μkt+1
Fkt+1

Qkt+1,kt
FT
kt+1

‖2 < ∞, (10)

where kt ∈ KT in (7) and

ρkt
=

μkt+1

μkt

‖Fkt+1
Φkt+1,kt

F−1
kt

‖22 + μkt+1
‖Fkt+1

Φkt+1,kt
‖22

Qkt+1,kt
=

kt+1∑
k=kt

Φkt+1,kQkΦ
T
kt+1,k

.

Compared to [12], [13], [25], (8) is a milder condition as
it permits the nominal system to be unstable. If {k|μk > 0, k ∈
N} is finite or even empty, (9) and (10) can still be made satisfied
by replacing the points μk = 0 with sufficiently small positive
μ̄k. For further analysis, we need Lemmas III.4–III.5.

Lemma III.4: If Assumption III.1 holds, then

N∑
i=1

k+N̄∑
j=k

ΦT
j,kC̄

T
j,iR̄

−1
j,i C̄j,iΦj,k ≥ αIn, (11)

where R̄k,i := Rk,i + ϕk,iCk,iΠkC
T
k,i.

Proof: See Appendix D. �
Different from (6) in Assumption III.1, (11) in Lemma III.4

utilizes Πk given by Lemma III.1. We note that Lemma III.4 is
provided for the proof of Theorem III.1.

Lemma III.5: If Assumption III.2 holds, then

sup
k∈N

{μkFkΠkF
T
k } < ∞.

Proof: See Appendix E. �
Lemma III.5 is useful in the proof of the following theorem.

Next we state our main result on Algorithm 1: the estimation
MSE of ek,i := x̂k,i − xk is bounded.

Theorem III.1: Suppose system (1)–(2) satisfies Assump-
tions II.1, III.1–III.2 and that G is strongly connected. Then,
the estimation MSE for Algorithm 1 is uniformly bounded for
all sensors, i.e., there exists a positive scalar η such that

sup
k≥N+N̄

λmax

(
E{ek,ieTk,i}

) ≤ η

α
, ∀i ∈ V,

where α is given in Assumption III.1.
Proof: See Appendix F. �
Theorem III.1 states that a larger α can lead to a smaller

upper bound of the MSE. Thus, increasing observability (C̄k,i)
and reducing noise interference (R̄k,i) can both contribute to
improving estimation performance of the DRKF in Algorithm 1.

IV. DRKF WITH A SLIDING WINDOW

In this section, we modify the DRKF algorithm to include also
past estimates received from neighbors. The presented DRKF
with sliding-window fusion (DRKF-SWF) algorithm is shown to
give bounded MSE. In the numerical simulation in next section,
it is shown to sometimes outperform the DRKF algorithm.

Since the estimates {ˆ̃xk,i,j , ¯̃Pk,i,j , j ∈ Ni} have been cor-
rupted by the channel noise through (3), designing a distributed
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filter simply based on the latest estimates may lead to per-
formance degradation if these estimates have been seriously
deteriorated. In this case, we fuse the past estimates received
from neighbors. This leads to a better estimate than that of
simply fusing current estimates. To decide which past estimates
to use, a sliding window with length L ≥ 1 is introduced. For
l = 0, . . . , L, we denote

x̌k−l,j := ˆ̃xk−l,i,j

P̌k−l,j :=
¯̃Pk−l,i,j +Di,j +Υi,j .

(12)

By Lemma III.2, {x̌k,j , P̌k−l,j} is conditionally consistent given
the channel noise σ-algebra Wk = σ(Dt,i,j , 1 ≤ t ≤ k, i, j,∈
V). Sensor i has the available messages {x̌l,j , P̌l,j}kl=k−L+1

from sensor j. We denote

(x̌1
k,j , P̌

1
k,j) := (f0(x̌k,j), g0(P̌k,j)) := (x̌k,j , P̌k,j)

(x̌2
k,j , P̌

2
k,j) := (f1(x̌k−1,j), g1(P̌k−1,j))

...

(x̌L
k,j , P̌

L
k,j) := (fL−1(x̌k−L+1,j), gL−1(P̌k−L+1,j)),

(13)

where for l = 1, . . . , L− 1,

fl(x̌k−l,j) = f1(fl−1(x̌k−l,j))

gl(P̌k−l,j) = g1(gl−1(P̌k−l,j))

f1(x̌k−l,j) = Ak−lx̌k−l,j

g1(P̌k−l,j) = Ak−lP̌k−l,jA
T
k−l +Qk−l

+ μk−lFk−lΠk−lF
T
k−l.

(14)

At time k, based on the local knowledge and the informa-
tion received from neighbors, sensor i can fuse the messages
{x̌l,j , P̌l,j , j ∈ Vi}kl=k−L+1 to obtain a better estimate of xk. By
(21),{x̌l,j , P̌l,j , j ∈ Vi}kl=k−L+1 are all conditionally consistent
given Wk = σ(Dt,i,j , 1 ≤ t ≤ k, i, j,∈ V).

Let

x̂k,i = Pk,i

L∑
s=1

∑
j∈Ni

asi,j,k(P̌
s
k,j)

−1x̌s
k,j (15)

Pk,i =

( L∑
s=1

∑
j∈Ni

asi,j,k(P̌
s
k,j)

−1

)−1

, (16)

where asi,j,k is element (i, j) of Āk ∈ RN×NL which is the

CI fusion weight matrix for {x̌s
k,j , P̌

s
k,j , j ∈ Vi}kl=k−L+1. In

the following, the design of Āk is studied. By the proof of
Lemma III.2 and (13), {x̌s

k,j , P̌
s
k,j , j ∈ Vi}kl=k−L+1 are condi-

tionally consistent given Wk = σ(Dt,i,j , 1 ≤ t ≤ k, i, j,∈ V).
The design of Āk is given by solving the following optimization

problem.

minimize
as
i,j,k,j∈Ni

Tr(J −1
k,i )

subject to

Jk,i > 0

0 ≤ asi,j,k ≤ 1,

L∑
s=1

∑
j∈Ni

asi,j,k = 1

(17)

where Jk,i =
∑L

s=1

∑
j∈Ni

asi,j,k(P̌
s
k,j)

−1 −∑j∈Ni
ai,jP̌

−1
k,j .

The optimal solution to (17) is denoted by āsi,j,k, j ∈ Ni, s =
1, . . . , L. According to [26], the problem in (17) is convex
and equivalent to an SDP problem, which can be effectively
solved by many existing algorithms if the problem is feasible.
If the problem is infeasible, we use the same fusion approach
as Algorithm 1, i.e., Āk = (A 0N×(N−1)L). The feasibility of
the SDP is equivalent to the feasibility test problem of linear
matrix inequality [42]. Due to resource constraints, it may be
undesirable to solve the online optimization problem (17) at
each time. Suppose sensor i has the ability to solve (17) at time
instants {ks}∞s=1, subject to

mod (ks,Δi) = 0,

where mod (a, b) is the remainder operator of a/b and Δi ∈
Z+ is the time interval length within which sensor i can not
solve the optimization problem. In other words, at time in-
stants {ks}∞s=1, each sensor employs (15) to obtain a fused
estimate, and for other instants, it utilizes the fusion methods in
Algorithm 1 based on the latest estimates from its neighbors. We
provide the DRKF-SWF in Algorithm 2. Compared with [12],
[13], [25]–[27], [34], Algorithm 2 utilizes the past informa-
tion more efficiently and considers the limitation of step-wise
optimization. The computational burden of Algorithm 2, in
addition to that of Algorithm 1, is that it solves the SDP convex
optimization problem (17) for every Δi. Thus, also Algorithm 2
scales to large networks, as such optimization problems are easy
to solve. The difficulty in the implementation of Algorithm
2 is that solving the optimization problem (17) needs more
computational resources if the dimension of the system state
increases.

The following lemma shows that Algorithm 2 is conditionally
consistent given the channel noise σ-algebra Wk.

Lemma IV.1: Consider system (1)–(2) satisfying Assump-
tion II.1. Then for Algorithm 2, the pairs {x̄k,i, P̄k,i},
{x̃k,i, P̃k,i}, and {x̂k,i, Pk,i} are conditionally consistent
given Wk.

Proof: Similar to the proof of Lemma III.2 but considering
the CI fusion in (15) and the fact that Kk,i is adapted to Wk =
σ(Dt,i,j , 1 ≤ t ≤ k, i, j,∈ V). �

Lemma IV.1, corresponding to Lemma III.2, shows that
Algorithm 2 shares the same conditional consistency as Algo-
rithm 1. Algorithm 2 is better than Algorithm 1 in the following
sense.
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Algorithm 2: Distributed Robust Kalman Filter With
Sliding-Window Fusion (DRKF-SWF).

Initial setting:
{L,Δi, x̂0,i, P0,i,Π0,Di,j ,Υi,j , j ∈ Ni, i ∈ V}.
Prediction: Same as Algorithm 1.
Update: Same as Algorithm 1.
Local Fusion: For each sensor i:
if mod (k,Δi) = 0 and (17) has a feasible solution:

x̂k,i = Pk,i

∑L
s=1

∑
j∈Ni

āsi,j,k(P̌
s
k,j)

−1x̌s
k,j

Pk,i =

(∑L
s=1

∑
j∈Ni

āsi,j,k(P̌
s
k,j)

−1

)−1

,

where P̌ s
k,j and x̌s

k,j are given in (13), and {āsi,j,k}Ls=1

are given by solving (17);
else

x̂k,i = Pk,i

∑
j∈Ni

ai,j(
¯̃Pk,i,j +Di,j +Υi,j)

−1 ˆ̃xk,i,j

Pk,i =

(∑
j∈Ni

ai,j(
¯̃Pk,i,j +Di,j +Υi,j)

−1

)−1

,

where ˆ̃xk,i,j and ¯̃Pk,i,j are given in (3).

Proposition IV.1: Consider system (1)–(2) satisfying
Assumption II.1. Under the same initial setting and the channel
noise σ-algebra Wk = σ(Dt,i,j , 1 ≤ t ≤ k, i, j,∈ V), for
Algorithms 1–2, it holds that

PB
k,i ≤ PA

k,i, (18)

where PA
k,i and PB

k,i are the Pk,i matrix of Algorithm 1 and
Algorithm 2, respectively.

Proof: If mod (k,Δi) = 0 and (17) is feasible, the con-
straint of (17) Jk,i > 0 ensures that Algorithm 2 has a smaller
Pk,i. Otherwise, the fusion scheme of Algorithm 2 is the same
as Algorithm 1, which also ensures (18). �

Proposition IV.1 shows that compared to Algorithm 1, Algo-
rithm 2 has a smaller upper bound of the MSE. A larger window
parameter L can lead to a smaller objective function of (17), but
the computation will increase as well. Also, the time length Δi

influences the estimation performance, since a larger Δi means
that sensor i does not solve the optimization problem (17) for
a longer time interval. The parameters L and Δi can be chosen
based on the computational and communication ability of the
sensor network. Furthermore, letT be the time length of interest,
then Algorithm 2 degenerates to Algorithm 1 if Δi > T . The
boundedness of the MSE for Algorithm 2 is presented in the
following.

Theorem IV.1: Suppose system (1)–(2) satisfies Assump-
tions II.1, III.1–III.2 and that G is strongly connected. Then,
the estimation MSE for Algorithm 2 is uniformly bounded for
all sensors„ i.e., there exists a positive scalar η̃ such that

sup
k≥N+N̄

λmax

(
E{ek,ieTk,i}

) ≤ η̃

α
, ∀i ∈ V,

where α is given in Assumption III.1.
Proof: It follows from Lemma IV.1 and the proof of

Theorem III.1. �

Theorem IV.1, corresponding to Theorem III.1, shows that
Algorithm 2 shares the same MSE boundedness as Algorithm 1
under mild conditions.

V. NUMERICAL SIMULATIONS

In this section, we study two examples to validate the effec-
tiveness of the proposed algorithms and the theoretical results
developed in the paper.

A. Example 1

For the temperature field in Fig. 1, we suppose that the
initial state x0 and sensor measurement noise are generated by
independent standard normal distributions. The fading factors
γk,i follow independent uniform distributions, i = 1, 2, 3, 4. The
time sequence {tk} lies in the interval [0,10] with uniform
sampling step 0.1, thus k = 0, 1, . . . , 100. The matrices and
scalars in (1) are assumed to be

Ak =

(
0.8× (1 + 0.01tk) 0.01

0.1 0.98

)

Fk = I4, Qk = 0.1× I2, P0 = I2, μk = 0.1× (tk + 2)−1

Rk,1 = 0.07, Rk,2 = 0.08, Rk,3 = Rk,4 = 0.09

τk,1 = 0.85, ϕk,1 = 0.8× 10−3, Ck,1 =
(
0 1
)

τk,2 = 0.15, ϕk,2 = 0.8× 10−3, Ck,2 =
(
0 1
)

τk,3 = 0.20, ϕk,3 = 0.8× 10−3, Ck,3 =
(
0 1
)

τk,4 = 0.85, ϕk,4 = 0.8× 10−3, Ck,4 =
(
1 0
)
. (19)

The initial setting of the filters is x̂i,0 = 12 and Pi,0 = 100×
I2, ∀i ∈ V . The weighted adjacency matrix is

A = [ai,j ] =

⎛
⎜⎜⎝
0.3 0.7 0 0
0 0.4 0.6 0
0 0 0.3 0.7
0.3 0.4 0 0.3

⎞
⎟⎟⎠ .

The channel noise is assumed to be mutually independent and
uniformly distributed over [−1, 1]. We choose Υi,j = Di,j =
I2, i, j ∈ V .

We conduct Monte Carlo experiments, in which Nt = 100
runs are performed. We denote

MSEk,i =
1

Nt

Nt∑
j=1

(x̂j
k,i − xj

k)
T (x̂j

k,i − xj
k)

Tr(Pk,i) =
1

Nt

Nt∑
j=1

Tr(P j
k,i),

(20)

where x̂j
k,i and P j

k,i are the state estimate and parameter matrix
of the jth run of sensor i.

We show how Tr(Pk,i) is an upper bound of MSEk,i.
Fig. 2 shows that this holds for each sensor. Let MSEk =
1
|V|
∑

i∈V MSEk,i, Tr(Pk) =
1
|V|
∑

i∈V Tr(Pk,i). To illustrate
the relationship between the initial conditions and the out-
put of the DRKF, we provide Table II, where MSEmax =
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Fig. 2. Consistent estimates of DRKF.
TABLE II

MSEmax AND Pmax OF THE DRKF WITH DIFFERENT INITIAL QUANTITIES

maxk=51,...,100 MSEk, and Pmax = maxk=51,...,100 Pk. Here
we just consider k ∈ {51, . . . , 100}, since the estimation error
after k = 51 is relatively steady. Table II shows that P0,i and
Π0 have little influence on the output of the DRKF, but Di,j and
∓i,j affect MSEmax and Pmax, as expected.

We compare the proposed DRKF algorithm with central-
ized Kalman filter (CKF), centralized robust Kalman fil-
ter (CRKF) [10], [41], collaborative scalar-gain estimator
(CSGF) [30], and distributed state estimation with consensus on
the posteriors (DSEA-CP) [32]. The centralized filters CKF and
CRKF utilize the observations of all sensors without suffering
communication noise. Moreover, for the considered scenario,
CRKF is the optimal robust filter in the sense that its filter
gain ensures the minimum bound of MSE [10], [41]. The MSE
of these algorithms are shown in Fig. 3, which indicates that
the DRKF achieves better estimation accuracy than CSGF,
DSEA-CP, and DRKF. Fig. 4 shows that DRKF-SWF provides
bounded mean square estimation errors and consistent estimates.
By setting Δi = Δ, i ∈ V , Fig. 5 shows that DRKF-SWF with
sliding-window length L = 2 provides smaller upper bounds
than the DRKF by decreasing the interval length Δi.

B. Example 2

Consider the undirected network with 50 sensors in Fig. 6.
The weights of the adjacency matrix are given by

ai,j =
1

max{di, dj} , i ∈ V, j ∈ Ni, j �= i

ai,i = 1−
∑

j∈Ni,j �=i

ai,j .

Fig. 3. Comparison of tracking performance for the proposed filter DRKF
together with filters from the literature.

Fig. 4. Consistent estimates of DRKF-SWF with L = 2 and Δi = 5.

Fig. 5. Comparison between DRKF and DRKF-SWF.

where di is the cardinality of the set Ni. We assume Ak =
( 1.05
−0.1

0.1
0.98 ), μk = 0, Rk,i = 1, i ∈ {1, . . . , 50}. For each sen-

sor, the pair of measurement vector and fading statistics are
randomly chosen out of the four combinations in (19). The rest
of the simulation settings are the same as in Example 1. Fig. 7
shows the bounded MSE and its upper bound, which verifies the
estimation consistency of Algorithm 1. In Fig. 8, we compare the
estimation performance of the DRKF with the four algorithms
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Fig. 6. A sensor network with 50 nodes.

Fig. 7. The consistency of DRKF.

Fig. 8. Comparison between DRKF with filters from the literature.

mentioned in Example 1. The result shows that the proposed
DRKF achieves better performance than the CSGF, DSEA-CP,
and CKF, whose estimation errors are diverging fast due to the
instability of the system dynamics (i.e., ρ(Ak) = 1.02 > 1). The
performance of Algorithm 1, i.e., DRKF, is close to CRKF.

VI. CONCLUSION

This article studied a distributed robust state estimation prob-
lem for a class of discrete-time stochastic systems with mul-
tiplicative noise and degraded measurements over corrupted
communication channels. Employing local imprecise statistics,
we first proposed a three-step DRKF. Then, under some mild
conditions, we proved that its MSE is uniformly upper bounded
by a constant matrix after a finite transient time. The finite time
interval is related to the collective observability and the network
size. A switching fusion scheme based on a sliding-window
fusion method was proposed as a DRKF-SWF algorithm to
obtain a smaller upper bound of the MSE. By considering
extended computational ability of the sensors, the DRKF-SWF
shows that better performance can be achieved.

APPENDIX

A. Proof of Lemma 3.1

We use an inductive method to prove this lemma. At the initial
time, it follows from Assumption II.1 that E{x0x

T
0 } ≤ P0 =

Π0. Suppose at time k that E{xkx
T
k } ≤ Πk, ∀k ≥ 0. According

to (1), xk is adapted to Fk−1. By Assumption 2.1, we have
E{εkxk} = 0, andE{wkεk} = 0.ForE{ε2kxkx

T
k }, it holds that

E{ε2kxkx
T
k } = E{ε2k}E{xkx

T
k }, then

E{xk+1x
T
k+1}

= E{(Ak + Fkεk)xkx
T
k (Ak + Fkεk)

T }+ E{wkw
T
k }

+ E{(Ak + Fkεk)xkw
T
k }+ E{wkx

T
k (Ak + Fkεk)

T }

≤ AkE{xkx
T
k }AT

k + E{ε2k}FkE{xkx
T
k }FT

k + E{wkw
T
k }

≤ AkΠkA
T
k + μkFkΠkF

T
k +Qk = Πk+1.

Hence, we obtain E{xk+1x
T
k+1} ≤ Πk+1.

B. Proof of Lemma 3.2

Regarding the filtering structure in (4), for proof convenience,
we denote the state estimation errors by ēk,i = x̄k,i − xk, ẽk,i =

x̃k,i − xk, ¯̃ek,i,j = ˆ̃xk,i,j − xk, and ek,i = x̂k,i − xk, respec-
tively. Then it is straightforward to obtain the dynamics of these
estimation errors as follows

ēk,i = Ak−1ek−1,i − wk−1 − εk−1Fk−1xk−1

ẽk,i = (In − τk,iKk,iCk,i)ēk,i

+Kk,i(vk,i + (γk,i − τk,i)Ck,ixk)

¯̃ek,i,j = ẽk,j + εk,i,j , j ∈ Ni

ek,i =
∑
j∈Ni

Wk,i,j
¯̃ek,i,j .

(21)

First, we make a conjecture that if {x̂t−1,i, Pt−1,i}, t ≥
1 is conditionally consistent given the channel noise σ-
algebra Wt−1, i.e., E{et−1,ie

T
t−1,i|Wt−1} ≤ Pt−1,i, then the

pairs {x̄t,i, P̄t,i}, {x̃t,i, P̃t,i}, {x̂t,i, Pt,i} are all conditionally
consistent given Wk. In the following, we prove the conjecture.
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Suppose at time t = k, the pair {x̂k−1,i, Pk−1,i}, k ≥
1, is conditionally consistent given Wk−1. According to
Assumption II.1 and (21), we haveE{εk−1ek−1,ixk−1|Wk} = 0
and E{wk−1ek−1,i|Wk} = 0. It follows that

E{ēk,iēTk,i|Wk}

≤ Ak−1E{ek−1,ie
T
k−1,i|Wk−1}AT

k−1 +Qk−1

+ μk−1Fk−1E{xk−1x
T
k−1}FT

k−1

≤ Ak−1Pk−1,iA
T
k−1 + μk−1Fk−1Πk−1F

T
k−1 +Qk−1 = P̄k,i.

(22)

In the measurement update, according to (21), we
have ẽk,i = (In − τk,iKk,iCk,i)ēk,i +Kk,ivk,i + (γk,i −
τk,i)Kk,iCk,ixk. By Assumption II.1, E{ēk,iγk,i|Wk} = 0
and E{ēk,ivTk,i|Wk} = 0. Since vk,i and γk,i are mutually
independent and Kk,i is adapted to Wk, we have

E{ẽk,iẽTk,i|Wk}

≤ (In − τk,iKk,iCk,i)E{ēk,iēTk,i|Wk}(In − τk,iKk,iCk,i)
T

+ ϕk,iKk,iCk,iΠkC
T
k,iK

T
k,i +Kk,iRk,iK

T
k,i

≤ (In − τk,iKk,iCk,i)P̄k,i(In − τk,iKk,iCk,i)
T

+Kk,i

(
ϕk,iCk,iΠkC

T
k,i +Rk,i

)
KT

k,i = P̃k,i. (23)

Note that the communication channels are imperfect and the
messages received by each sensor are polluted by the channel
noise through (3). According to Assumption II.1 and (21), we
have

E{¯̃ek,i,j ¯̃eTk,i,j |Wk}

= E{(x̃k,j + εk,i,j − xk)(x̃k,j + εk,i,j − xk)
T |Wk}

≤ E{(x̃k,j − xk)(x̃k,j − xk)
T |Wk}+ E{εk,i,jεTk,i,j |Wk}

≤ P̃k,j + sup{εk,i,jεTk,i,j}

≤ P̃k,j +Υi,j

≤ P̃k,j +Dk,i,j +Di,j +Υi,j =
¯̃Pk,i,j +Di,j +Υi,j ,

where ¯̃Pk,i,j is the received matrix by sensor i from sensor j. In
the local fusion step, ek,i =

∑
j∈Ni

Wk,i,j
¯̃ek,i,j . Given Wk,i,j

in (5), according to (23) and the consistent estimation of the CI
method [38], we have E{ek,ieTk,i|Wk} ≤ Pk,i.

Thus, the conjecture holds. Then the conclusion is obtained
based on the conjecture and the initial estimation condition in
Assumption II.1.

C. Proof of Lemma III.3

According to Lemma III.2, we have

P̃k,i = (In − τk,iKk,iCk,i)P̄k,i(In − τk,iKk,iCk,i)
T

+Kk,i

(
ϕk,iCk,iΠkC

T
k,i +Rk,i

)
KT

k,i

= P̄k,i − τk,iKk,iCk,iP̄k,i − τk,iP̄k,iC
T
k,iK

T
k,i

+ τ2k,iKk,iCk,iP̄k,iC
T
k,iK

T
k,i

+Kk,i

(
ϕk,iCk,iΠkC

T
k,i +Rk,i

)
KT

k,i

= P̄k,i − τk,iKk,iCk,iP̄k,i − τk,iP̄k,iC
T
k,iK

T
k,i

+Kk,iΞk,iK
T
k,i

= (Kk,i −K∗
k,i)Ξk,i(Kk,i −K∗

k,i)
T

+ (I − τk,iK
∗
k,iCk,i)P̄k,i, (24)

where K∗
k,i = τk,iP̄k,iC

T
k,iΞ

−1
k,i and Ξk,i = τ2k,iCk,iP̄k,iC

T
k,i +

Rk,i + ϕk,iCk,iΠkC
T
k,i. Thus, (24) shows that Tr(P̃k,i) is

minimized when Kk,i = K∗
k,i = τk,iP̄k,iC

T
k,iΞ

−1
k,i. As a result,

P̃k,i = (I − τk,iKk,iCk,i)P̄k,i.SinceK∗
k,i is a measurable func-

tion of P̄k,i, which is adapted to Wk, also, K∗
k,i is adapted

to Wk.

D. Proof of Lemma III.4

According to Lemma III.1, we have Πk+1 = AkΠkA
T
k +

μkFkΠkF
T
k +Qk. Taking the 2-norm of both sides

yields ‖Πk+1‖2 ≤ ‖Πk‖2(‖Ak‖22 + μk‖Fk‖22) + ‖Qk‖2.
Denote ‖Ak‖22 + μk‖Fk‖22 =: ᾱk and ‖Qk‖2 =: q̄k. Then,
‖Πk+1‖2 ≤ �k+1, where �k+1 = ‖P0‖2

∏k
i=0 ᾱi +∑k

s=1(q̄s−1

∏k
j=s ᾱj) + q̄k. It follows that R̄k,i =:

Rk,i + ϕk,iCk,iΠkC
T
k,i ≤ Rk,i +�kϕk,iCk,iC

T
k,i = R̃k,i.

If (6) is satisfied, (11) holds.

E. Proof of Lemma III.5

According to Lemma III.1 and Assumption III.2,
we have Πkt+1

= Φkt+1,kt
Πkt

ΦT
kt+1,kt

+Qkt+1,kt
+

μkt
Φkt+1,kt

Fkt
Πkt

FT
kt
ΦT

kt+1,kt
. Multiplying from left by

μkt+1
Fkt+1

and from right by FT
kt+1

yields

μkt+1
Fkt+1

Πkt+1
FT
kt+1

= μkt+1
Fkt+1

Φkt+1,kt
Πkt

ΦT
kt+1,kt

FT
kt+1

+ μkt+1
Fkt+1

μkt
Φkt+1,kt

Fkt
Πkt

FT
kt
ΦT

kt+1,kt
FT
kt+1

+ μkt+1
Fkt+1

Qkt+1,kt
FT
kt+1

,

where Qkt+1,kt
=
∑kt+1

k=kt
Φkt+1,kQkΦ

T
kt+1,k

. Denote

μkt
Fkt

Πkt
FT
kt

=: Θkt
, then we have
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Θkt+1

=
μkt+1

μkt

Fkt+1
Φkt+1,kt

F−1
kt

Θkt
F−T
kt

ΦT
kt+1,kt

FT
kt+1

+ μkt+1
Fkt+1

Φkt+1,kt
Θkt

ΦT
kt+1,kt

FT
kt+1

+ μkt+1
Fkt+1

Qkt+1,kt
FT
kt+1

. (25)

Taking 2-norm of both sides of (25) yields

‖Θkt+1
‖2

≤ ‖μkt+1

μkt

Fkt+1
Φkt+1,kt

F−1
kt

Θkt
F−T
kt

ΦT
kt+1,kt

FT
kt+1

‖2

+ ‖μkt+1
Fkt+1

Φkt+1,kt
Θkt

ΦT
kt+1,kt

FT
kt+1

‖2
+ μkt+1

‖Fkt+1
Qkt+1,kt

FT
kt+1

‖2
≤ ρkt

‖Θkt
‖2 + μkt+1

‖Fkt+1
Qkt+1,kt

FT
kt+1

‖2. (26)

According to [43], conditions (9) and (10) now give
supkt∈N ‖Θkt

‖2 < ∞, i.e., Θk is uniformly upper bounded.

F. Proof of Theorem III.1

Introduce

Sk,i := P−1
k,i

Q̃k := μkFkΠkF
T
k +Qk

Gk,i :=
∑
j∈Ni

ai,jC̄
T
k,jR̄

−1
k,jC̄k,j

R̄k,i := Rk,i + ϕk,iCk,iΠkC
T
k,i.

By Assumption II.1,

¯̃Pk,i,j +Di,j +Υi,j

= P̃k,j +Dk,i,j +Di,j +Υi,j

≥ P̃k,j +Υi,j ≥ P̃k,j .

As infk∈N Qk > 0, and supk∈N [τ2k,iC
T
k,iR

−1
k,iCk,i] < ∞ in As-

sumption II.1, there exists a scalar ϑ0 > 0 such that ¯̃Pk,i,j +

Di,j +Υi,j ≤ (1 + ϑ0)P̃k,j .
According to Algorithm 1 and Lemma III.5,

Sk,i =
∑
j∈Ni

ai,j(
¯̃Pk,i,j +Di,j +Υi,j)

−1

≥
∑
j∈Ni

ai,j
1 + ϑ0

(
Ak−1S

−1
k−1,jA

T
k−1 + Q̃k−1

)−1

+
Gk,i

1 + ϑ0

≥ η̄A−T
k−1

⎛
⎝∑

j∈Ni

ai,jSk−1,j

⎞
⎠A−1

k−1 +
Gk,i

1 + ϑ0
, (27)

where0 < η̄ < 1. This inequality is obtained by Lemma 1 in [32]
using Assumption III.2 and 1

1+ϑ0
< 1. Let aij,k be the (i, j)th

element of Ak. By recursively applying (27) k ≥ N + N̄ times,
we have

Sk,i ≥ η̄kΦ−T
k,0

⎡
⎣∑

j∈V
aij,kS0,j

⎤
⎦Φ−1

k,0 +
S̄k,i

1 + ϑ0
, (28)

where

S̄k,i =

k∑
s=1

η̄s−1Φ−T
k,k−s+1

[∑
j∈V

aij,sS̃k−s+1,j

]
Φ−1

k,k−s+1,

with S̃k,j = C̄T
k,jR̄

−1
k,jC̄k,j . Since the first term of the right-hand

side of (28) is positive definite, it follows that

Sk,i ≥ S̄k,i

1 + ϑ0
, ∀k ≥ N + N̄ . (29)

Since G is strongly connected, aij,s > 0 for s ≥ N − 1 [26].
Supposing L̄ = N + N̄ , we obtain

S̄k,i ≥
L̄∑

s=1

η̄s−1Φ−T
k,k−s+1

[∑
j∈V

aij,sS̃k−s+1,j

]
Φ−1

k,k−s+1

≥ aminη̄
L̄−1

L̄∑
s=N

Φ−T
k,k−s+1

[∑
j∈V

S̃k−s+1,j

]
Φ−1

k,k−s+1

= aminη̄
L̄−1

N∑
j=1

L̄∑
s=N

Φ−T
k,k−s+1S̃k−s+1,jΦ

−1
k,k−s+1, (30)

where amin = mini,j∈V,s∈{N,...,L̄} aij,s > 0.
According to Assumption III.2, there exists a scalar β > 0,

such that Φ−T
k,k−L̄+1

Φ−1
k,k−L̄+1

≥ βIn, ∀k ≥ 0. From Lemma

III.4 and L̄ = N + N̄ , it holds that

N∑
j=1

L̄∑
s=N

Φ−T
k,k−s+1S̃k−s+1,jΦ

−1
k,k−s+1

= Φ−T
k,k−L̄+1

×
N∑
j=1

[
k−N+1∑

s=k−L̄+1

ΦT
s,k−L̄+1S̃k−L̄+1,jΦs,k−L̄+1

]
Φ−1

k,k−L̄+1

≥ αΦ−T
k,k−L̄+1

Φ−1
k,k−L̄+1

≥ αβIn, ∀k ≥ N + N̄ . (31)

Summing up (30) and (31) yields

S̄k,i ≥ aminη̄
L̄−1αβIn, ∀k ≥ N + N̄ . (32)

Let S∗(α) = aminη̄
L̄−1αβIn. In light of (29), it holds that

P−1
k,i = Sk,i ≥ S∗(α), ∀k ≥ N + N̄ . Hence, supk≥L̄ Pk,i ≤

S−1
∗ (α). Since the filter is conditionally consistent,

supk≥L̄ E{(x̂k,i − xk)(x̂k,i − xk)
T |Wk} ≤ S−1

∗ (α). Taking
mathematical expectation of both sides and denoting

η = η̄1−L̄

amin
> 0, the conclusion of the theorem holds.
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