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Asynchronous Distributed Blind Calibration of
Sensor Networks Under Noisy Measurements

Miloš S. Stanković , Srdjan S. Stanković, and Karl Henrik Johansson

Abstract—In this paper, a novel distributed algorithm for asyn-
chronous blind macro-calibration in sensor networks with noisy
measurements is proposed. The algorithm is formulated as a set
of instrumental variable type recursions for estimating param-
eters of sensor calibration functions. It is proved using asyn-
chronous stochastic approximation arguments and properties of
block-diagonally dominant matrices that the algorithm achieves
asymptotic consensus for sensor gains and offsets in the mean
square sense and with probability one. Recommendations for sys-
tem design in terms of the choice of a priori tunable weights are
provided. Special attention is paid to the situation when a subset
of sensors in the network (reference sensors) remains with fixed
characteristics. In the case of only one reference sensor, conver-
gence of the remaining sensors to its characteristics is proved. In
the case of more than one reference sensor, it is proved that the
calibration parameters converge to points that depend only on the
characteristics of the reference sensors and the network properties.

I. INTRODUCTION

S ENSOR calibration represents one of the most important
challenges for the wide deployment of large wireless sensor

networks [1], [2]. Individual calibration of each sensor (micro-
calibration) is applicable only in relatively small sensor sys-
tems. In the case of larger networks, new concepts and methods
are required, having in mind that many devices can be partially
unobservable and operating in dynamically changing environ-
ments. Calibration of a network as a whole is the essence of
macro-calibration, eliminating the need to separately calibrate
every device (e.g., [3], [4]). Methods for calibrating sensor net-
works without dependence on controlled stimuli are of signif-
icant interest for practice. This problem, referred to as blind
calibration, is a difficult one, having some similarities with the
problems of blind estimation, blind deconvolution and blind
equalization (e.g., [5]–[7] and references therein). In [8], [9] a
centralized, non-recursive blind calibration algorithm has been
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proposed. In [10], centralized convex optimization approaches
to blind estimation of calibration gains have been proposed using
sparsity. Another approach to blind sensor calibration assumes
that the deployment is very dense and is based only on pairwise
inter-node communications [11]. There are also methods trying
to cope with situations in which sensor network deployments
may not meet the density requirements, as in [12]. In [13] and
[14], a methodologically different approach has been adopted,
based on formulating the calibration problem as an asymptotic
consensus problem, solved using a distributed gradient-type re-
cursive algorithm which ensures that the corrected offsets and
gains converge to the same values, assuming noiseless sensor
measurements and synchronous iterations requiring a common
global clock. It bears a certain resemblance with the approaches
to clock synchronization in sensor networks in [15]–[21]. Ex-
tended consensus algorithms have been applied to calibration
and localization problems in wireless sensor networks [22],
[23], and directly to calibration [24], [25], but within differ-
ent contexts.

In this paper, we focus our main attention on two important
extensions of the approach in [13]:

1) the proposed algorithm operates completely asyn-
chronously by using a broadcast gossip communication scheme,
without requiring any type of centralized command, information
or clock;

2) starting from the assumption that the measurements are
corrupted by additive measurement noise, it is shown that the
gradient algorithm proposed in [13] is not applicable; instead,
a new recursive algorithm of instrumental variable type is pro-
posed for solving the calibration problem.

The new algorithm is in the form of distributed recursions
for calibration parameter estimation controlled by local clocks
ticking according to the local sleeping policies. The proposed
method works under the usual sleeping policies for wireless sen-
sor networks (e.g., [26] and references therein). At a local clock
tick, a sensor node wakes up and sends its corrected output to its
out-neighbors, initiating them to acquire measurement data and
update their calibration parameters. The proposed algorithm of
instrumental variable type, aimed at coping with measurement
noise influence in sensor calibration, can also be considered
as an important and non-trivial extension of the standard (syn-
chronous or asynchronous) dynamic consensus algorithms (e.g.,
[27]–[34]).

By using a novel methodology dealing with block-diagonally
dominant systems and asynchronous stochastic approximation
arguments, it is proved, starting from general and practically
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nonrestrictive assumptions, that the whole algorithm converges
to consensus with probability one (w.p.1) and in the mean square
sense, i.e., the calibration is successful in the sense that asymp-
totically all sensors behave identically.

The paper covers also the following two new topics, important
for practice:

3) Starting from the problem of distributed minimization as
in [13], a completely new analysis is provided clarifying the
influence of a priori chosen weights to the asymptotic behavior
of the algorithm. The derived conclusions can serve as an indi-
cation of how these weights are to be chosen in accordance with
the system requirements.

4) Special attention is paid to the calibration problem in which
a subset of sensors remains with fixed parameters, when thus the
network becomes pinned to these sensors. This situation arises
in practice for instance when only a newly added subset of sen-
sors has to be calibrated. It is proved that the algorithm again
converges, w.p.1 and in the mean square sense, not to a consen-
sus, but to certain points determined by the characteristics of
the fixed sensors and the network properties. In the case of one
reference sensor, which can be considered to be calibrated man-
ually to ideal characteristics, all the remaining sensors converge
to the desired calibration parameter values.

A simulation study illustrates the efficiency of the algorithm
in the situations treated in the theoretical part. We also numer-
ically compare our algorithm to the one in [17], representing
a typical consensus-based algorithm proposed for calibration.
We apply the scheme from [17] to the (synchronous version of)
blind calibration problem treated in this paper, and show the
superiority of our algorithm under measurement noise.

Preliminary results presented in [35] contain some main ideas
and sketches of some of the proofs presented in this work, also
treating the case when the measurement noise is present but
assuming completely synchronous functioning of the underlying
sensor network.

The rest of the paper is organized as follows. Section II deals
with the problem formulation and the derivation of the main
asynchronous calibration algorithm. In Section III convergence
analysis is presented, and recommendations for the choice of
a priori tunable network weights are provided. Section IV is
devoted to the case when multiple nodes with fixed calibration
parameters are present. In Section V we present some illustrative
simulation results and numerically compare the proposed algo-
rithm with the algorithm from [17] adapted to the calibration
problem.

II. PROBLEM FORMULATION AND CALIBRATION ALGORITHM

Consider n distributed sensors forming a network with the
topology represented by a directed graph G = (N , E), where N
is the set of nodes (sensors) and E the set of directed links (i, j)
(node i sends messages to node j). Let N in

i = {j ∈ N|(j, i) ∈
E} be the set of in-neighbors nodes of the i-th node, andN out

i =
{j ∈ N|(i, j) ∈ E} the set of its out-neighbors. Assume that the
sensors can measure a continuous-time signal x(t) at discrete
instants tk , tk ∈ R + , k = 1, 2, . . ., tk+1 > tk , producing the
sensor outputs

yi(tk ) = αix(tk ) + βi + ξi(tk ) (1)

where the gain αi and the offset βi are unknown constants
and ξi(tk ) the measurement noise, i = 1, . . . , n. Each sensor i
applies an affine calibration function to yi(tk ), which produces
the corrected sensor output

zi(tk ) = aiyi(tk ) + bi = gix(tk ) + fi + aiξi(tk ) (2)

where ai and bi are the calibration parameters, gi = aiαi is
the corrected gain and fi = aiβi + bi the corrected offset, i =
1, . . . , n. In general, it is desirable to choose parameters ai and
bi in such a way as to set gi and fi as close as possible to one
and zero, respectively.

Starting from the general idea of blind macro-calibration, the
aim is to construct an algorithm for distributed real-time esti-
mation of the calibration parameters ai and bi which asymp-
totically provides identical behavior of all the sensors, without
the knowledge of the signal x(t) and without any kind of fu-
sion center. In order to eliminate the need for a common global
clock, we assume that each node j ∈ N has its own local clock,
and we introduce a single virtual clock that ticks whenever any
of the local clocks ticks. The time instant tk in (1) can now
be defined as the absolute time instant of the k-th tick of the
virtual clock. To have a well-posed situation, we assume that
the local clocks tick independently according to some random
processes such that the intervals between any two consecutive
ticks are finite w.p.1 (also in the limit when k → ∞). We also
assume that the unconditional probability that the j-th clock
ticked at an instance tk is qj > 0 which does not depend on k.
These conditions are satisfied if the local clocks tick according
to independent Poisson processes with rates μj (as in, e.g., [30],
[36]); in this case the virtual global clock ticks according to a
Poisson process with the rate

∑n
j=1 μj (see, e.g., [26] and ref-

erences therein for some common sleeping policies in wireless
sensor networks). For the sake of clarity of analysis, we shall
adopt the last assumption throughout the paper.

Let the discrete-time instants of ticks of the clock of a node
j be denoted as tjl , l = 1, 2, . . .. At each tick of its clock,
node j broadcasts its current corrected output zj (t

j
l ) (based on

the current values of aj and bj ) to its out-neighbors i ∈ N out
j .

We assume that each link (j, i) is subject to random dropouts,
so that each node i ∈ N out

j hears the broadcast with probability
pji > 0. Immediately after getting the message (practically at
the same instant, having in mind the time constants of the signal
and the communication/computation speed of the nodes), all
the nodes which have received the broadcast calculate their
own current corrected outputs zi(t

j
l ) and update the values of

their calibration parameters ai and bi . The process is repeated
after each tick of any node in the network; we assume that only
one clock can tick at a given time. Let j(k) be the index of
the agent that broadcasts at instants tk , let J(k) be the subset
of the set of out-neighbors i ∈ N out

j (k) that hear the broadcast,

and let x(k) = x(tk ) = x(tj (k)
l ), yi(k) = yi(tk ) = yi(t

j (k)
l ),

yj (k) = yj (tk ) = yj (k)(t
j (k)
l ), zi(k) = zi(tk ) = zi(t

j (k)
l ),

zj (k) = zj (tk ) = zj (k)(t
j (k)
l ), ξi(k) = ξi(tk ) = ξi(t

j (k)
l ), and

ξj (k) = ξj (tk ) = ξj (k)(t
j (k)
l ) for some l.
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Following the idea presented in [13], we attach to each node
i ∈ N a local criterion

Fi(θi) =
∑

j∈N i n
i

γijE{(zj (k) − zi(k))2} (3)

where θi = [ai bi ]T , E{·} denotes the mathematical expecta-
tion, and γij > 0 are a priori chosen scalar weights defining
the relative importance of the in-neighboring nodes (γij = 0 for
j /∈ N in

i ). Following directly the line of thought of [13], we can
formulate

gradθi Fi(θi) =
∑

j∈N in
i

γijE

{

(zj (k) − zi(k))
[
yi(k)

1

]}

= 0

(4)
which may be used for generation of stochastic gradient updates
for θi that utilize samples of gradθi Fi(θi) (e.g., [13], [37]). How-
ever, it is immediately clear from (1) and (2) that both zi(k) and
yi(k) contain the same noise term ξi(k), and that, consequently,
the resulting estimates would be biased even in the white noise
case, having in mind that the term E{ξi(k)2} �= 0 appears ex-
plicitly in (4) (see the discussion below). In order to cope with
this problem, we shall follow a more general methodology taken
from system identification, and replace yi(k) in (4) by an instru-
mental variable ζi(k), which should be, in general, uncorre-
lated with ξi(k), but correlated with x(k) [37], [38]. Having
in mind the whole distributed calibration setting, including the
assumption that {ξi(k)} is white, our choice of the local instru-
mental variable ζi(k) for node i is in the form of the delayed
measurement

ζi(k) = yi(di(k))

where di(k) is the iteration number that corresponds to the
instant of immediate past local measurement performed at
the node i. Therefore, we propose the following new procedure
of instrumental variable type for updating the local calibration
parameters:

θ̂i(k) = θ̂i(k − 1) + δi(k)γi,j (k)εi,j (k)(k)
[
yi(di(k))

1

]

(5)

where:
1) θ̂i(k) = [âi(k) b̂i(k)]T ,
2) δi(k) is the step size defined as δi(k) = νi(k)−c , where

νi(k) =
∑k

m=1 I{i ∈ J(m)} (I{·} denotes the indicator
function) represents the number of updates of node i up
to the instant k, 1/2 < c ≤ 1,

3) εi,j (k)(k) = ẑj (k)(k) − ẑi(k),
4) the current corrected outputs of nodes j(k) and i are

given by

ẑj (k)(k) = âj (k)(k − 1)yj (k)(k) + b̂j (k)(k − 1) (6)

ẑi(k) = âi(k − 1)yi(k) + b̂i(k − 1). (7)

It will be adopted that the initial conditions are θ̂i(0) =
[1 0]T . For all i /∈ J(k) the calibration parameters are not
updated: θ̂i(k) = θ̂i(k − 1). The algorithm is, evidently, very
simple, requiring just a few arithmetic operations per iteration.
Notice that at each iteration it requires locally a signal sample,

the value of the local instrumental variable and the current out-
put of one of in-neighbors. Explicit knowledge of k (or di(k))
is not required. The pseudocode of the algorithm is presented as
Algorithm 1.

Algorithm 1: Asynchronous calibration algorithm.
for All the nodes i ∈ N do

Initialize âi(0) = 1, b̂i(0) = 0, and yi(0) = 0
end for
loop

if Tick tk = t
j (k)
l of the local clock of a node j(k) ∈ N

then
Measure the current local sensor output yj (tk ) = yj (k)
Calculate ẑj (k) using (6)
Broadcast ẑj (k) to the out-neighbours N out

j

end if
end loop
loop

if A message is received by a node i ∈ N (from a node
j(k) ∈ N in

i ) then
Measure the current local sensor output yi(tk ) = yi(k)
Calculate ẑi(k) using (7)
Calculate new estimates of the calibration parameters
according to (5)

end if
end loop

Remark 1: It is to be noticed that δi(k) depends only on the
locally available data, making the algorithm completely decen-
tralized.

Remark 2: As in the synchronous operation mode treated in
[13], the role of the weights γij in (3), and, consequently, in (5),
is to take into account relative importance of in-neighbors (see
the discussion below).

Remark 3: Notice also that the instrumental variables in (5)
can be chosen locally in different ways. One of possibilities
easily implementable in practice is to choose ζi(k) = yi(t̄

j,i
l ),

where t̄j,il is the continuous time instant of an additional mea-
surement performed locally at node i, shortly after the instant
of the last update performed at node i. This scheme will not be
incorporated in the general setting, since it would require a more
complicated definition of the sequence of iteration numbers.

The underlying idea of the whole procedure based on (5) is to
ensure that the estimates of all the local corrected gains ĝi(k) =
âi(k)αi and offsets f̂i(k) = âi(k)βi + b̂i(k) tend asymptoti-
cally to the same values ḡ and f̄ , respectively, implying that
in the limit ẑj (k) = ẑi(k), i, j = 1, . . . , n. Therefore, we intro-
duce, for the sake of further analysis,

ρ̂i(k) =
[
ĝi(k)
f̂i(k)

]

=
[
αi 0
βi 1

]

θ̂i(k) (8)

and

εi,j (k)(k) =
[
x(k) 1

]
(ρ̂j (k)(k) − ρ̂i(k))

+ âj (k)(k)ξj (k)(k) − âi(k)ξi(k). (9)
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Consequently, we have

ρ̂i(k) = ρ̂i(k − 1) + δi(k)γi,j (k){(Φi(k) + Ψi(k))

× (ρ̂j (k)(k − 1) − ρ̂i(k − 1))

+Ni,j (k)(k)ρ̂j (k)(k − 1) −Nii(k)ρ̂i(k − 1)} (10)

where

Φi(k) =

[
αiβix(k) + α2

i x(k)x(di(k))

(1 + β2
i )x(k) + αiβix(k)x(di(k))

αiβi + α2
i x(di(k))

1 + β2
i + αiβix(di(k))

]

Ψi(k) = ξi(di(k))

[
αix(k) αi

βix(k) βi

]

Ni,j (k)(k) =
ξj (k)(k)
αj (k)

[
αiy

0
i (di(k)) 0

βiy
0
i (di(k)) 0

]

+

[
ξj (k ) (k)ξi (di (k))

αj (k )
0

0 0

]

and

Nii(k) =
ξi(k)
αi

[
αiy

0
i (di(k)) 0

βiy
0
i (di(k)) 0

]

+

[
ξi (k)ξi (di (k))

αi
0

0 0

]

where y0
i (k) = αix(k) + βi , with the initial conditions ρ̂i(0) =

[αi βi ]T , i ∈ J(k).
Recursion (10) for i = 1, . . . , n, can be represented in the

following compact form:

ρ̂(k) = {I + [Φ(k) + Ψ(k)](Δ(k)Γ(k) ⊗ I2)

+(Δ(k) ⊗ I2)Ñ(k)}ρ̂(k − 1) (11)

where:
1) ρ̂(k) = [ρ̂1(k)T . . . ρ̂n (k)T ]T ,
2) Δ(k) = diag{δ1(k), . . . , δn (k)},
3) Φ(k) = diag{Φ1(k), . . . ,Φn (k)},
4) Γ(k) = [Γ(k)lm ], with Γ(k)ll = −γl,j (k) and

Γ(k)l,j (k) = γl,j (k) for all l ∈ J(k), Γ(k)lm = 0,
otherwise,

5) Ψ(k) = diag{Ψ1(k), . . . ,Ψn (k)},
6) Ñ(k) = [Ñlm (k)], where Ñll(k) = −γl,j (k)Nll(k)

and Ñl,j (k)(k) = γl,j (k)Nl,j (k)(k), for all l ∈ J(k),
Ñ(k)lm = 0, otherwise.

The initial condition is ρ̂(0) = [ρ̂1(0)T . . . ρ̂n (0)T ]T =
[[α1 β1 ]T . . . [αn βn ]T ]T .

III. ANALYSIS OF THE ALGORITHM

A. Convergence Proof

In the basic setting, we assume:
(A1) {x(k)} is a stationary random sequence bounded w.p.1,

satisfying the φ-mixing condition.

Remark 4: The φ-mixing condition is one of the strong
mixing conditions (implying the frequently used α-mixing
condition) [39]–[41]. Let (Ω,F , P ) be the underlying prob-
ability space, FL

J the σ-field generated by x(k), J ≤ k ≤
L and φ(ν) = supM φ(FM

−∞,F∞
M+ν ) = supM sup |P (B|A) −

P (A)|, A ∈ FM
−∞,B ∈ F∞

M+ν , ν ≥ 1; for stationary sequences
M = 0. The process is φ-mixing if limν→∞ φ(ν) = 0 [39].

(A2) Let {ti,l}, l = 1, 2, . . . represent time instants in which
node i measures the signal x(t). Then, mini r̄i > m2 , where
m = E{x(k)} and r̄i = E{x(ti,l)x(ti,l−1)}, i = 1, . . . , n.

Remark 5: Assumption (A2) represents an extension of the
condition (A1.c) from [13], resulting from the introduction of
delayed measurements yi(di(k)) in (5). It implies that the vari-
ance of x(k) is greater than zero (for all k, due to stationarity);
hence, it ensures the persistence of excitation, not allowing,
e.g., constant signals [13], [37]. On the other hand, it does not
allow, e.g., white noise signals, having in mind the requirement
that the instrumental variable should be correlated with the cur-
rent measurement x(k). Note that, due to stationarity of {x(t)},
r̄i can be written as E{E{x(0)x(Δti)|Δti}}, where Δti is ex-
ponentially distributed with the mean depending on the rates
μj and the probabilities pji , j ∈ N in

i . Hence, for fixed rates
μj , (A2) is always satisfied for processes {x(t)} for which the
autocovariance function Cxx(τ) = E{x(0)x(τ)} −m2 is pos-
itive in a sufficiently wide interval about the origin. If the rates
μj are adjustable and Cxx(τ) is continuous, it is always pos-
sible to choose μmin = minj∈N μj large enough, such that the
assumption is always satisfied (since Cxx(0) > 0). Hence, the
assumption is not restrictive for processes having low frequency
spectrum, which are typical in practice (e.g., continuous-time
ARMA low pass processes [37]). We shall provide an additional
insight into this subject in Remark 8.

(A3) {ξi(k)}, i = 1, . . . n, are zero mean sequences of
bounded w.p.1 and independent random variables, independent
of the measured process {x(t)}, with E{ξi(k)2} = (σξi )

2 for
all k.

(A4) Graph G has a spanning tree.
Remark 6: Assumptions (A3) and (A4) are standard for sim-

ilar problems. Assumption (A4) implies that graphG has a center
node from which all the remaining nodes are reachable.

Based on the given problem definition and the adopted as-
sumptions, we are able to prove the following main result,
stating that the calibration parameters will converge to the
proper values. Having in mind the above discussion related
to the choice of instrumental variables (Remark 3), w.l.o.g.
we shall adopt, for the sake of more transparent analysis,
that the estimate θ̂i(k − 1) in (5) is connected to the instant
di(di(k)), i.e., to the measurement instant at node ipreceding the
instant di(k).

Theorem 1: Let Assumptions (A1)–(A4) be satisfied.
Then ρ̂(k) generated by (11) converges to ρ̂∞ = χ1v1 +
χ2v2 in the mean square sense and w.p.1, where χ1
and χ2 are random variables with bounded second mo-
ments, v1 =

[
1 0 1 0 . . . 1 0

]T ∈ R2n and v2 =
[
0 1 0 1 . . . 0 1

]T ∈ R2n .
Before proceeding to the proof of the theorem, we shall

pay attention to several important prerequisites, related to the



STANKOVIĆ et al.: ASYNCHRONOUS DISTRIBUTED BLIND CALIBRATION OF SENSOR NETWORKS UNDER NOISY MEASUREMENTS 575

asynchronous functioning of the algorithm and some structural
properties of the matrices involved.

We first discuss asymptotics of the step-size matrix Δ(k).
The following lemma represents a generalization of the result
in [36].

Lemma 1: Let (A4) be satisfied, and let pi be the un-
conditional probability of node i to update at the instant k,
i = 1, . . . , n. Then, for a given q ∈ (0, 1

2 ), there exists such a
k̄(q) that w.p.1 for all k ≥ k̄

Δ(k) =
1
kc
P−c + Δ̃(k) (12)

where P = diag{p1 , . . . , pn}, Δ̃(k) = diag{δ̃1(k), . . . , δ̃n (k)}

|δ̃i(k)| ≤ δ̄i
1

kc+
1
2 −q

(13)

0 < δ̄i <∞, i = 1, . . . , n.
Proof: According to (A4), pi =

∑
j∈N i n

i
qj pji > 0, i =

1, . . . , n. From Lemma 3 in [36] we have that w.p.1 for k large
enough | 1

νi (k) − 1
kpi

| ≤ κ 1
k

3
2 −q , κ > 0. Using this result, we ob-

tain that there exist such constants δ̄i > 0 that w.p.1 for k large
enough

∣
∣
∣
∣

1
νi(k)c

− 1
(kpi)c

∣
∣
∣
∣ ≤ δ̄i

1
kc+

1
2 −q

which proves the lemma. �
After applying Lemma 1 to (11), we realize that the con-

vergence properties of the recursion essentially depend on ma-
trix B(k) = Φ(k)(P−cΓ(k) ⊗ I2) (both Ψ(k) and Ñ(k) are
noise terms). Therefore, we shall first pay attention to the
matrix B̄ = E{B(k)} = Φ̄(P−c Γ̄ ⊗ I2), where Φ̄ = diag{Φ̄1 ,
. . . , Φ̄n}, with

Φ̄i = E{Φi(k)}

=

[
αiβim+ α2

i r̄i αiβi + α2
i m

(1 + β2
i )m+ αiβi r̄i 1 + β2

i + αiβim

]

and Γ̄ = E{Γ(k)}, which has the following form:

Γ̄ =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− ∑

j,j �=1
γ1j π1j γ12π12 · · · γ1nπ1n

γ21π21 − ∑

j,j �=2
γ2j π2j · · · γ2nπ2n

. . .
γn1πn1 γn2πn2 · · · − ∑

j,j �=n
γnjπnj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(γij = 0 when j /∈ Ni), whereπij = qj pji is the probability that
node i updates as a consequence of a tick of node j (note that
πij = 0 when i /∈ N out

j ). Matrix Γ̄ contains information on the
network structure, including transmission probabilities, as well
as on the relative importance of nodes for the whole calibration
process (see Lemma 4 below).

The following lemmas follow methodologically [13]; how-
ever, the results presented here are new, since they are con-
nected to a basically different setting, based on asynchronous
communications.

Lemma 2: Let (A1), (A2) and (A4) be satisfied. Then B̄ has
two eigenvalues at the origin and the remaining ones in the left
half complex plane.

Proof: We first observe that −Φ̄i is Hurwitz, because

α2
i (r̄i −m2) > 0, 2αiβim+ α2

i r̄i + 1 + β2
i > 0, (14)

under (A2). On the other hand, matrix Γ̄, which has the form
of a weighted Laplacian of G, under (A4) has one eigenvalue at
the origin and the remaining ones in the open left half complex
plane (e.g., [28]). Having in mind the block structure of B̄,
we use the basic result derived in [13], stating that a matrix
C = [Cij ], composed of the blocks Cij ∈ Cm×m , is Hurwitz,
provided: 1) it has quasi dominating diagonal blocks, and 2) the
blocks Cii are Hurwitz, i, j = 1, . . . , n (matrices with quasi-
dominating diagonal blocks are defined and discussed in, e.g.,
[42], [43]). Thus, the result follows. �

The following lemma enables application of the result of
Lemma 2 to the analysis of the recursion (11). Note that vectors
v1 and v2 represent right eigenvectors of B̄ corresponding to the
zero eigenvalue. Letw1 andw2 be the corresponding normalized

left eigenvectors, satisfying

[
w1........
w2

]

[v1
.... v2 ] = I2 .

Lemma 3: The left eigenvectorsw1 andw2 of B̄ correspond-
ing to the zero eigenvalue depend only on the sensor and network
parameters.

If T =
[
v1

.... v2
....T2n×(2n−2)

]
, where T2n×(2n−2) is an 2n×

(2n− 2) matrix such that span{T2n×(2n−2)} = span{B̄},
then:

1) T is nonsingular,

2) T−1 =

⎡

⎢
⎣

w1..................
w2..................

S(2n−2)×2n

⎤

⎥
⎦ , where S(2n−2)×2n follows from

the definition of T , and

3) T−1B̄T =

[
02×2

...........

02×(2n−2).................................
0(2n−2)×2 B̄∗

]

, where B̄∗ is

Hurwitz.
Proof: Define ψ

[1]
i = [αiβi 1 + β2

i ]
T and ψ

[2]
i = [α2

i

αiβi ]T , so that one can write

Φ̄i = [ψ[1]
i m+ ψ

[2]
i r̄i

... ψ[1]
i + ψ

[2]
i m].

If w = [w[1], . . . , w[n ] ], where w[1], . . . , w[n ] are 2-D row-
vectors, the equation wB̄ = 0 gives the following set of equa-
tions:

−w[i]Φ̄ip
−c
i

n∑

j=1,j �=i
γij πij +

n∑

l=1,l �=i
w[l]Φ̄lγliπlip

−c
l = 0

(15)
equivalent to

−w[i]ψ
[1]
i p−ci

∑

j,j �=i
γij πij +

∑

l,l �=i
w[l]ψ

[1]
l γliπlip

−c
l = 0

−w[i]ψ
[2]
i p−ci

∑

j,j �=i
γij πij +

∑

l,l �=i
w[l]ψ

[2]
l γliπlip

−c
l = 0
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i = 1, . . . , n, which, obviously, do not depend on x(k); this
proves the first part.

Assertions 1), 2), and 3) follow from the Jordan decomposi-
tion. �

It is important to notice that

T−1B(k)T =

[
02×2

...........

B1(k).................................
0(2n−2)×2 B2(k)

]

(16)

where B1(k) and B2(k) are 2 × (2n− 2) and (2n− 2) ×
(2n− 2) matrices, respectively; this property will be utilized
below. We now proceed with the proof of Theorem 1.

Proof of Theorem 1: In order to achieve a more com-
pact notation, we shall introduce the sequence {τi(k)}, i =
−1, 0, 1, 2, . . ., where τ−1(k) = k + 1, τ0(k) = k, τ1(k) =
d(k), τ2(k) = d(d(k)), . . ., etc. and d(k) = mini(di(k)), also
we shall w.l.o.g. replace ρ̂(k − 1) in (11) by ρ̂(τ2(k)).

Introduce ρ̃(k) = T−1 ρ̂(k), where T is defined in Lemma 3.
Using (11), Lemma 3 and (16), we obtain, in a similar
way as in [13], that ρ̃(k) can be decomposed as ρ̃(k) =
[ρ̃(k)[1]T ρ̃(k)[2]T ]T , where

ρ̃(k)[1] = [ρ̃1(k) ρ̃2(k)]T

and

ρ̃(k)[2] = [ρ̃3(k) . . . ρ̃2n (k)]T .

For k large enough we have, according to Lemma 1, the follow-
ing recursions:

ρ̃(k)[1] = ρ̃(τ2(k))[1] +
[

1
kc
B1(k) + F1(k)

]

ρ̃(τ2(k))[2]

+
1
kc
H1(k)ρ̃(τ2(k)) (17)

ρ̃(k)[2] =
[

I +
1
kc
B2(k) + F2(k)

]

ρ̃(τ2(k))[2]

+
1
kc
H2(k)ρ̃(τ2(k)), (18)

where F1(k) and F2(k) are 2 × (2n− 2) and (2n− 2) ×
(2n− 2) matrices, respectively, resulting from

T−1Φ(k)(Δ̃(k)Γ(k) ⊗ I2)T =

[
02×2

...........

F1(k).................................
0(2n−2)×2 F2(k)

]

whileH1(k) andH2(k) are 2 × 2n and (2n− 2) × 2nmatrices,
respectively, defined by

T−1{Ψ(k)(P−cΓ(k) ⊗ I2) + (P−c ⊗ I2)Ñ(k)

+ kc [Ψ(k)(Δ̃(k)Γ(k) ⊗ I2) + (Δ̃(k) ⊗ I2)Ñ(k)]}T

=

[
H1(k)............
H2(k)

]

. (19)

Obviously, both H1(k) and H2(k) are zero mean and uncorre-
lated with ρ̃(τ2(k)), having in mind (A3).

In order to present the main line of thought, we start the
analysis from (18). In order to handle the correlation in the

sequence {x(k)}, we iterate the recursion (18) nk > 0 times
backwards, and obtain

ρ̃(k)[2] = Π(k, τ2nk (k))ρ̃(τ2(nk +1)(k))[2]

+
nk∑

σ=0

1
τ2σ (k)c

Π(k, τ2(σ−1)(k))H2(τ2σ (k))

× ρ̃(τ2(σ+1)(k)) (20)

where Π(k, τ2l(k)) =
∏l

σ=0 (I + 1
τ2 σ (k)c B2(τ2σ (k)) +

F2(τ2σ (k))), with Π(k, k + 1) = I .
It follows from (A4) and Lemma 2 that B̄∗ = E{B2(k)} is

Hurwitz; therefore, there exists a symmetric positive definite
matrix R, such that

RB̄∗ + B̄∗T R = −Q (21)

for any given Q > 0.
Denote

V (k) = E{‖ρ̃(k)[1]‖2}
and

W (k) = E{ρ̃(k)[2]T Rρ̃(k)[2]}
where R follows from (21) for an a priori chosen Q > 0.

Calculation of W (k) from (20) is straightforward, hav-
ing in mind (A3), and that H2(τ2σ (k))ρ̃(τ2(σ+1)(k)) =
0 in (20). The terms linearly depending on 1

sc , s =
k, τ2(k), . . . , τ2nk (k), are dominant in E{Π(k, τ2nk (k))

T

RΠ(k, τ2nk (k))|F(τ2(nk +1)(k))} following from (20) for k
large enough, where F(τ2(nk +1)(k)) is the minimal σ-algebra
generated by the measurements up to the instant τ2(nk +1)(k).
After introducing B2(k) = B̄∗ + B̃2(k), we obtain the follow-
ing expression for these terms:

E

⎧
⎨

⎩

τ0 (k)∑

s=τ2 n k (k)

1
sc

(B2(s)T R+RB2(s))|F(τ2(nk +1)(k))

⎫
⎬

⎭

= −Q

τ0 (k)∑

s=τ2 n k (k)

1
sc

+ E

⎧
⎨

⎩

τ0 (k)∑

s=τ2 n k (k)

1
sc

(B̃2(s)T R+RB̃2(s))|F(τ2(nk +1)(k))

⎫
⎬

⎭
.

(22)

According to the mixing condition in (A1), it follows that

max
i

|λi(E(B̃2(s)T R+RB̃2(s))|F(τ2(nk +1)(k)))|

≤ ϕ(s− τ2(nk +1)(k)) (23)

where τ2nk (k) ≤ s ≤ k, ϕ(s) ≥ 0 and lims→∞ ϕ(s) = 0, hav-
ing in mind that E{B̃2(s)} = 0. Therefore, there exists w.p.1
for k large enough such an n0

k that for all nk ≥ n0
k

τ0 (k)∑

s=τ2 n k (k)

1
sc
[
λmin(Q) − ϕ(s− τ2(nk +1)(k))

]
> ε

1
kc

(24)
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w.p.1 for some ε > 0, since λmin(Q) > 0 by definition.
After some additional technicalities, we obtain, for k large

enough, that

W (k) ≤
(

1 − c0
1
kc

)

W (τ2(nk +1)(k)) (25)

+ C1

τ0 (k)∑

s=τ2 n k (k)

1
s1+q ′ (V (s) +W (s))

where c0 > 0, C1 > 0 and q′ > 0 are generic constants (notice
that ‖F2(k)‖ = o( 1

k 1 + q ) w.p.1, where q > 0).
Similarly, from (17) we can obtain, in an analogous way

V (k) ≤ V (τ2(k)) + C2
1

k1+q ′′ (V (τ2(k)) +W (τ2(k))) (26)

where C2 > 0 and q′′ > 0.
Since

∑∞
s=1

1
sc = ∞,

∑∞
s=1

1
s1 + q ′ <∞ and

∑∞
s=1

1
s1 + q ′′ <

∞, recursions (25) and (26) can be treated in a similar way
as the analogous recursions analyzed in [34, Lemma 12 and
Theorem 11] (see also [44]–[46]). They give rise to the conclu-
sion that ρ̃(k)[1] tends to a vector random variable [χ1 χ2 ]T and
ρ̃(k)[2] to zero in the mean square sense and w.p.1. It follows
that

ρ̂∞ = T

[
lim
k→∞

ρ̃(k)[1]

....................
0

]

= χ1v1 + χ2v2 (27)

which proves the theorem. �
We shall further clarify properties of χ1 and χ2 within the

scope of three characteristic situations:
a) ξi(k) = 0, i = 1, . . . , n. When there is no measurement

noise, the results presented in [13] can be directly extended to
the case of asynchronous operation. Then, the main algorithm
(5) becomes a gradient scheme in which ζi(k) = yi(k), and the
step size becomes constant: δi(k) = δ. Then, it is possible to
show, using some elements of the proof of Theorem 1, that for
δ small enough

lim
k→∞

ρ̃(k)[1] =

[
w1........
w2

]

ρ̂(0) + ρ̃∞ (28)

in the mean square sense and w.p.1, where ρ̃∞ =
limk→∞

∑k
s=1 B1(s)ρ̃(s)[2] . The first term at the right-hand

side of (28) is deterministic, and depends on the properties of
the actual sensors and B̄, and the second term stochastic, de-
pending on on the asynchronous communication scheme and all
the previous estimates ρ̃(k)[2] . Since, in this case, ρ̃(k)[2] tends
to zero exponentially in the mean square sense and w.p.1, ρ̃∞
remains bounded in the mean square sense and w.p.1.

b) Δ̃(k) = 0. In this case,F1(k) = 0; according to Theorem 1

lim
k→∞

ρ̃(k)[1] =
[
χ1
χ2

]

(29)

whereχ1 andχ2 are random variables, satisfyingE

{[
χ1
χ2

]}

=
[
w1
w2

]

ρ̂(0) + E{ρ̃∞} and E{χ2
1 + χ2

1} <∞. This case corre-

sponds to the situation in which the step size δi(k) is not defined

locally, but on the basis of the readings of a centralized clock
specifying k (as it has been assumed in [35], in relation with the
influence of additive communication noise).

c) In the most general case, the situation is more complex,
since limk→∞ ρ̃(k)[1] contains an additional term depending
on F1(s)ρ̃(τ2(s))[2] , s ≤ k, expectation of which is not equal
to zero, but which has finite second moment, having in mind
Lemma 1, the fact that

∑k
s=1

1
sc+ 1

2 −q converges and that ρ̃(σ)[2]

tends to zero in the mean square sense and w.p.1.
Remark 7: Stationarity of the random process {x(t)}, as-

sumed in (A1), is not essential in real applications. One should
take into account that, formally speaking, Lemma 3 implies
that a constant decoupling transformation T can be applied
within the scope of the convergence analysis even when we
have a time-varying matrix B̄(k). In addition, an insight into
the given convergence proof shows that the result of Theo-
rem 1 hold for changes of B̄(k)∗ slow enough. For example, if
R(k) > 0 is a unique solution of B̄(k)∗T R(k) +R(k)B̄(k)∗ =
−Q(k) for a preselected Q(k) > 0, then by defining W (k) =
E{ρ̃(k)[2]T R(k)ρ̃(k)[2]} one obtains the result of Theorem 1
for ‖R(k) −R(k − 1)‖ small enough. Moreover, it is not diffi-
cult to prove that the result of Theorem 1 holds when the signal
is only asymptotically stationary.

Remark 8: According to the proof of Theorem 1 and
Lemma 1, Assumption (A2) ensures the main contraction prop-
erties of the algorithm. An idea that partially overcomes the
related restriction is based on a different definition of the step-
size of the algorithm. One can adopt, in accordance with the
general structure of instrumental variable algorithms for system
identification [37], [47], that δi(k) = diag{δ[1]

i (k), δ[2]
i (k)} in

(5), with

δ
[1]
i (k) =

(
k∑

μ=1

yi(μ)yi(di(μ))I{i ∈ J(μ)}
)−c

and δ[2]
i (k) = νi(k)−c , where νi(k) =

∑k
μ=1 I{i ∈ J(μ)} (as

in (5)). Having in mind that strong mixing implies er-
godicity [48], we have that

∑k
m=1 yi(m)yi(di(m))I{i ∈

J(m)} =
∑l

μ=1 y
[i]
i (μ)y[i]

i (μ− 1) = pikE{y[i]
i (μ)y[i]

i (μ−
1)} + o(1) = pikγ̄i + o(1), where γ̄i = α2

i r̄i + 2αiβim+ β2
i ,

y
[i]
i (μ) is defined in the same way as x[i](μ), and o(1) tends

to zero when k tends to infinity. According to Lemma 2, we
have now matrix −diag{γ̄−1

i , 1}Φ̄i instead of −Φ̄i ; this matrix
is Hurwitz when either

α2
i (r̄i −m2) > 0, γ̄i > 0

2αiβim+ α2
i r̄i + γ̄i + β2

i > 0 (30)

or

α2
i (r̄i −m2) < 0, γ̄i < 0

2αiβim+ α2
i r̄i + γ̄i + β2

i < 0. (31)

It is easy to show that (A2) implies the first set of in-
equalities (30). In the case when r̄i −m2 < 0, inequalities
(31) give the following inequalities: α2

i r̄i + 2αiβim+ β2
i <

0 and r̄i < − βi
αi

(2m+ βi
αi

). These inequalities enlarge the
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theoretically permissible region for r̄i . In any case, Lemma 2
and this remark deal with sufficient conditions. In practice these
conditions hold for moderately slow signal changes with respect
to the sampling rate.

Remark 9: From the asymptotic equations derived in the
proof of the above theorem we can conclude that the asymp-
totic convergence rate of the analyzed algorithm follows general
statements related to the stochastic approximation algorithms
(e.g., [44]), i.e., it can be shown that the best achievable conver-
gence rate to consensus is o(1/kcη ) (see (12)), with 0 < η < 1.

B. Parameter Tuning

Roughly speaking, the underlying idea of the whole method is
to achieve the calibration goal by exploiting sensors with good
characteristics in a large sensor network. There are two main
possibilities based on the choice of the weights γij : 1) to rely on
the majority of good sensors, when all γij in any neighborhood
of node i can take the same value, or 2) to emphasize the effect
of a priori selected good sensors belonging to a set N f ⊂ N
by setting appropriate values of γij . In this section we will give
a more rigorous insight into parameter tuning problem, while
Section IV will be devoted to the situation in which a set of
reliable sensors has fixed sensor and calibration parameters.

The following theorem formally deals with properties of the
limit values χ1 and χ2 in (27) and their dependence on the
preselected elements of B̄.

Theorem 2: Let (A1), (A2) and (A4) be satisfied. Let
λΦ̄(P−c Γ̄ ⊗ I2) = 0, where (according to the notation in
Lemma 3), λ = [λ1 . . . λ2n ] = [λ[1] . . . λ[n ] ], where λ[i] =
[λ2i−1 λ2i ], i = 1, . . . , n, and let λ′Φ̄(P−c Γ̄′ ⊗ I2) = 0, where,
similarly, λ′ = [λ′

1 . . . λ
′
2n ] = [λ

′[1] . . . λ
′[n ] ], λ

′[i] = [λ′
2i−1 λ′

2i ].
Assume that Γ̄′ is defined in one of the following two ways:

1) Γ̄′ = DΓ̄, where D = diag{d′, 1, . . . , 1}, 0 < d′ < 1;
2) Γ̄′ is obtained from Γ̄ by replacing γj1 with d′′γj1 , j =

2, . . . , n, d′′ > 1.
Then

λ′
k

λ′
j

<
λk

λj
(32)

j = 1, 2, k = 3, . . . , 2n.
Proof: In case 1) we have that λΦ̄(D−1DP−c Γ̄ ⊗ I2) = 0,

wherefrom it follows that λ′ = λ(D−1 ⊗ I2), and (32) directly
follows.

In case 2), define λd = [λ[2] . . . λ[n ] ] and λ′
d = [λ

′[2] . . . λ
′[n ] ];

also, let Φ̄d be the (2n− 2) × (2n− 2) submatrix of Φ̄ with
indices i, j = 2, . . . , 2n and let Pd , Γ̄d and Γ̄′

d be (n− 1) ×
(n− 1) submatrices of P , Γ̄ and Γ̄′, respectively, with indices
i, j = 2, . . . , n. Then, we write λ′

d = λd + Δλ′
d and

Γ̄′
d = Γ̄d + (1 − d′′)diag{γ21π21 , . . . , γn1πn1}

[the last relation follows from the adopted assumption for
case 2)]. After adopting λ[1]Φ̄1 = λ

′[1]Φ̄′
1 = [1 1] (having in

mind that rank{B̄} = 2n− 2, according to Lemma 3), from

λ′Φ̄(P−c Γ̄′ ⊗ I2) = 0 we obtain

(λd + Δλ′
d)Φ̄d [(Γ̄d

+ (1 − d′′)diag{γ21π21 , . . . , γn1πn1}) ⊗ I2 ]

= −([γ12π12 · · · γ1nπ1n ] ⊗ [1 1]). (33)

Since λd Γ̄′
d = −([γ12π12 · · · γ1nπ1n ] ⊗ [1 1]) we obtain

Δλ′
d =−(1 − d′′)λd [(diag{γ21π21 , . . . , γn1πn1}(Γ̄′

d)
−1) ⊗ I2 ]

wherefrom we conclude that all elements of Δλ′
d are strictly

negative, because of the properties of M-matrices, which im-
ply that all the elements of (Γ̄′

d)
−1 are non-positive [42]. This

completes the proof. �
According to the previous subsection, the dominant compo-

nent of the random variables [χ1 χ2 ] (see (28)) is represented by
a weighted sum of the sensor parametersαi and βi , with positive
weights defined by the elements of the left eigenvectors w1 and
w2 of B̄ corresponding to the zero eigenvalue (see Lemma 3).
These weights are functions of a priori chosen weights γij , as
well as of the probabilities πij and pi , i, j = 1, . . . , n. In this
sense, it is clear that the influence of a selected sensor i on the
limit [χ1 χ2 ] can be increased by increasing the correspond-
ing elements of w1 and w2 (components with indices 2i and
(2i+ 1)). According to Theorem 2, this can be achieved by
either:

1) decreasing all the elements of the i-th row of Γ̄, or
2) increasing the elements γji , j �= i, from the i-th column

(preserving, at the same time, that Γ̄ is row stochastic).
Obviously, γij can be selected accordingly. Probabilities πij

depend on the clock rate of sensor j and the transmitting prob-
abilities pij ; the higher clock rate of the clock j, the higher its
influence on the parameter values at consensus. In addition, in-
fluence of P−c is such that the lower is the updating probability
of a selected node, the higher is its influence on the limit value.
Consequently, the design of the whole calibration process is
flexible and can be adapted to the desired convergence points of
the algorithm.

IV. MACRO CALIBRATION WITH FIXED

CHARACTERISTICS SENSORS

According to Section III, the choice of the elements of the
matrix Γ̄ plays an important role in achieving the desired per-
formance of the proposed method in practice. Moreover, in the
limit, “good” sensors (“leaders”) from a set N f ⊂ N can be left
unchanged, i.e., with fixed characteristics, so that the recursions
(5) are applied only to the nodes i ∈ N −N f . This situation
can often arise in practice when a sensor network has to be en-
larged, i.e., when a set of uncalibrated sensors has to be added
to a set of sensors already functioning in a satisfactory way. In
this section, we shall present a rigorous analysis of the behavior
of the proposed calibration algorithm in this case.

We shall first pay attention to the important special case when
|N f | = 1, i.e., when one sensor is well calibrated using any
preselected method, and when one wishes to calibrate all the
remaining sensors in such a way as to achieve the same values
of the corrected parameters. Assume, without loss of generality,
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that the first node is selected as a reference node (”leader“), and
that it represents a center node of the underlying graph G; this
node has to be left unchanged within the calibration recursions
(11). The whole calibration network becomes “pinned” to that
sensor by simply setting

θ̂1(k) = θ̂1(k − 1) (34)

with θ̂1(0) = θ̂1,0 ; in the ideal case, ρ̂1,0 =
[
α1 0
β1 1

]

θ̂1,0 =
[

1
0

]

, where θ̂1,0 and ρ̂1,0 are the corresponding initial condi-

tions. According to (34), the general form of the algorithm (11)
should be modified by setting to zero all the block matrices in
the first block row ofB(k), or by setting γ1j = 0, j = 1, . . . , n.
It is easy to observe that the resulting communication graph still
has a spanning tree with the first node as a center node, implying
that (A4) holds. Consequently, Theorem 1 can be applied, lead-
ing to the conclusion that, in the limit, the corrected calibration
parameters ρ̂i(k), i = 1, . . . , n, should be the same, and equal
to the value θ̂1,0 , imposed by the “leader”.

In general, assume w.l.o.g. that N f = {1, 2, . . . , nf }, nf =
|N f | > 0, is the subset of “leaders”, i.e., of the sensors with arbi-

trary, but fixed characteristics, defined by ρfi =
[
gfi
ffi

]

, i ∈ N f ;

let ρ̄f = [ρf T1 . . . ρf Tnf ]T . The calibration algorithm proposed

above can be applied in this situation by introducing θ̂i(k) =
θ̂i(k − 1) for all i ∈ N f . Let N −N f = {nf + 1, . . . , n} and
let ρ̂v (k) = [ρ̂nf +1(k)T . . . ρ̂n (k)T ]T represent the vector of
all the parameters to be adjusted. When nf = 1, we have one
“leader”, and the above derived conclusions can be applied.
However, whennf > 1, these conclusions do not hold any more,
since the graph resulting from the deletion of the arcs leading
to all the nodes in N f does not necessarily satisfy (A4). The
next theorem treats convergence of the basic algorithm (5) in
the general case of arbitrary nf > 1.

Theorem 3: Let Assumptions (A1)–(A4) be satisfied and let
all the nodes from N −N f be reachable from all the nodes in
N f . Then the algorithm (5) in which γij = 0 for all i ∈ N f

provides convergence of ρ̂v (k) in the mean square sense and
w.p.1 to the limit defined by

ρ̂v∞ = −(Γ̄v ⊗ I2)−1(Γ̄f ,v ⊗ I2)ρ̄f (35)

where matrices Γ̄v and Γ̄f ,v are (n− nf ) × (n− nf ) and (n−
nf ) × nf submatrices of matrixP−c Γ̄, with indices i, j = nf +
1, . . . , n and i = nf + 1, . . . , n, j = 1, . . . , nf , respectively.

Proof: Recursion (10) holds, in general, for i = 1, . . . , n; in
particular, for ρ̂v (k), we have explicitly

ρ̂v (k) = {I + [Φv (k) + Ψv (k)](Δv (k)Γv (k) ⊗ I2)

+ Ñv (k)}ρ̂v (k − 1)

+ [Φv (k) + Ψv (k)](Γf ,v (k) ⊗ I2)ρ̄f (36)

where Φv (k), Ψv (k), and Ñv (k) are 2(n− nf ) × 2(n− nf )
submatrices of Φ(k), Ψ(k) and Ñ(k) corresponding to the in-
dices nf + 1, . . . , n, matrices Γv (k) and Γf ,v (k) are obtained

from P−cΓ(k) in the same way as Γ̄v and Γ̄f ,v are obtained
from P−c Γ̄, and Δv (k) is the (n− nf ) × (n− nf ) submatrix
of Δ(k), with indices i, j = nf + 1, . . . , n. After introducing
r(k) = ρ̂v (k) − ρ̂v∞, we obtain

r(k) = {I + [Φv (k) + Ψv (k)](Δv (k)Γv (k) ⊗ I2)

+ Ñv (k)}r(k − 1) − Ñv (k)ρ̂v∞. (37)

Analysis of (37) can be entirely based on the methodology of
analyzing the recursion (18) in the proof of Theorem 1. There-
fore, we shall pay the main attention to matrix

Bv (k) = Φv (k)((Pv )−cΓv (k) ⊗ I2)

where Pv is an (n− nf ) × (n− nf ) submatrix of P , with in-
dices i, j = nf + 1, . . . , n; furthermore, we can writeBv (k) =
B̄v + B̃v (k), where B̄v = E{Bv (k)}. From the assumptions
and Lemma 2, we realize that B̄v is Hurwitz. Following
the methodology of Theorem 1, we iterate (37) nk steps
backwards and calculate the Lyapunov function Wv (k) =
E{r(k)T Rvr(k)}, where Rv is a positive definite matrix satis-
fying the Lyapunov equation RvB̄v + B̄vT Rv = −Qv , Qv >
0. Because of the specific structure of (37), we obtain, for k
large enough, that

Wv (k) ≤
(

1 − c0
1
kc

)

Wv (τ2(nk +1)(k))

+ C1

τ0 (k)∑

s=τ2 n k (k)

1
s2c (1 + ‖r̄(s)‖) (38)

where r̄(k) = E{r(k)}, while c0 and C1 are generic constants.
In order to estimate r̄(k), we iterate (37) back to some initial
time τ2(n ′

k +1)(k), and directly find out that

r̄(k) =
k∏

s=τ2 n ′
k

(k)

(

I +
1
sc
B̄v + F̄ v (s)

)

r̄(τ2(n ′
k +1)(k))

(39)
where ‖F̄ v (s)‖ = o( 1

sc ). From (39), we simply conclude that
‖r̄(k)‖ →k→∞ 0. Coming back to (38), and using, e.g., [34],
[44], we conclude that r(k) in (37) tends to zero in the mean
square sense and w.p.1, which proves the theorem. �

It can be directly observed that in the case when all the param-
eters ρfi in N f are equal to ρf , the rest of the sensor parameters
will also converge to ρf . This statement holds approximately
for small distances between ρfi and ρfj , i, j ∈ N f .

V. SIMULATION RESULTS

In order to illustrate properties of the proposed algorithm, a
sensor network with ten nodes has been simulated. A fixed ran-
domly selected communication graph satisfying (A4) has been
adopted, and parameters αi and βi have been randomly selected
around one and zero, respectively, with standard deviation 0.3.
It is assumed that all the local clocks tick according to Poisson
processes having the same rates.

In Fig. 1, the corrected gains ĝi(k) and offsets f̂i(k) gen-
erated by the proposed instrumental variable algorithm (5) are
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Fig. 1. Proposed algorithm based on instrumental variables without reference
sensors: convergence to consensus is achieved for corrected gains and corrected
offsets.

Fig. 2. Stochastic gradient algorithm: convergence to consensus is not
achieved.

presented for the sequence δ(k) = 0.01/k0.6 ; communication
dropouts are assumed with pij = 0.2 for each communication
link and the measurement noises are generated with standard de-
viations randomly chosen in the interval (0, 0.1); the signal x(k)
is a correlated random sequence with zero mean and variance
one, generated by a second order linear system with white noise
at the input. It is clear that successful calibration is achieved in
spite of the noise existence.

Fig. 2 illustrates the necessity of introducing instrumental
variables: the basic gradient algorithm in which ζi(k) = yi(k)
(instead of yi(di(k))) has been simulated. Convergence of the
network to consensus is not achieved in this case: all the cor-
rected gains ĝi(k) slowly converge to zero, instead of to con-
sensus.

In Fig. 3, the network has been pinned to one preselected
node, and in Fig. 4 to two of them. In the first case, convergence
of all the corrected gains and offsets to the reference values
(indicated by horizontal straight lines) takes place, as expected.
However, in the second case, consensus is not achieved; instead,
according to Theorem 3, all the parameters converge to different
values, determined by (35).

Fig. 3. Proposed algorithm with one reference sensor: all the corrected gains
converge to one and all the corrected offsets to zero.

Fig. 4. Proposed algorithm with two reference sensors having different char-
acteristics: the corrected gains and the corrected offsets converge to different
values determined by (35).

Fig. 5. MSE for corrected offsets (A1 and B1) and gains (A2 and B2) of the
proposed algorithm (A1 and A2) and the algorithm proposed in [17] (B1 and
B2).

In order to compare our algorithm to similar algorithms exist-
ing in the literature, we have chosen a representative consensus-
based time synchronization algorithm, proposed in [17], and
applied it to the distributed calibration problem (it can be easily
adapted to the problem treated in this paper). The results are
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shown in Fig. 5. The lines denoted by (B1) and (B2) show the
mean squared error (MSE) for the corrected offsets and gains,
respectively, obtained using [17], in the case of the measurement
noise with standard deviation 0.005 (more than 10 times lower
than the value adopted in the simulation of our algorithm). The
advantage of our scheme is evident. The algorithm from [17]
is very sensitive to additive communication noise, due to the
incorporated division by measured signal increments.

VI. CONCLUSION

In this paper, a new distributed asynchronous blind calibration
algorithm of instrumental variable type resulting in extended
consensus has been proposed for sensor networks under mea-
surement noise. The algorithm provides a new and computation-
ally efficient tool for coping with the problem of calibration of
large wireless sensor networks with communications limited to
neighboring nodes, without any type of central coordination. It
has been proved using asynchronous stochastic approximation
arguments that the algorithm achieves asymptotic agreement
on all corrected sensor gains and offsets. An analysis has been
provided, indicating flexibility of system design at the network
level by proper choice of a priori tunable weighting parame-
ters. Attention has been devoted to the problem of distributed
macro calibration of sensor networks when characteristics of a
subset of nodes are kept invariant. When the network is pinned
to one reference sensor, all the remaining sensors converge to
its characteristics. It has also been proved that in the general
case of multiple sensors with fixed characteristics, the proposed
decentralized asynchronous algorithms ensure convergence to
different parameters depending on sensor and network proper-
ties. Some simulation results illustrate characteristic behavior
of the proposed algorithm.
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