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Abstract— In this paper a new distributed calibration algo-
rithm based on consensus is proposed for sensor networks.
The algorithm is basically formulated as a set of stochastic
gradient type recursions for estimating parameters of local
sensor calibration functions, starting from local criteria defined
as weighted sums of mean square errors between the outputs of
neighboring sensors. It is proved that the proposed algorithm
provides asymptotic consensus in the space of the sensor
gains and offsets. In the case of communication dropouts and
additive communication and measurement noise, a modification
of the instrumental variable type of the original calibration
scheme is proposed. It is proved using stochastic approximation
arguments that in this case the proposed algorithm achieves
asymptotic consensus in the mean square sense and with
probability one. Some illustrative simulation examples are
provided.

I. INTRODUCTION

Recently, wireless sensor networks (WSN) have emerged
as an important research area (see, e.g., [1], [2], [3]). Cal-
ibration represents one of the most important challenges,
having in mind great number of sensors typical for WSN’s
today. The so-called macro-calibration is based on the idea
to calibrate a network as a whole by observing only the
overall system response, thus eliminating the need to directly
calibrate each and every device. The usual prerequisite is to
frame calibration as a parameter estimation problem [4], [5].
Automatic methods for jointly calibrating WSN’s, without
dependence on controlled stimuli or high-fidelity groundtruth
data, is of significant interest. This problem is referred to
as blind calibration [6], [7]. One approach to blind WSN
calibration is to assume that the deployment is very dense, so
that neighboring nodes should have nearly identical readings.
There are also methods trying to cope with situations in
which sensor network deployments may not meet the density
requirements [8], [9].

In this paper we propose a novel blind macro-calibration
method for sensor networks based on distributed on-line
estimation of the parameters of affine calibration functions.
Assuming that the sensors form a network based on com-
munications between neighboring nodes, it will be shown
that the the convergence of the algorithm can be treated
as a nontrivial consensus problem, to which the classical
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results (e.g., [10]) are not directly applicable. Note also that,
to the authors’ knowledge, consensus has been applied to
the calibration problems only in [11], [12], but within differ-
ent contexts. Using basic arguments derived from stability
of diagonally dominant dynamic systems [13], [14], [15],
we prove that the proposed algorithm provides asymptotic
consensus in the mean square sense and with probability
one (see also [16] which deals with the noiseless case). The
basic results are extended in this paper to the general case
which includes: 1) measurement noise, 2) communication
dropouts, and 3) additive communication noise. An algorithm
of instrumental variable type [17] is constructed for solving
the problem in the most general case, and the achievement
of the asymptotic consensus in the mean square sense and
with probability one (w.p. 1) is proved for both gains and
offsets. Simulation results illustrate the proposed algorithm.

II. PROBLEM FORMULATION AND THE BASIC
ALGORITHM

Consider n distributed sensors measuring the same
discrete-time signal x(t), t = . . . ,−1, 0, 1, . . ., which is
supposed to be a realization of a random process {x(t)}.
Assume that the i-th sensor generates at its output the signal

yi(t) = αix(t) + βi (1)

where the gain αi and the offset βi are unknown constants.
By sensor calibration we consider application of the affine

calibration function which produces the overall sensor output

zi(t) = aiyi(t)+bi = aiαix(t)+aiβi+bi = gix(t)+fi, (2)

where the calibration parameters ai and bi have to be chosen
in such a way as to set the equivalent gain gi = aiαi as close
as possible to one and the equivalent offset fi = aiβi + bi
as close as possible to zero.

We assume that the observed sensors form a network
with a predefined structure of inter-sensor communications
represented by a directed graph G = (U ,V), where U is
the set of nodes (one node corresponds to one sensor) and
V the set of arcs. Define the adjacency matrix C = [cij ],
i, j = 1, . . . , n, such that cij = 1 if the j-th sensor can send
its message to the i-th sensor, and cij = 0 otherwise.

The aim of this paper is to design an algorithm for
distributed real-time estimation of the calibration parameters
ai and bi, i = 1, . . . , n, which provides asymptotically equal
outputs of all the sensors in the case when no reference
signal or ideal sensor is given or identified, expecting, loosely
speaking, that the majority of well calibrated sensors will
correct the behavior of the remaining ones. In the case of



a given reference, all the sensors should be asymptotically
calibrated.

The distributed calibration algorithm is derived starting
from minimization of the set of local criteria

Ji =
∑
j∈Ni

γijE{(zj(t)− zi(t))2}, (3)

i = 1, . . . , n, where Ni is the set of neighboring nodes of the
i-th node (the sensors sending information to the i-th sensor),
and γij are nonnegative scalar weights. Starting from (3), the
following recursions of gradient type can be derived:

θ̂i(t+ 1) = θ̂i(t) + δi(t)
∑
j∈Ni

γijεij(t)

[
yi(t)

1

]
, (4)

where θ̂i(t)=[âi(t) b̂i(t)]
T , δi(t) > 0 is a time varying gain

influencing convergence properties of the algorithm, εij(t) =
ẑj(t) − ẑi(t) and ẑi(t) = âi(t)yi(t) + b̂i(t), with the initial
conditions θ̂i(0) = [1 0]T , i = 1, . . . , n. Notice that each
iteration of the algorithm subsumes reception of the current
outputs of the neighboring nodes, as well as availability of
the local measurement.

The underlying idea of (4) is to ensure that the estimates
of all the local gains ĝi(t) = âi(t)αi and offsets f̂i(t) =
âi(t)βi + b̂i(t) tend asymptotically to the same values ḡ and
f̄ , implying ẑj(t) = ẑi(t), i, j = 1, . . . , n. We introduce

ρ̂i(t) =

[
ĝi(t)

f̂i(t)

]
=

[
αi 0
βi 1

]
θ̂i(t), (5)

and
εij(t)(t) =

[
x(t) 1

]
(ρ̂j(t)− ρ̂i(t)), (6)

so that (4) becomes

ρ̂i(t+ 1) = ρ̂i(t) + δi(t)
∑
j∈Ni

γijΦi(t)(ρ̂j(t)− ρ̂i(t)), (7)

where Φi(t) =

[
αiyi(t)x(t) αiyi(t)

[1 + βiyi(t)]x(t) 1 + βiyi(t)

]
, with the

initial conditions ρ̂i(0) = [αi βi]
T , i = 1, . . . , n. Recursions

(7) can be represented in the following compact form

ρ̂(t+ 1) = [I + (∆(t)⊗ I2)B(t)]ρ̂(t), (8)

where ρ̂(t) = [ρ̂1(t)T · · · ρ̂n(t)T ]T , ∆(t) = diag{δ1(t),
· · · , δn(t)}, B(t) = Φ(t)(Γ ⊗ I2), Φ(t) = diag{Φ1(t),
. . . ,Φn(t)}, ⊗ denotes the Kronecker’s product, I2 is the
2× 2 unit matrix and

Γ =



−
∑
j,j 6=1

γ1j γ12 · · · γ1n

γ21 −
∑
j,j 6=2

γ2j · · · γ2n

· · ·
γn1 γn2 · · · −

∑
j,j 6=n

γnj


,

where γij = 0 when j ∈ N − Ni; the initial condition is
ρ̂(0) = [ρ̂1(0)T · · · ρ̂n(0)T ]T , in accordance with (7). The

desirable asymptotic value of ρ̂(t), which depends on the
initial conditions and the matrix B(t) which is, in turn, a
function of the signal and the sensor parameters, should
be such that the components with odd indices and the
components with even indices are the same.

III. CONVERGENCE ANALYSIS - NOISELESS CASE

We assume that:
A1) δi(t) = δ = const, i = 1, . . . , n;
A2) {x(t)} is i.i.d., with E{x(t)} = x̄ < ∞ and

E{x(t)2} = s2 <∞.
Based on A1) and A2) we obtain

ρ̄(t+ 1) = (I + δB̄)ρ̄(t), (9)

where ρ̄(t) = E{ρ(t)}, ρ̄(0) = ρ(0), B̄ = Φ̄(Γ ⊗ I2) and
Φ̄ = E{Φ(t)} = diag{Φ̄1 . . . Φ̄n},

Asymptotic properties of (9) cannot be analyzed by apply-
ing the well known results related to the classical consensus
schemes (e.g., [10]) due to the specific structure of B̄ which
is composed of 2×2 block matrices. Therefore, we start our
analysis with several basic lemmas derived using the results
related to the diagonal dominance of matrices decomposed
into blocks [13], [14] (for more details see [16]).

Lemma 1. [13], [15] A matrix A = [Aij ], where Aij ∈
Cm×m, i, j = 1, . . . n, has quasi-dominating diagonal blocks
and is nonsingular if the test matrix W ∈ Rn×n, with the
elements

wij = 1 (i = j); wij = −‖A−1ii Aij‖ (i 6= j)

in an M-matrix (‖.‖ denotes an operator norm). If A − λI
has quasi-dominating diagonal blocks for all λ ∈ C+, then
A is Hurwitz (C+ denotes the set of complex numbers with
nonnegative real parts).

Lemma 2. [16], [13], [15] If A has quasi-dominating
diagonal blocks and Aii, i = 1, . . . , n, are Hurwitz, A is
also Hurwitz.

Coming back to the matrix B̄ in (9), we assume:
A3) the graph G has a spanning tree.
This assumption implies that Γ has one eigenvalue at the

origin and the other eigenvalues with negative real parts [10].
Also, if the i-th node is a center node of G, the matrix Γ′ ∈
R(n−1)×(n−1), obtained from Γ by deleting its i-th row and
its i-th column, is nonsingular [18], [16].

Lemma 3. [16] Let assumption A3) be satisfied and let
A4) −Φ̄i is Hurwitz, i = 1, . . . , n.
Then, matrix B̄ in (9) has two eigenvalues at the origin

and the remaining eigenvalues have negative real parts.
Let us define vectors i1 = [ 1 0 1 0 . . . 1 0 ]

T and
i2 = [ 0 1 0 1 . . . 0 1 ]

T , being the right eigenvectors of
B̄ corresponding to the zero eigenvalue, and let π1 and π2
be the corresponding left eigenvectors.

Lemma 4. [16] Let T =
[
i1 i2 T2n×(2n−2)

]
, where

T2n×2n−2 is an 2n × (2n − 2) matrix, such that
span{T2n×(2n−2)}= span{B̄}. Then, T is nonsingular and

T−1B̄T =

[
02×2 02×(2n−2)

0(2n−2)×2 B̄∗

]
, (10)



where B̄∗ is Hurwitz.
Theorem 1. Let assumptions A1), A2), A3) and A4) be

satisfied. Then there exists δ′ > 0 such that for all δ ≤ δ′

in (9) limt→∞ ρ̄(t) = ρ̄∞= [ρ̄∞1 · · · ρ̄∞2n]T , with ρ̄∞1 =
· · · = ρ̄∞(2n−1) and ρ̄∞2 = · · · = ρ̄∞(2n).

Proof: Let ˜̄ρ(t) =[˜̄ρ1(t) ˜̄ρ2(t) · · · ˜̄ρ2n(t)T ]T=T−1ρ̄(t).
From (9) we obtain

˜̄ρ(t+ 1)[1] = ˜̄ρ(t)[1]; ˜̄ρ(t+ 1)[2] = (I + δB̄∗)˜̄ρ(t)[2], (11)

where ˜̄ρ(t)[1] = [˜̄ρ1(t) ˜̄ρ2(t)]T , ˜̄ρ(t)[2] = [˜̄ρ3(t) · · · ˜̄ρ2n(t)]T .
For δ small enough all the eigenvalues of I+ δB̄∗ lie within
the unit circle. Therefore, limt→∞ ˜̄ρ(t)[2] = 0, so that

lim
t→∞

˜̄ρ(t) = ˜̄ρT∞ = [˜̄ρ(0)[1]T 0 · · · 0]T .

Consequently,

ρ̄∞ = T [ ˜̄ρ(0)[1]T 0 · · · 0]T = (i1π1 + i2π2)ρ̄(0). (12)

Having in mind the definition of i1 and i2, we conclude that
ρ̄∞1 = · · · = ρ̄∞(2n−1) and ρ̄∞2 = · · · = ρ̄∞(2n).

Lemma 5. [16] Matrix B(t) in (8) satisfies for all t

T−1B(t)T =

[
02×2 02×(2n−2)

0(2n−2)×2 B(t)∗

]
, (13)

where B(t)∗ is an (2n−2)× (2n−2) matrix and T is given
in Lemma 4.

Theorem 2. Let assumptions A1), A2), A3) and A4) be
satisfied. Then there exists δ′′ > 0 such that for all δ ≤ δ′′

in (8)
lim
t→∞

ρ̂(t) = (i1π1 + i2π2)ρ̂(0) (14)

in the mean square sense and with probability one.
Proof: Using Lemmas 4 and 5, we define ρ̃(i) = T−1ρ̂(t)

and obtain

ρ̃(t+ 1)[1] = ρ̃(t)[1]; (15)
ρ̃(t+ 1)[2] = (I + δB(t)∗)ρ̃(t)[2],

where ρ̃(t)[1] = [ρ̃1(t) ρ̃2(t)]T , ρ̃(t)[2] = [ρ̃3(t) · · · ρ̃2n(t)]T .
Recalling that B̄∗ is Hurwitz, we observe that there exists
such a positive definite matrix R∗ that

B̄∗TR∗ +R∗B̄∗ = −Q∗, (16)

where Q∗ is positive definite. Define q(t) =
E{ρ̃(t)[2]TR∗ρ̃(t)[2]}, and let λQ = mini λi{Q∗} and
k′ = maxi λi{E{B(t)∗ B(t)∗T }}. From (15) we obtain

q(t+1) = E{ρ̃(t)[2]TE{(I+B(t)∗)TR∗(I+B(t)∗)}ρ̃(t)[2]}
(17)

and, further,

q(t+ 1) ≤ (1− δ λQ
maxi λi{R∗}

+ δ2k′
maxi λi{R∗}
mini λi{R∗}

)q(t),

(18)
having in mind that E{B(t)∗} = B̄∗. Consequently, there
exists such a δ′′ that for δ < δ′′, i = 1, . . . , n, the term in
the brackets at the right hand side of (18) is less than one.
Therefore, q(t) tends to zero exponentially, implying that
ρ̃(t)[2] converges to zero in the mean square sense, and, also,

with probability one, since the sequence {q(t)} is summable.

Convergence of the proposed algorithm in the case of
correlated signals will be analyzed assuming:

A2’) Process {x(t)} is weakly stationary with E{x(t)} =
x̄, E{x(t)x(t − d)} = m(d), m(0) = s2, |x(t)| ≤ K < ∞
(a.s.) and

a) |E{x(t)|Ft−τ} − x̄| = o(1), (a.s.) (19)

b) |E{x(t)x(t− d)|Ft−τ} −m(d)| = o(1), (a.s.) (20)

for any fixed d ∈ {0, 1, 2, . . .}, τ > d, where Ft−τ denotes
the minimal σ-algebra generated by {x(t − τ), x(t − τ −
1), . . . , x(0)} (o(1) denotes a function that tends to zero as
τ →∞).

Theorem 3. Let assumptions A1), A2’), A3) and A4) be
satisfied. Then there exists δ′′ > 0 such that for all δ ≤ δ′′

in (8) limt→∞ ρ̂(t) = (i1π1 + i2π2)ρ̂(0) in the mean square
sense and with probability one.

Proof: Following Theorem 2, we first compute ρ̃(i) =
T−1ρ̂(t), and obtain the same relations as in (15). Iterating
back the second one, one obtains

ρ̃(t+ 1)[2] =

t−τ∏
s=t

(I + δB(s)∗)ρ̃(t− τ)[2]. (21)

After calculating E{ρ̃(t+1)[2]TR∗ρ̃(t+1)[2]} using (21), we
extract the term linear in δ and replace B(t)∗ = B̄∗+B̃(t)∗,
where E{B̃(t)∗} = 0. According to A4’),

|E{ρ̃(t− τ)[2]TE{B̃(s)∗|Ft−τ−1}ρ̃(t− τ)[2]}| ≤
φ(s− t+ τ + 1)q(t− τ), (22)

where φ(t) > 0, limt→∞ φ(t) = 0. Therefore, it is possible
to find such τ0 > 0 that for all τ ≥ τ0

(τ + 1)λmin(Q∗)−
t−τ∑
s=t

φ(s) > λ0 > 0, (23)

since λmin(Q∗) > 0 by definition. Therefore,

q(t+ 1) ≤ (1− λ0δ +

2(τ+1)∑
s=2

ksδ
s)q(t), (24)

where |ks| < ∞ due to signal boundedness. It follows
from (24) that there exists a δ′ > 0 such that 1 − λ0δ +∑2(τ+1)
s=2 ksδ

s < 1. The result follows now in the same way
as in Theorem 2.

IV. CONVERGENCE ANALYSIS: COMMUNICATION
ERRORS AND MEASUREMENT NOISE

A. Communication Errors

We assume that communication errors are manifested
in two ways: 1) communication dropouts and 2) additive
communication white noise. Formally, we assume:

A5) the weights γij in the algorithm (4) are represented as
γij(t) = uij(t)γij , where {uij(t)} are i.i.d. binary random
sequences, such that uij(t) = 1 with probability pij (pij > 0
when j ∈ Ni), and uij(t) = 0 with probability 1− pij ;



A6) instead of receiving ẑj(t) from the j-th node, the i-th
node receives ẑj(t)+ξij(t), where {ξij(t)} are i.i.d. random
sequences with E{ξij(t)} = 0 and E{ξij(t)2} = (σξij)

2.
We assume that the processes x(t), uij(t) and ξij(t) are

mutually independent.
Denoting

νi(t) =
∑
j∈Ni

γij(t)ξij(t)

[
αiyi(t)

1 + βiyi(t)

]
,

and ν(t) =
[
ν1(t) . . . νn(t)

]
, we obtain from (8) that

ρ̂(t+ 1) = [I + (∆(t)⊗ I2)B′(t)]ρ̂(t) + ∆(t)ν(t), (25)

where B′(t) = Φ(t)(Γ(t)⊗ I2), with Γ(t) obtained from Γ
by replacing constants γij with time varying gains γij(t).

Convergence of the recursion (25) will be studied starting
from the above results. Notice first that now E{B′(t)} =
B̄′ = Φ̄(Γ̄ ⊗ I2), where Γ̄ = E{Γ(t)} is obtained from
Γ by replacing γij with γijpij . Defining B̃′(t) = B′(t) −
B̄′, we conclude that E{B̃′(t)} = 0, due to mutual in-
dependence between the random variables in B′(t); also,
E{B̃′(t)|Ft−1} = 0. It is obvious that B̄′ = Φ̄(Γ̄ ⊗ I2)
has qualitatively the same properties as B̄ in (9): it has two
eigenvalues at the origin and the remaining eigenvalues in
the left half plane.

Further, we assume

A7) δi(t) = δ(t) > 0;

∞∑
t=1

δ(t) =∞;

∞∑
t=1

δ(t)2 <∞,

i = 1, . . . , n, so that

ρ̂(t+1) = (I+δ(t)B̄′)ρ̂(t)+δ(t)B̃′(t)ρ̂(t)+δ(t)ν(t). (26)

Theorem 4. Let assumptions A2)–A7) be satisfied. Then,
ρ̂(t) generated by (26) converges to i1w1+i2w2 in the mean
square sense and w.p. 1, where w1 and w2 are scalar random
variables.

Proof: Let

T ′ =
[
i1 i2 T ′2n×(2n−2)

]
,

where T ′2n×2n−2 is an 2n × (2n − 2) matrix, such
that span{T ′2n×(2n−2)}= span{B̄′}; then, (T ′)−1 =

π′1

π′2

S′(2n−2)×2n

, where π′1 and π′2 are the left eigenvectors of

B̄′ corresponding to the zero eigenvalue. Let ρ̃(t) =[ρ̃1(t)
ρ̃2(t) · · · ρ̃2n(t)T ]T=(T ′)−1ρ̂(t); then, (26) gives

ρ̃(t+ 1)[1] =ρ̃(t)[1] + δ(t)G1(t)ρ̃(t) + δ(t)ν′(t), (27)

ρ̃(t+ 1)[2] =(I + δ(t)B̄
′∗)ρ̃(t)[2]

+ δ(t)G2(t)ρ̃(t) + δ(t)ν′′(t), (28)

where ρ̃(t)[1] and ρ̃(t)[2] are defined as in (11),

[
G1(t)

G2(t)

]
=

(T ′)−1B̃′(t)T ′ in such a way that G1(t) contains the first

two rows, ν′(t) =

[
π′1

π′2

]
ν(t) and ν′′(t) = S′(2n−2)×2nν(t),

while B̄
′∗ is a (2n− 2)× (2n− 2) Hurwitz matrix such that

(T ′)−1B̄
′
T ′ = diag{02×2, B̄

′∗} (see Theorem 1). It is easy
to verify that E{G1(t)} = 0 and E{G2(t)} = 0, as well as
that E{G1(t)|Ft−1} = 0 and E{G2(t)|Ft−1} = 0.

Let P ∗ > 0 satisfy the Lyapunov equation P ∗B̄
′∗ +

B̄
′∗TP ∗ = −Q∗ for some Q∗ > 0. Denote s(t) =

E{‖ρ̃(t)[1]‖2} and V (t) = E{ρ̃(t)[2]TP ∗ρ̃(t)[2]}. Then,
directly following the methodology of [19] (Theorem 11),
one obtains

s(t+ 1) ≤ s(t) + C1δ(t)
2(1 + s(t) + V (t)) (29)

V (t+ 1) ≤ (1− c0δ(t))V (t) + C2δ(t)
2(1 + s(t) + V (t)),

where c0, C1 and C2 are appropriately chosen positive
constants. According to [19] (Lemma 12 and Theorem 11),
inequalities (29) give rise to the conclusion that ρ̃(t)[1] tends
to a random variable w =

[
w1
w2

]
and ρ̃(t)[2] to zero in

the mean square sense and w.p. 1. The result follows after

calculating limt→∞ ρ̂(t) = T ′

[
lim
t→∞

ρ̃(t)[1]

0

]
.

B. Measurement Noise

We assume in this section that the signal x(t) is measured
with additive noise.

A8) Instead of yi(t) in (1), the sensors generate the signals
yni (t) = αix(t) +βi + ηi(t), where {ηi(t)}, i = 1, . . . n, are
zero mean i.i.d. random sequences with E{ηi(t)2} = (σηi )2,
independent from the measured signal x(t).

Inserting yni (t) instead of yi(t) in the basic algorithm (4),
we obtain, after changing the variables, the following ”noisy”
version of (7):

ρ̂i(t+ 1) =ρ̂i(t) + δi(t)
∑
j∈Ni

γij{[Φi(t) + Ψi(t)]

× [ρ̂j(t)− ρ̂i(t)] +Nij(t)ρ̂j(t)−Nii(t)ρ̂i(t)},
(30)

where Ψi(t) = ηi(t)

[
αix(t) αi

βix(t) βi

]
, Nij(t) =

ηj(t)
αj

[
αiyi(t) 0

βiyi(t) 0

]
+

 ηj(t)ηi(t)αj
0

0 0

 and Nii(t) =

ηi(t)
αi

[
αiyi(t) 0

βiyi(t) 0

]
+

 ηi(t)2αi
0

0 0

 . Notice that E{Ψi(t)} =

0, E{Nij(t)} = 0, but E{Nii(t)} =

 (σηi )2

αi
0

0 0

.

Assuming δi(t) = δ(t), i = 1, . . . , n, we can write in
accordance with (8)

ρ̂(t+1) = (I+δ(t){[Φ(t)+Ψ(t)](Γ⊗I2)+Ñ(t)})ρ̂(t), (31)

where Ψ(t) = diag{Ψ1(t), . . . ,Ψn(t)}, Ñ(t) = [Ñij(t)],
where Ñij(t) = −

∑
k,k 6=i γikNii(t) for i = j and Ñij(t) =

γijNij(t) for i 6= j, i, j = 1, . . . , n.



Applying the methodology from the the previous section
to the analysis of (31), we conclude that, instead of (9),
we have now ρ̄(t + 1) = [I + δ(t)(B̄ + Ση)]ρ̄(t), where
B̄ is defined in (9) and Ση = −diag{ (σ

η
1 )

2

α1

∑
j γ1j , 0, . . . ,

(σηn)
2

αn

∑
j γnj , 0}. Under A2) and A3) the last recursion does

not have the properties of (9), due to the additional term Ση .
Then, all the row sums of B̄ + Ση are not equal to zero,
which prevents the achievement of asymptotic consensus (see
Theorem 1).

Assuming more realistically that {x(t)} is a correlated
sequence, we adopt A2’) instead of A2), and construct
the following general calibration algorithm of instrumental
variable type [17]:

θ̂i(t+ 1) = θ̂i(t) + δ(t)
∑
j∈Ni

γijε
n
ij(t)

[
yni (t− d)

1

]
, (32)

where d ≥ 1. The motivation for the introduction of delay
d > 0 is the elimination of correlation between the noise
terms in εnij(t) and yni (t − d). According to Section II, one
obtains from (32) the following relations involving explicitly
x(t) and the noise terms:

ρ̂i(t+ 1) = ρ̂i(t) + δ(t)
∑
j∈Ni

γij{(Φi(t, d) + Ψi(t, d))

× (ρ̂j(t)− ρ̂i(t)) +Nij(t, d)ρ̂j(t)−Nii(t, d)ρ̂i(t)},

where Φi(t, d) is easily obtained in the same way as Φi(t)
(Φi(t) = Φi(t, 0)),

Ψi(t, d) = ηi(t− d)

[
αix(t) αi

βix(t) βi

]
,

Nij(t, d) =
ηj(t)

αj

[
αiyi(t− d) 0

βiyi(t− d) 0

]
+

 ηj(t)ηi(t− d)

αj
0

0 0


and

Nii(t, d) =
ηi(t)

αi

[
αiyi(t− d) 0

βiyi(t− d) 0

]
+

 ηi(t)ηi(t− d)

αi
0

0 0

 .
In the same way as in (31), we have

ρ̂(t+1) = (I+δ(t){[Φ(t, d)+Ψ(t, d)](Γ⊗I2)+Ñ(t, d)})ρ̂(t),
(33)

where Φ(t, d) = diag{Φ1(t, d), . . . ,Φn(t, d)}, Ψ(t, d) =
diag{Ψ1(t, d), . . . ,Ψn(t, d)}, Ñ(t, d) = [Ñij(t, d)], where
Ñij(t, d) = −

∑
k,k 6=i γikNii(t, d) for i = j and Ñij(t, d) =

γijNij(t, d) for i 6= j, i, j = 1, . . . , n.
Instead of A4), we introduce:
A4’) −Φ̄(d) = −E{Φi(t, d)} is Hurwitz for some d =

d0 > 0.
Theorem 5. Let assumptions A2’), A3), A4’), A7) and

A8) be satisfied. Then ρ̂(t) generated by (33) with d = d0
converges to i1w1+i2w2 in the mean square sense and w.p.1,
where w1 and w2 are scalar random variables.

Proof: The proof starts from the demonstration that
T−1B(t, d)T = diag{02×2, B(t, d)∗}, where B(t, d) =

Φ(t, d)(Γ ⊗ I2) and B(t, d)∗ is an (2n − 2) × (2n − 2)
matrix. Then, we compute ρ̃(i) = T−1ρ̂(t), where T is
chosen according to Lemma 5, and obtain, similarly as in
Theorem 2, that

ρ̃(t+ 1)[1] =ρ̃(t)[1] + δ(t)H1(t, d)ρ̃(t) (34)

ρ̃(t+ 1)[2] =(I + δ(t)B(t, d)∗)ρ̃(t)[2]

+ δ(t)H2(t, d)ρ̃(t), (35)

where ρ̃(t)[1] = [ρ̃1(t) ρ̃2(t)]T , ρ̃(t)[2] = [ρ̃3(t) · · · ρ̃2n(t)]T ,

H(t) =

[
H1(t)

H2(t)

]
= T−1[Ψ1(t, d)(Γ ⊗ I2) + Ñ(t, d)]T , so

that H1(t) contains the first two rows; notice that {H(t)} is
i.i.d. and zero mean, with E{H(t)|Ft−1 = 0}.

After iterating the second relation in (34) τ times back-
wards, one obtains

ρ̃(t+ 1)[2] =Π(t, t− τ, d)ρ̃(t− τ)[2]

+
t∑

σ=t−τ
Π(t, σ + 1, d)δ(σ)H2(σ)ρ̃(σ), (36)

where Π(t, s, d) =
∏t
σ=s(I + δ(σ)B(σ, d)∗), with Π(t, t +

1, d) = I .
Having in mind A4’), we conclude that B̄(d)∗ =

E{B(t, d)} is Hurwitz for d = d0; therefore, there ex-
ist such symmetric positive definite matrices R∗ and Q∗

that R∗B̄(d0)∗ + B̄(d0)∗TR∗ = −Q∗. Denote s(t) =
E{‖ρ̃(t)[1]‖2} and V (t) = E{ρ̃(t)[2]TR∗ρ̃(t)[2]}, as in
Theorem 4. Calculation of V (t) from (36) is straightforward,
because E{H2(t, d)ρ̃(σ)} = 0 for all σ. The crucial term in
the final expression is the linear part of E{ρ̃(t−τ)[2]TΠ(t, t−
τ, d)TΠ(t, t − τ, d)ρ̃(t − τ)[2]} with respect to δ(σ), σ =
{t − τ, . . . , t}, analogously with the case of time invariant
gains δ in Theorem 3. According to A2’), we obtain

E{ρ̃(t− τ)[2]TE{R∗B̃(σ, d0)∗ + B̃(σ, d0)∗TR∗|Ft−τ−1}
× ρ̃(t− τ)[2]} ≤ ϕ(σ − t+ τ)V (t− τ), (37)

where ϕ(t) > 0 and limt→∞ ϕ(t) = 0, t − τ ≤ σ ≤ t.
Therefore, it is possible to find such τ0 > 0 that for all
τ ≥ τ0

λmin(Q∗)

t∑
σ=t−τ

δ(σ)−
t∑

σ=t−τ
ϕ(σ)δ(σ) > λ0 > 0, (38)

since λmin(Q∗) > 0 by definition. Therefore, for t large
enough, we have

V (t+ 1) ≤ (1− c0δ(t))V (t− τ) (39)
+C1

∑t
σ=t−τ δ(σ)2(1 + s(σ) + V (σ)),

where c0 > 0 and C1 > 0 are generic constants. Since from
the first relation in (34) we have directly

s(t+ 1) ≤ s(t) + C1δ(t)
2(1 + s(t) + V (t)), (40)

having in mind that E{H1(t)|Ft−1} = 0, recursions (39)
and (40) can be treated like the recursions in (29), giving
rise to the conclusion that ρ̃(t)[1] tends to a random variable
w =

[
w1
w2

]
and ρ̃(t)[2] tends to zero in the mean square

sense and w.p. 1.
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V. SIMULATION RESULTS

In order to illustrate properties of the proposed algorithm,
a sensor network with ten nodes has been simulated. A
fixed randomly selected communications structure has been
adopted, as well as parameters αi and βi randomly selected
around one and zero, with variance 0.3. In Fig. 1 the
equivalent gains ĝi(t) and offsets f̂i(t) generated by the
proposed algorithm (32) with d = 1 are presented for the
sequence δ(t) = 0.01/t0.6. All the types of the discussed
uncertainties are included: communications dropouts with
p = 0.2, communication additive noise with variance 0.1
and measurement noise with variances randomly chosen
in the range (0, 0.1); the signal is a correlated random
sequence with zero mean and variance 1. It is clear that the
consensus is achieved, and that the asymptotic values are
not far from the optimal ones. Fig. 2 illustrates the necessity
of the introduced instrumental variable modification. The
estimates are depicted for d = 0 (no instrumental variable).

It is obvious that consensus is not achieved and that gains
converge to zero in this case.

VI. CONCLUSION

In this paper a distributed calibration algorithm based
on consensus has been proposed for sensor networks. It is
proved, on the basis of a novel methodology of treating
higher order consensus schemes using the results related
to diagonal dominance of matrices decomposed into blocks,
that the algorithm achieves asymptotic consensus for sensor
gains and offsets in the mean square sense and with probabil-
ity one, under both communication errors and measurement
noise. The obtained results can be used to prove convergence
to a given reference sensor characteristics (see [16]). The
optimal choice of the weights γij deserves further attention.
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[17] T. Söderström and P. Stoica, System Identification. Hemel Hempstaed,
UK: Prentice Hall International, 1989.
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