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Abstract: This paper deals with recently proposed algorithms for real-time distributed blind
macro-calibration of sensor networks based on consensus (synchronization). The algorithms are
completely decentralized and do not require a fusion center. The goal is to consolidate all of the
existing results on the subject, present them in a unified way, and provide additional important
analysis of theoretical and practical issues that one can encounter when designing and applying
the methodology. We first present the basic algorithm which estimates local calibration parameters
by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1),
on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which
additive measurement noise, communication dropouts and additive communication noise are
present, two algorithm modifications are discussed: one that uses a simple compensation term,
and a more robust one based on an instrumental variable. The modified algorithms also achieve
asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1.
The convergence rate can be determined in terms of an upper bound on the mean-square error.
The case when the communications between nodes is completely asynchronous, which is of
substantial importance for real-world applications, is also presented. Suggestions for design of
a priori adjustable weights are given. We also present the results for the case in which the underlying
sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters.
Wide applicability and efficacy of these algorithms are illustrated on several simulation examples.
Finally, important open questions and future research directions are discussed.

Keywords: blind calibration; macro calibration; distributed estimation; sensor networks; consensus;
synchronization; stochastic approximation

1. Introduction

Recently emerged technologies dealing with networked systems, such as the Internet of Things
(IoT), Networked Cyber-Physical Systems (CPS), and Sensor Networks (SN), still have many conceptual
and practical challenges intriguing to both researchers and practitioners [1–9]. New classes of problems
in this area continuously arise, driven by many new real-world applications. Particularly in the
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case of SNs, application examples include environment monitoring, wildfires detection, shop-floor
manufacturing, smart cities, etc. One of the most important challenges, limiting the performance,
robustness and time-to-market of these new technologies, is sensor calibration. Micro-calibration can
be performed only in relatively small SNs where every sensor is individually calibrated in a controlled
environment. Typical SNs are of large scale, functioning in dynamic and partially unobservable
environments, thus demanding new methods and algorithms for efficient calibration. The idea of
macro-calibration is to calibrate the entire SN based on the total system response, so that there is
no requirement to individually calibrate every sensor node. The typical approach is to formulate
the calibration problem as a parameter estimation problem (e.g., [10,11]). Of significant interest are
methods for automatic calibration of SNs which successfully perform even if there are no reference
signals/sensors, or other sources of groundthruth information about the measured process. In these
situations, the goal of the calibration is to achieve homogeneous behavior of all the nodes, possibly
enforcing dominant influence of sensors that are a priori known to provide sufficently good (calibrated)
measurements. These types of calibration problems are known as the blind calibration problems
(e.g., [12]). Furthermore, in many applications of SNs, it is of essential importance that the network
functions in a completely decentralized fashion, preforming calibration in real-time, without the
requirement for any kind of centralized information fusion. Hence, completely distributed and
decentralized real-time calibration algorithms are of paramount importance.

In this paper, we study recently proposed algorithms which possess all the mentioned desirable
properties: they deal with blind macro-calibration of SNs based on completely decentralized,
real-time and recursive estimation of the parameters of linear calibration functions [13–17]. Another
advantageous property of these algorithms is that it is assumed that the underlying SN have
directed communication links between neighboring nodes. A basic algorithm is developed by using
a distributed optimization problem setup, constructing a distributed gradient recursive scheme,
with the local objectives formulated as weighted sums of mean-square differences between the
corrected sensor readings of neighboring nodes. A direct consequence of this problem setup is that
the algorithm can be studied as a generalized consensus scheme, to which the existing convergence
results of standard consensus schemes are not applicable (e.g., [18]). However, by using techniques
based on the stability of diagonally quasi-dominant dynamical systems [13,19–21] it is possible to
prove asymptotic convergence of calibrated sensor outputs to consensus, in the mean-square sense
and with probability one (w.p.1). The basic algorithm can be extended by assuming the presence of
several factors which are of essential importance for practical applicability of the proposed method:
(1) additive communication noise, (2) communication dropouts, (3) additive measurement noise,
and (4) asynchronous communication.

Two possible modifications of the basic algorithm are presented for solving the problems posed
in the cases (1)–(3) [16,17]. The first is based on the assumption that the noise variance is known
a priori, which is used to design an appropriate compensation term [17]. The second modification is
more robust and is based on an instrumental variable usage [16]. In both cases, the attainment of the
asymptotic consensus in the mean-square sense and w.p.1 is guaranteed. In the case of completely
asynchronous communication scenario, which is particularly important, we show how the algorithm
can be implemented assuming a broadcast gossip communication scheme, which does not require
clock synchronization among the agents, or any type of centralized information or coordination [14].

Another practically important situation arises when there are multiple nodes in the network
that do not update (correct) their calibration parameters, but they still participate in the described
distributed macro-calibration process. In this case, these nodes are called reference nodes since their
only role is to provide reference information based on which other nodes should calibrate themselves.
For example, this situation may arise in practice when a set of uncalibrated sensors is added to
an already calibrated SN. In the case of more than one reference node, the corrected gains and offsets
of the non-reference nodes, in general, do not converge to consensus, but to different points which
depend on the information dictated by the reference sensors and the network properties [14]. In the
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case of only one reference sensor, the corrected gains and offsets of the rest of the sensors converge to
the same point imposed by the reference sensor.

Finally, an analysis is given which clarifies the influence of initially selected weights corresponding
to particular nodes in the presented calibration parameters estimation recursions. Guidelines are
formulated on how these weights should be chosen so that given requirements are satisfied.
General discussion of the described results is provided from both theoretical and practical points of
view, based on which several future research directions are proposed.

The outline of the rest of the paper is as follows. The following section briefly discusses related
work. In Section 3 we introduce the distributed blind macro-calibration problem and derive the basic
algorithm for the noiseless case. Section 4 is devoted to the presentation of the convergence properties
of the base algorithm. In Section 5 certain assumptions about the measured signals, communication
errors, and communication protocol are relaxed, and the appropriate algorithm modifications are
introduced, together with their convergence properties. In Section 6 a discussion on the convergence
rate, the case of presence of reference sensors with fixed characteristics, and some design guidelines
are presented. In Section 7 we present illustrative simulation results. Finally, Section 8 presents some
conclusions and future research directions.

2. Related Work

Macro-calibration is based on the idea of calibrating the whole SN based on the responses of all the
nodes. The most frequent approaches to this problem are based on parameter estimation techniques
(e.g., [11]). If controlled stimuli are not available the problem is usually referred to as blind calibration
of SNs. In general, it is a difficult problem, which has certain similarities with more general problems
of blind estimation, equalization, and deconvolution (e.g., [22–24] and references therein).

Most of the proposed appraches to blind calibration in the existing literature are centralized and
non-recursive [12,25–37]. Within this class of methods, in refs. [12,25] a blind calibration algorithm
based on signal subspace projection was analyzed assuming restrictive signal and sensor properties.
In ref. [26] the method was improved from the point of view of robustness to subspace uncertainties.
In ref. [27] the authors proposed to use sparsity and convex optimization for blind estimation of
calibration gains. In ref. [28] an approach to blind sensor calibration is adopted based on centralized
consistency maximization at the network level assuming very dense deployment and only pairwise
inter-node communications. In ref. [29] a moments-based centralized blind calibration is proposed
for mobile SNs, exploiting multiple measurements of the same signal of mobile nodes, assuming that
the measured signal does not change in time. In ref. [30], the authors proposed a method which can
manage situations in which density requirements are not met. Interesting centralized approaches to
blind drift calibration proposed in refs. [31–33], which also work when the density requirement is not
met, are based on non-restrictive modeling of the assumed underlying signal subspace, with drift
estimation using Kalman filter [31], sparse Bayesian learning [32], or deep learning [33]. The approach
in ref. [34] also does not rely on stringent assumptions about signal subspace, but assume first-order
auto-regressive signal process model. The authors of [35] introduce linear algebraic model of calibration
relationships in a SN with centralized architecture to improve the simple mean calibration scheme,
assuming sufficiently dense deployment. Another centralized approach to mobile sensors calibration
is proposed in ref. [36] and is based on using a nonnegative matrix factorization. Some of the density
assumptions introduced in this work were relaxed in ref. [37]. In ref. [38] the blind calibration problem
was treated in a context of sparse sensing, using a message passing algorithm, assuming constant
measured signal. The method proposed in ref. [39], based on geospatial estimation and Kalman filter,
works if the sensors are calibrated at the beginning of the operation after deployment, and then may
start to drift.

The problem of distributed blind macro-calibration may have certain similarities with the
clock synchronization approaches based on local data processing and communications with



Sensors 2018, 18, 4027 4 of 27

neighbors [40–47]. However, these approaches cannot be directly mapped to the calibration problem
treated in this paper.

Finally, certain extended consensus algorithms have been applied to SN calibration problems,
but in different settings than the one treated in this paper [48–51]. An approach to blind calibration
of sensor gains only, based on distributed gossip-based Expectation-Maximization iterations was
proposed in ref. [52], assuming that the measured signal is constant. Another distributed approach was
proposed in ref. [53], which explicitly uses a state-space model of the underlying process, and a message
exchange protocol for offset compensation. The proposed scheme was formulated without proof of
convergence. This paper is focused on the algorithms proposed recently in refs. [13–17] representing
completely distributed and decentralized blind macro-calibration algorithms with rigorous proofs of
convergences for both corrected sensor gains and offsets, with satisfactory performance under diverse
deteriorating conditions which may typically appear in practical applications.

3. Problem Definition and the Basic Algorithm

Assume that the SN to be calibrated consists of n nodes/sensors. In the base setup, it is assumed
that each sensor is measuring the same signal x(t) in discrete-time instants t = . . . ,−1, 0, 1, . . .;
this signal can be considered as a realization of a stochastic process {x(t)}. Note that we have
implicitly assumed that the sensor nodes are functioning synchronously, since all the sensor nodes
perform measurements in the same time instances t. We will relax this assumption in Section 5.3.
The output (measurement) of the i-th node can be written as

yi(t) = αix(t) + βi, (1)

where αi is the unknown gain, and βi the unknown offset of sensor i. Note that, in this problem setup,
it is assumed that αi and βi are unknown constants and not the random variables.

Calibration of a sensor is performed by applying an affine calibration function to the raw
readings (1) which results in the following calibrated sensor output

zi(t) = aiyi(t) + bi = gix(t) + fi, (2)

where ai and bi are the calibration parameters to be obtained, gi = aiαi is the corrected gain and
fi = aiβi + bi the corrected offset. The calibration objective is, ideally, to find parameters ai and bi
for which gi is equal to one and fi equal to zero. In general, if we assume that there are no sensors
which give perfect readings zi(t) = x(t) and that the signal x(t) is unknown and cannot be obtained
or measured by some other means, this objective is impossible to achieve. Hence, in our decentralized
real-time blind macro-calibration problem setup, this ideal objective must be alleviated: we require
that the calibration process asymptotically achieves equal calibrated outputs zi(t) for all the nodes
i = 1, ..., n. To approach as close as possible to the ideal goal of achieving gi = 1 and fi = 0, we could
use certain a priori knowledge about the underlying SN, and try to adjust the algorithm, such that,
loosely speaking, the “good” sensors (e.g., precalibrated or higher-quality sensors) correct, using the
consensus strategy, the response of the rest of the sensors. For example, if, in a given SN, there is
an apriori given perfectly calibrated reference sensor, the ideal asymptotic calibration (gi = 1 and
fi = 0) of the rest of the sensor nodes will be achieved if the consensus goal is achieved.

It is assumed that the underlying SN have a predefined communication topology, defining
possible inter-sensor communications, represented by a directed graph G = (N , E), where N is the set
of nodes (sensors) and E the set of communication links (arcs). Define the adjacency matrix A = [aij],
i, j = 1, . . . , n, where aij = 1 if the j-th node is able to send messages to the i-th sensor, and aij = 0
otherwise. LetNi be the set of in-neighboring nodes (or just neighbors) of the i-th node, i.e., the nodes j
for which aij = 1. Similarly, letN out

i be the set of out-neighboring nodes of the i-th node, i.e., the nodes
j for which aji = 1.



Sensors 2018, 18, 4027 5 of 27

Let us now derive the basic calibration algorithm. The idea is to start with local criteria for
each node, whose local minimization would lead to a network-level consensus on the corrected
sensor outputs:

Ji = ∑
j∈Ni

γijE{(zj(t)− zi(t))2}, (3)

i = 1, ..., n, where γij are nonnegative scalar weights whose influence on the properties of the algorithm
will be discussed later. Denoting θi = [ai bi]

T , the following expression is obtained for the gradient
of (3):

gradθi
Ji = ∑

j∈Ni

γijE
{
(zj(t)− zi(t))

[
yi(t)

1

]}
. (4)

From (4) we obtain the following stochastic gradient recursion for estimating θ∗i minimizing (3):

θ̂i(t + 1) = θ̂i(t) + δi(t) ∑
j∈Ni

γijεij(t)
[

yi(t)
1

]
, (5)

where θ̂i(t) = [âi(t) b̂i(t)]T , εij(t) = ẑj(t) − ẑi(t), ẑi(t) = âi(t)yi(t) + b̂i(t), and δi(t) > 0 is
a time-varying gain whose influence on the convergence properties of the algorithm will be discussed
later. The initial conditions are assumed to be θ̂i(0) = [1 0]T , i = 1, . . . , n. We expect that the set of
recursions (5) asymptotically achieve that all the local estimates of corrected gains ĝi(t) = âi(t)αi and
corrected offsets f̂i(t) = âi(t)βi + b̂i(t) converge to the same values ḡ and f̄ , respectively; this implies
that the corrected sensor outputs of all the nodes are also equal ẑj(t) = ẑi(t), i, j = 1, . . . , n.

In Figure 1 an illustrating smart-city example sensor network is depicted. Completely decentralized
network architecture is assumed, i.e., the nodes communicate according to the directed communication
graph which is represented in the figure using arcs. The communication graph will typically depend
on the mutual node distances, transmission power of individual nodes, channel conditions, presence
of obstacles, etc. Each node in the network is equipped with the same type of sensor which measures
certain physical quantity (e.g., certain atmospheric condition or air quality indicator). At each time
instant t, a node i performs local reading of the raw sensor output yi(t), calculation of the corrected
sensor output ẑi(t) according to (2) using current local estimates of the calibration parameters âi(t)
and b̂i(t), transmission of the corrected value ẑi(t) to the out-neighbors N out

i , reception of the
values ẑj(t) from the in-neighbors j ∈ Ni, and calculation of the updated estimates of the local
calibration parameters âi(t + 1) and b̂i(t + 1) using (5). In the initial presentation we will assume that,
at each iteration of the algorithm (5), local sensor measurement yi(t) and the current messages of the
neighboring nodes’ corrected outputs ẑj(t) are available at node i. Possible communication dropouts
and/or faulty/noisy sensor readings will be treated later. Local computational cost for each agent is
minor since only two parameters are being estimated. Communication complexity depends on the
number of neighboring agents, which is small in typical SNs with decentralized architecture.
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Figure 1. An example sensor network used in smart-city applications with decentralized communication
topology. The inter-node communication is performed according to the depicted directed graph.
The introduced distributed calibration algorithm achieves asymptotic calibration of all the sensor nodes in
the network without using any type of fusion center.

For the sake of compact notations, suitable for convergence analysis of the derived algorithm,
let us introduce

φ̂i(t) =

[
ĝi(t)

f̂i(t)

]
=

[
αi 0
βi 1

]
θ̂i(t), (6)

and
εij(t) =

[
x(t) 1

]
(φ̂j(t)− φ̂i(t)), (7)

so that (5) becomes
φ̂i(t + 1) = φ̂i(t) + δi(t) ∑

j∈Ni

γijΩi(t)(φ̂j(t)− φ̂i(t)), (8)

where

Ωi(t) =

[
αiyi(t)x(t) αiyi(t)

[1 + βiyi(t)]x(t) 1 + βiyi(t)

]
(9)

=

[
αiβix(t) + α2

i x(t)2 αiβi + α2
i x(t)

(1 + β2
i )x(t) + αiβix(t)2 1 + β2

i + αiβix(t)

]
,

with the initial conditions ρ̂i(0) = [αi βi]
T , i = 1, . . . , n. Therefore, the following compact form for the

recursions (8) is obtained
φ̂(t + 1) = [I + (∆(t)⊗ I2)B(t)]φ̂(t), (10)

where ⊗ is the Kronecker product, I is the identity matrix of dimension 2n, I2 is the dimension
2 identity matrix, φ̂(t) = [φ̂1(t)T · · · φ̂n(t)T ]T , ∆(t) = diag{δ1(t), . . . , δn(t)}, diag{. . .} denotes the
corresponding block diagonal matrix,

B(t) = Ω(t)(Γ⊗ I2),

Ω(t) = diag{Ω1(t), . . . , Ωn(t)},
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Γ =



− ∑
j,j 6=1

γ1j γ12 · · · γ1n

γ21 − ∑
j,j 6=2

γ2j · · · γ2n

. . .
γn1 γn2 · · · − ∑

j,j 6=n
γnj


,

where γij = 0 when j /∈ Ni, and the initial condition is φ̂(0) = [φ̂1(0)T · · · φ̂n(0)T ]T , according to (8).
From the way in which we have constructed the vector φ̂(t) we conclude that the asymptotic value of
φ̂(t) should be such that all of its odd components are equal, and all of its even components are equal.

In the next section, it will be shown that, under certain general assumptions, for any choice of
the weights γij ≥ 0 for j ∈ Ni (and γij = 0 when j /∈ Ni) the algorithm achieves convergence to
consensus. However, if the underlying calibration objective is to achieve absolute calibration of the
sensors (i.e., ḡ close to one and f̄ close to zero), this can be done by trying to exploit sensors that are a
priori known to have good characteristics. In a large SN, this can be achieved in two ways: (1) if the
large number of sensors are “good” sensors, then γij-s in all neighborhoodsNi should be approximately
the same; or (2) if there is a set of a priori chosen good sensors j ∈ N f ⊂ N the goal is to enforce their
dominant influence to the rest of the nodes. There are two possibilities to achieve this: (a) to set high values
of γij for all j ∈ N f and i ∈ N out

j ; or (b) to set small values of γjk for all j ∈ N f , k ∈ Nj, k 6= j (which
prevents large changes of φ̂j(t)). Section 6.3 deals with the guidelines on weights tuning, while Section 6.4
treats the case in which a set of reference sensors is kept with fixed calibration parameters.

4. Convergence Analysis

In this section we discuss the convergence properties of the calibration scheme presented in the
previous section, where it has been assumed that both local sensor measurements and inter-node
communications are perfect, i.e., possible communication errors and/or measurement errors are
not present. We first analyze this basic scheme in order to focus on structural characteristics of
the algorithm; the case of lossy SNs will be treated in the subsequent sections. In the basic setup,
without presence of any unreliability, it is sufficient to assume that the step sizes δi(t) are constant:

(A1) δi(t) = δ = const, for all i = 1, . . . , n.
For clearer initial presentation of the convergence results, we now adopt a simplifying assumption:
(A2) {x(t)} is independent and identically distributed (i.i.d.) sequence, with E{x(t)} = x̄ < ∞

and E{x(t)2} = s2 < ∞.
In practice, when the SNs are used to measure certain physical quantities, the assumption that

{x(t)} is i.i.d. is almost never satisfied; hence it will be relaxed later.
Based on (A1) and (A2), the expectation of the parameter estimates φ̄(t) = E{φ(t)} satisfies the

following recursion
φ̄(t + 1) = (I + δB̄)φ̄(t), (11)

where φ̄(0) = φ(0), B̄ = Ω̄(Γ⊗ I2) and Ω̄ = E{Ω(t)} = diag{Ω̄1 . . . Ω̄n}, with

Ω̄i =

[
αiβi x̄ + α2

i s2 αiβi + α2
i x̄

(1 + β2
i )x̄ + αiβis2 1 + β2

i + αiβi x̄

]
. (12)

The following assumption, typical for consensus-based algorithms, is introduced:
(A3) Graph G has a spanning tree.
It implies that the matrix Γ has one zero eigenvalue and the rest eigenvalues with negative real

parts, e.g., [54]. Hence, from the structure of matrix B̄, we directly conclude that it has at least two zero
eigenvalues. Its remaining eigenvalues can be characterized starting from the following assumption:

(A4) s2 − x̄2 = var{x(t)} > 0.
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This assumption guarantees that the estimation recursions are sufficiently excited by the signal
x(t). Its important consequence is that −Ω̄i defined by (12) is Hurwitz, for all i = 1, . . . , n. Indeed,
using some simple algebra it can be derived that −Ω̄i is Hurwitz if and only if (iff)

α2
i (s

2 − x̄2) > 0, 2αiβi x̄ + α2
i s2 + 1 + β2

i > 0. (13)

Both inequalities hold iff (A4) holds. This greatly simplifies further derivations which depend on
somewhat complicate expression (12) for the 2× 2 diagonal blocks of the matrix Ω̄.

Because of the block structure of matrices Ω̄ and B̄, the properties of the main recursion (11)
cannot be analyzed using standard linear consensus methodologies (see, e.g., [18,54] and references
therein). To cope with this problem, a methodology based on the concept of diagonal quasi-dominance
of matrices decomposed into blocks has been used [13,17,19–21] to obtain the following important
result characterizing all the eigenvalues of the matrix B̄.

Lemma 1 ([13,17]). Assume that the assumptions (A3) and (A4) hold. Then, matrix B̄ in (11) has two zero
eigenvalues and the rest eigenvalues have negative real parts.

Observe that vectors i1 = [ 1 0 1 0 . . . 1 0 ]T ∈ R2n and i2 = [ 0 1 0 1 . . . 0 1 ]T ∈ R2n, where R
is the set of real numbers, are the right eigenvectors of B̄ corresponding to the eigenvalue at the

origin. Let ρ1 and ρ2 be the corresponding normalized left eigenvectors, satisfying
[

ρ1
ρ2

] [
i1 i2

]
= I2.

The following lemma deals with a similarity transformation important for all the remaining derivations
throughout the paper.

Lemma 2 ([13,17]). Let T =
[

i1 i2 T2n×(2n−2)

]
, where T2n×(2n−2) is an 2n× (2n− 2) matrix, such that

span{T2n×(2n−2)}= span{B̄} (span{A} denotes a linear space spanned by the columns of matrix A). Then, T
is nonsingular and

T−1B̄T =

[
02×2 02×(2n−2)

0(2n−2)×2 B̄∗

]
, (14)

where B̄∗ is Hurwitz, and 0i×j denotes a i× j zero matrix.

Notice that

T−1 =

 ρ1
ρ2

S(2n−2)×2n

 , (15)

where S(2n−2)×2n can be determined from the definition of T.
From the structure of the matrices in (11), it can be concluded that the transformation T from

Lemma 2, when applied to the original matrix B(t), will produce a matrix which has the same structure
as the transformed matrix given in Equation (14).

Lemma 3 ([13,17]). For the matrix B(t) in (10) it holds that, for all t,

T−1B(t)T =

[
02×2 02×(2n−2)

0(2n−2)×2 B(t)∗

]
, (16)

where B(t)∗ is an (2n− 2)× (2n− 2) matrix and T is given in Lemma 2.

The following convergence theorem can now be formulated.
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Theorem 1 ([17]). Assume that Assumptions (A1)–(A4) hold. Then there exists δ′ > 0 such that for all δ ≤ δ′

in (10)
lim
t→∞

φ̂(t) = (i1ρ1 + i2ρ2)φ̂(0) (17)

in the mean square sense and w.p.1.

Note here that the limit vector in (17) (i1ρ1 + i2ρ2)φ̂(0) have all the odd elements equal, and all
the even elements equal, which means that the corrected gains of all the nodes converge to the same
value, and the corrected offsets of all the nodes converge to the same value. It can be shown [13]
that this value only depends on the unknown sensor parameters αi and βi, and the weights γij in Ji,
i, j = 1, . . . n. For given initial conditions in (5), ρ1φ̂(0) and ρ2φ̂(0) are in the form of weighted sums of
αi and βi, 1, . . . , n, respectively. Assuming that the weights γij are the same for all the nodes, and that
αi have a distribution centered around one, and βi around zero, these weighted sums will be close to
one and zero, respectively.

The value of δ′ > 0 in Theorem 1, which ensures convergence, may be restrictive. In practice, the
choice of step size δ in (A1) should be based on the actual properties of the underlying SN; its value
needs to be small enough to achieve convergence, but it should also be sufficiently large to achieve
acceptable rate of convergence (as in the standard parameter estimation recursions [55]).

After clarifying the main structural properties of the algorithm, we now treat the more realistic
case of correlated sequences {x(t)}. We replace (A2) with:

(A2’) The random process {x(t)} is weakly stationary, bounded w.p.1, and with bounded first
and second moments, i.e., |x(t)| ≤ K < ∞, E{x(t)} = x̄ < ∞, E{x(t− d)x(t)} = m(d) < ∞ for all
d ∈ {0, 1, 2, . . .} (E{·} is a sign of the mathematical expectation), m(0) = s2 < ∞. It also holds that

(a) |E{x(t)|Ft−τ} − x̄| = o(1), (w.p.1) (18)

(b) |E{x(t− d)x(t)|Ft−τ} −m(d)| = o(1), (w.p.1) (19)

when τ → ∞, for all d ∈ {0, 1, 2, . . .}, τ > d (Ft−τ denotes the minimal σ-algebra generated by
{x(0), x(1), . . . , x(t− τ)}, and o(1) denotes a function that converges to zero when τ → ∞).

Hence, (A2’) requires stationarity, boundedness, and imposes a mixing condition on the signal
{x(t)}. The explicitly used time shift parameter d will be used later for introducing a new algorithm
based on an instrumental variable, capable of dealing with possible measurement noise.

The following theorem examines the convergence of the algorithm (11) under assumption (A2’):

Theorem 2 ([16]). Assume that the assumptions (A1), (A2’), (A3) and (A4) hold. Then there exists δ′′ > 0
such that for all δ ≤ δ′′ in (10) limt→∞ φ̂(t) = (i1ρ1 + i2ρ2)φ̂(0) in the mean square sense and w.p.1.

5. Extensions of the Basic Algorithm

In this section, we introduce several modifications and generalizations of the basic algorithm (5),
so that it is possible to achieve distributed calibration under more challenging conditions, typically
present in real-life SNs: communication dropouts, additive communication noise, measurement noise,
and asynchronous communication. Convergence properties of the introduced modifications are
presented in detail.

5.1. Communication Errors

In this subsection, we assume that inter-node communication errors can be manifested in two
ways: (1) communication dropouts (outages) and (2) additive communication noise. Communication
dropouts typically occur in SNs using digital communication; additive noise can, in this case, model
quantization effects. For example, in the case of smart city sensor networks, depicted in Figure 1,
the dropouts will happen relatively often because of the dynamic environment, where both physical
obstacles and electronic interference can be persistent. In certain, less frequent practical situations,
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SNs can use analog communication (e.g., when certain types of energy harvesting are used [56]),
when additive communication noise is dominant, and dropouts appear less frequently.

The communication errors are formally introduced using the following assumptions:
(A5) The weights γij in the algorithm (5) are now randomly time-varying, according to stochastic

processes given by {γij(t)} = {uij(t)γij}, where {uij(t)} are i.i.d. binary random sequences, such that
uij(t) = 1 with probability pij (pij > 0 when j ∈ Ni), and uij(t) = 0 with probability 1− pij.

(A6) Instead of receiving ẑj(t) from the j-th node, the i-th node receives ẑj(t) + ξij(t), where

{ξij(t)} is an i.i.d. random sequence with E{ξij(t)} = 0 and E{ξij(t)2} = (σξ
ij)

2 < ∞.
(A7) Processes {x(t)}, {uij(t)} and {ξij(t)} are mutually independent.
Based on the above assumptions, the communication dropout at any iteration t, when node j is

sending to node i, will happen with probability 1− pij, independently of the additive communication
noise process {ξij(t)} and the measured signal {x(t)}.

Denoting

νi(t) = ∑
j∈Ni

γij(t)ξij(t)

[
αiyi(t)

1 + βiyi(t)

]
,

and ν(t) =
[

ν1(t) . . . νn(t)
]
, one obtains from (10) that

φ̂(t + 1) = [I + (∆(t)⊗ I2)B′(t)]φ̂(t) + ∆(t)ν(t), (20)

where B′(t) = Ω(t)(Γ(t)⊗ I2), and Γ(t) is obtained from Γ by applying (A5).
Convergence properties of the recursion (20), under the additional assumptions (A5)–(A7), can be

derived starting from the results of the previous subsection. Due to the mutual independence of the
random variables in B′(t), it can be concluded that E{B′(t)} = B̄′ = Ω̄(Γ̄⊗ I2), where Γ̄ = E{Γ(t)} is
the same as Γ but with γij replaced by γij pij. Also, it follows that B̃′(t) .

= B′(t)− B̄′, is a martingale
difference sequence (since E{B̃′(t)|Ft−1} = 0). Furthermore, it can be concluded that B̄′ = Ω̄(Γ̄⊗ I2)

has the same spectrum as B̄ in (11): it has two zero eigenvalues and the rest eigenvalues are with
negative real part.

Since the additive noise is now present in the recursions (20), (A1) needs to be replaced with the
following assumption, typical in the stochastic approximation literature (e.g., [57]):

(A1’) δi(t) = δ(t) > 0, ∑∞
t=0 δ(t) = ∞, ∑∞

t=0 δ(t)2 < ∞, i = 1, . . . , n.
Intuitively, (A1’) introduces diminishing gains δi(t) which converge to zero slowly enough, so that

the additive noise can be averaged out while asymptotic convergence to a consensus point is achieved
(despite the presence of noise).

Therefore, we have

φ̂(t + 1) = (I + δ(t)B̄′)φ̂(t) + δ(t)B̃′(t)φ̂(t) + δ(t)ν(t). (21)

Similarly as in the noiseless case, let as introduce the similarity transformation

T′ =
[

i1 i2 T′2n×(2n−2)

]
,

where T′2n×(2n−2) is an 2n× (2n− 2) matrix, such that span{T′2n×(2n−2)} = span{B̄′}. Then, (T′)−1 =
ρ′1
ρ′2

S′(2n−2)×2n

, where ρ′1 and ρ′2 are the left eigenvectors of B̄′ corresponding to the eigenvalue at the

origin. By applying transformation T′ to (21), and using stochastic Lyapunov stability arguments, along
with the arguments typically used in analyzing stochastic approximation algorithms [13,17,58,59],
the following theorem can be proved:
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Theorem 3 ([13,17]). Let Assumptions (A1’), (A2)–(A7) be satisfied. Then, φ̂(t) generated by (21) converges
to i1w1 + i2w2 in the mean square sense and w.p.1, where w1 and w2 are scalar random variables satisfying
E{w1} = ρ′1φ̂(0) and E{w2} = ρ′2φ̂(0).

The theorem essentially states that, again, all the corrected drifts converge to the same point, and
all the corrected offsets converge to the same point; however, because of the additive communication
noise, these points are random and depend on the noise realization. The mean values of these possible
convergence points depend on the sensor parameters αi and βi, the design parameters γij, as well as
on the dropout probabilities pij, i, j = 1, . . . n.

5.2. Measurement Noise

In this subsection we, in addition to communication errors, assume that the signal x(t) is measured
with additive measurement noise. This situation is of essential importance for practical applications
since practically all the existing sensors contain certain measurement errors which are typically
modeled using stochastic processes [3].

Formally, we model the additive noise stochastic process using the following assumption:
(A8) Instead of yi(t) given by (1), the sensor measurements are now contaminated by noise, and

given by
yη

i (t) = αix(t) + βi + ηi(t),

where {ηi(t)}, i = 1, . . . n, are zero mean i.i.d. random sequences with E{ηi(t)2} = (σ
η
i )

2, independent
of the measured signal x(t).

By replacing yη
i (t) instead of yi(t) in the base algorithm (5), one obtains the following “noisy”

version of (8):

φ̂i(t + 1) =φ̂i(t) + δi(t) ∑
j∈Ni

γij{[Ωi(t) + Ψi(t)][φ̂j(t)− φ̂i(t)] + Nij(t)φ̂j(t)− Nii(t)φ̂i(t)}, (22)

where Ψi(t) = ηi(t)

[
αix(t) αi

βix(t) βi

]
, Nij(t) =

ηj(t)
αj

[
αiyi(t) 0
βiyi(t) 0

]
+

 ηj(t)ηi(t)
αj

0

0 0

 and Nii(t) =

ηi(t)
αi

[
αiyi(t) 0
βiyi(t) 0

]
+

 ηi(t)2

αi
0

0 0

, assuming αi 6= 0, i = 1, ..., n. It is important to observe here that

E{Ψi(t)} = 0, E{Nij(t)} = 0; however E{Nii(t)} =

 (σ
η
i )

2

αi
0

0 0

.

Assuming again that the step sizes δi(t), i = 1, . . . , n, satisfy (A1’), one can obtain the following
equation analog to (10):

φ̂(t + 1) = (I + δ(t){[Ω(t) + Ψ(t)](Γ⊗ I2) + Ñ(t)})φ̂(t), (23)

where Ψ(t) = diag{Ψ1(t), . . . , Ψn(t)} and Ñ(t) = [Ñij(t)] with Ñij(t) = −∑k,k 6=i γik Nii(t) for i = j
and Ñij(t) = γijNij(t) for i 6= j, i, j = 1, . . . , n.

In an analogous way as in the previous section, instead of (11), the following equation is obtained
for the mean of the corrected calibration parameters

φ̄(t + 1) = [I + δ(t)(B̄ + Ση)]φ̄(t), (24)
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where B̄ is as in (11) and Ση = −diag{ (σ
η
1 )

2

α1
∑j γ1j, 0, . . . , (σ

η
n )

2

αn
∑j γnj, 0}. Because of the additional term

Ση , the sums of the rows of the matrix B̄ + Ση are not equal to zero anymore, so that the convergence
to consensus (as in Theorem 1) cannot be achieved in this case.

However, it can be seen from the structure of the recursion (24) that, if we assume that the
measurement noise variances (σ

η
i )

2 are a priori known, we can use them to modify the basic
algorithm (5) in the following way, ensuring again the asymptotic convergence to consensus:

θ̂i(t + 1) = θ̂i(t) + δ(t){ ∑
j∈Ni

γijε
η
ij(t)

[
yη

i (t)
1

]
+

 (σ
η
i )

2 ∑
j∈Ni

γij 0

0 0

 θ̂i(t)}, (25)

where ε
η
ij(t) = ẑη

j (t)− ẑη
i (t) and ẑη

i (t) = âi(t)y
η
i (t) + b̂i(t), i = 1, . . . , n.

The following theorem deals with the convergence of the above modification of the basic algorithm,
when the measurement noise is present together with the communication errors. The convergence
points will again depend on the measurement and communication noise realizations, in a similar way
as in Theorem 3.

Theorem 4 ([17]). Assume that the assumptions (A1’), (A2)–(A8) hold. Then, φ̂(t), given by (25), converges
to i1w1 + i2w2 in the mean square sense and w.p.1, where w1 and w2 are scalar random variables satisfying
E{w1} = ρ′1φ̂(0) and E{w2} = ρ′2φ̂(0).

Notice that the above theorem was based on assumption (A2): indeed, when both {x(t)} and
{ηi(t)} are i.i.d. sequences, it is not surprising that the asymptotic consensus is achievable only
provided σ

η
i , i = 1, . . . , n, are known. However, we can replace the unrealistic assumption (A2) with

(A2’) (introduced in Section 4 in the noiseless case) allowing correlated sequences {x(t)} which is
almost always the case in practice. In such a way, the correlatedness problem present in the algorithm
(24) can be overcame, without requiring any a priori information about the measurement noise process.
The idea is to introduce instrumental variables in the basic algorithm in the way analogous to the
one often used in the field system identification, e.g., [60,61]. Instrumental variables have the basic
property of being correlated with the measured signal, and uncorrelated with noise. If {ζi(t)} is the
instrumental variable sequence of the i-th agent, one has to ensure that ζi(t) is correlated with x(t) and
uncorrelated with ηj(t), j = 1, . . . , n. Under A2’) a logical choice is to take the delayed sample of the
measured signal as an instrumental variable, i.e., to take ζi(t) = yη

i (t− d), where d ≥ 1. Consequently,
we present the following general calibration algorithm based on instrumental variables able to cope
with measurement noise:

θ̂i(t + 1) = θ̂i(t) + δ(t) ∑
j∈Ni

γijε
η
ij(t)

[
yη

i (t− d)
1

]
, (26)

where d ≥ 1 and ε
η
ij(t) = ẑη

j (t) − ẑη
i (t), ẑη

i (t) = âi(t)y
η
i (t) + b̂i(t), i = 1, . . . , n. Following the

derivations from Section 3, one obtains from (26) the following relations involving explicitly x(t) and
the noise terms:

φ̂i(t + 1) = φ̂i(t) + δ(t) ∑
j∈Ni

γij{(Ωi(t, d) + Ψi(t, d))(φ̂j(t)− φ̂i(t))

+ Nij(t, d)φ̂j(t)− Nii(t, d)φ̂i(t)}, (27)

where

Ωi(t, d) =

[
αiβix(t) + α2

i x(t)x(t− d) αiβi + α2
i x(t− d)

(1 + β2
i )x(t) + αiβix(t)x(t− d) 1 + β2

i + αiβix(t− d)

]
,
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Ψi(t, d) = ηi(t− d)

[
αix(t) αi

βix(t) βi

]
,

Nij(t, d) =
ηj(t)

αj

[
αiyi(t− d) 0
βiyi(t− d) 0

]
+

 ηj(t)ηi(t− d)
αj

0

0 0


and

Nii(t, d) =
ηi(t)

αi

[
αiyi(t− d) 0
βiyi(t− d) 0

]
+

 ηi(t)ηi(t− d)
αi

0

0 0

 .

In the same way as in (23), we have

φ̂(t + 1) = (I + δ(t){[Ω(t, d) + Ψ(t, d)](Γ⊗ I2) + Ñ(t, d)})φ̂(t), (28)

where Ω(t, d) = diag{Ω1(t, d), . . . , Ωn(t, d)}, Ψ(t, d) = diag{Ψ1(t, d), . . . , Ψn(t, d)}, Ñ(t, d) =

[Ñij(t, d)], where Ñij(t, d) = −∑k,k 6=i γik Nii(t, d) for i = j and Ñij(t, d) = γijNij(t, d) for i 6= j,
i, j = 1, . . . , n.

To formulate a convergence theorem for (28), the following modification of (A4) is needed:
(A4’) m(d) > x̄2 for some d = d0 ≥ 1.
This assumption implies that the correlation m(d0) should be large enough. Similarly as in the

case of (A4), it can be concluded that (A4’) implies that −Ω̄(d) = −E{Ωi(t, d)} is Hurwitz. Similarly
as in the above cases, let as introduce the similarity transformation

T′′ =
[

i1 i2 T′′2n×(2n−2)

]
,

where T′′2n×(2n−2) is an 2n × (2n − 2) matrix, such that span{T′′2n×(2n−2)} = span{B̄(d)′′}. Then,

(T′′)−1 =


ρ′′1
ρ′′2

S′′(2n−2)×2n

, where ρ′′1 and ρ′′2 are the left eigenvectors of B̄(d)′′ = E{Ω(t, d)(Γ(t) ⊗

I2)} = Ω̄(d)(Γ̄⊗ I2) corresponding to the zero eigenvalue. The following theorem deals with the
convergence of the instrumental variable algorithm (26). The convergence point, again, depends on
the noise realization.

Theorem 5 ([16]). Assume that the assumptions (A1’), (A2’), (A3), (A4’), (A5)–(A8) hold. Then φ̂(t), given
by (28) with d = d0, converges to i1w1 + i2w2 in the mean square sense and w.p.1, where w1 and w2 are scalar
random variables satisfying E{w1} = ρ′′1 φ̂(0) and E{w2} = ρ′′2 φ̂(0).

5.3. Asynchronous Broadcast Gossip Communication

So far we have shown how to deal with most of the practical challenges which emerge when
dealing with real life SNs, such as communication dropouts, communication additive noise and
measurement noise. However, in all of the above discussed algorithms we have implicitly assumed
that all the nodes in the network share a common clock, based on which the recursions in (5), (25) or (26)
can be implemented synchronously. Indeed, when introducing the basic algorithm we have assumed
that the signal x(t) is being measured in discrete-time instances t by all the nodes. These instances
are also used as time indexes of synchronous recursions of the above algorithms. Yet, there are many
practical cases of SNs for which it is impossible or impractical to function synchronously. A typical
example is the case when the nodes follow certain sleeping policies in order to minimize power
consumption (e.g., [3]). For example, the nodes in SN shown in Figure 1, measuring air pollution
or atmospheric conditions, may be programmed to make measurements less often during periods
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in which there is less traffic in the city. These types of situations are rigorously treated in the rest of
this subsection.

Instead of the problem setup introduced in Section 3, assume now that the sensors are measuring
a continuous-time signal x(t) at discrete points tk, tk ∈ R+, k = 1, 2, . . ., tk+1 > tk, producing the
sensor outputs

yi(tk) = αix(tk) + βi + ηi(tk), (29)

where the αi and βi are the same unknown parameters as in the previous subsections, and we also
assume that the measurement noise ηi(tk), i = 1, . . . , n, is present in the sensor readings.

Furthermore, since the goal is to remove dependence on a common global clock, it is now assumed
that every node j ∈ N has its own local clock. For the sake of compact notation and simpler derivations,
a single clock, called global virtual clock, is introduced, which ticks when any of the local clocks ticks.
Hence, tk in (29) can be considered as the time in which the k-th tick of the virtual clock happend.
To have a well defined situation, it is formally assumed that the ticks of the local clocks are independent,
and that the intervals between any two consecutive ticks are finite w.p.1. It is also assumed, for the
sake of simpler derivations, that the unconditional probability that the j-th clock ticked at an instance
tk is qj > 0, independently of k. It is easy to verify that these conditions are satisfied for a typical model
used in SNs, where it is assumed that the local clocks tick according to independent Poisson processes
with rates µj (as in, e.g., [62,63]). This case will be adopted throughout this subsection. It directly
follows that, in this case, the virtual global clock ticks according to a Poisson process with the rate
∑n

j=1 µj.

According to the above assumptions, let us denote with tj
l the ticks of the local clock j, l = 1, 2, . . ..

The communication protocol can then be defined in the following way. At each local clock tick, a node
j makes the local sensor measurement, calculates the corrected sensor output zj(t

j
l) (based on the

current estimates of calibration parameters aj and bj), and broadcasts it to its out-neighbors i ∈ N out
j .

We assume also that communication dropouts can happen, i.e., each node i ∈ N out
j receives the

transmitted message with probability pij > 0. For the sake of clarity of presentation, we do not treat
additive communication noise in this subsection. It is also assumed that the communication delay is
negligible, so that, practically at the same time instant all the nodes which have received the broadcast,
perform the local sensor reading, calculate their corrected outputs zi(t

j
l), and update the local estimates

of their calibration parameters ai and bi. This procedure is repeated for any local clock tick. The index
of the node whose clock has ticked at instant tk is denoted by j(k), and let J(k) be the subset of the
out-neighbors i ∈ N out

j(k) which have received the broadcast message. Also, let x(k) = x(tk) = x(tj(k)
l ),

yi(k) = yi(tk) = yi(t
j(k)
l ), yj(k) = yj(tk) = yj(k)(t

j(k)
l ), zi(k) = zi(tk) = zi(t

j(k)
l ), zj(k) = zj(tk) =

zj(k)(t
j(k)
l ), ηi(k) = ηi(tk) = ηi(t

j(k)
l ) and ηj(k) = ηj(tk) = ηj(k)(t

j(k)
l ) for some l.

The measurement noise is treated as in the previous subsection, by using the delayed measurement
yi(di(k)) as the instrumental variable

ζi(k) = yi(di(k)), (30)

where di(k) is the global iteration number that corresponds to the closest past measurement of the
node i. By using the same local criteria as in (3) and gradients as in (4), the following new recursion for
updating the calibration parameters at node i is formulated:

θ̂i(k) = θ̂i(k− 1) + δi(k)γi,j(k)εi,j(k)(k)
[

yi(di(k))
1

]
, (31)

where:

• θ̂i(k) = [âi(k) b̂i(k)]T ,
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• δi(k) is the step size given by δi(k) = νi(k)−c, where νi(k) = ∑k
m=1 I{i ∈ J(m)} is the number

of parameter updates of node i up to the iteration k, with 1/2 < c ≤ 1 (I{·} denotes the
indicator function),

• εi,j(k)(k) = ẑj(k)(k)− ẑi(k), where

ẑj(k)(k) =âj(k)(k− 1)yj(k)(k) + b̂j(k)(k− 1), (32)

ẑi(k) =âi(k− 1)yi(k) + b̂i(k− 1) (33)

are the corrected outputs of node j(k) and node i.

The initial conditions are adopted to be θ̂i(0) = [1 0]T . Note that, according to the problem setup,
at a given iteration k only the nodes i ∈ J(k) perform the above parameters update; for the rest of the
nodes it holds that θ̂i(k) = θ̂i(k− 1).

Computationally, the algorithm is as simple as the basic one, requiring only a few additions and
multiplications in one iteration. Information needed at node i are: the local sensor measurement,
the local instrumental variable, and the current output sent by an in-neighbor j. Knowledge of the
global iteration index k (or di(k)) is not needed.

From the above definition of the step size δi(k) it can be concluded that it depends only on the
number of local clock ticks, which makes the algorithm completely decentralized.

It should also be noticed that the instrumental variables in (31) can be selected in several ways.
For example, instead of choosing (30), it can be practical to choose ζi(k) = yi(t̄

j,i
l ), where t̄j,i

l is the time
instant of a supplementary measurement of node i, just after the last step of the recursion (31) has
been locally performed. This scheme is not assumed in the sequel, because of much more complicated
notation; all the results can be easily transferred to this case.

Similarly as in the synchronous case, we introduce:

φ̂i(k) =

[
ĝi(k)

f̂i(k)

]
=

[
αi 0
βi 1

]
θ̂i(k), (34)

and

εi,j(k)(k) =
[

x(k) 1
]
(φ̂j(k)(k)− φ̂i(k)) + âj(k)(k)ηj(k)(k)− âi(k)ηi(k). (35)

Consequently, we have

φ̂i(k) =φ̂i(k− 1) + δi(k)γi,j(k){(Ωi(k) + Ψi(k))(φ̂j(k)(k− 1)− φ̂i(k− 1))

+ Ni,j(k)(k)φ̂j(k)(k− 1)− Nii(k)φ̂i(k− 1)}, (36)

where

Ωi(k) =

[
αiβix(k) + α2

i x(k)x(di(k)) αiβi + α2
i x(di(k))

(1 + β2
i )x(k) + αiβix(k)x(di(k)) 1 + β2

i + αiβix(di(k))

]

Ψi(k) = ηi(di(k))

[
αix(k) αi

βix(k) βi

]
,

Ni,j(k)(k) =
ηj(k)(k)

αj(k)

[
αiy0

i (di(k)) 0

βiy0
i (di(k)) 0

]
+

 ηj(k)(k)ηi(di(k))
αj(k)

0

0 0


and

Nii(k) =
ηi(k)

αi

[
αiy0

i (di(k)) 0

βiy0
i (di(k)) 0

]
+

 ηi(k)ηi(di(k))
αi

0

0 0

 ,
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where y0
i (k) = αix(k) + βi, with the initial conditions φ̂i(0) = [αi βi]

T , i ∈ J(k).
Recursions (36) for i = 1, ..., n, can be written compactly as

φ̂(k) = {I + [Ω(k) + Ψ(k)](∆(k)Γ(k)⊗ I2) + (∆(k)⊗ I2)Ñ(k)}φ̂(k− 1), (37)

where:

• φ̂(k) = [φ̂1(k)T . . . φ̂n(k)T ]T ,
• ∆(k) = diag{δ1(k), . . . , δn(k)},
• Ω(k) = diag{Ω1(k), . . . , Ωn(k)},
• Γ(k) = [Γ(k)lm], with Γ(k)ll = −γl,j(k) and Γ(k)l,j(k) = γl,j(k) for all l ∈ J(k), Γ(k)lm = 0, otherwise,
• Ψ(k) = diag{Ψ1(k), . . . , Ψn(k)},
• Ñ(k) = [Ñlm(k)], where Ñll(k) = −γl,j(k)Nll(k) and Ñl,j(k)(k) = γl,j(k)Nl,j(k)(k), for all l ∈ J(k),

Ñ(k)lm = 0, otherwise.

The initial condition is φ̂(0) = [φ̂1(0)T . . . φ̂n(0)T ]T = [[α1 β1]
T . . . [αn βn]T ]T .

Since we have formulated a slightly different problem setup than in Section 3, we introduce a new
set of assumptions, and denote them using letter B:

(B1) {x(k)} is a stationary random sequence, bounded w.p.1, and satisfying the φ-mixing condition.
(B2) Let {ti,l}, l = 1, 2, ... represent time instants in which node i performs measurements.

Then, mini r̄i > m2, where m = E{x(k)} and r̄i = E{x(ti,l)x(ti,l−1)}, i = 1, . . . , n.
(B3) Graph G has a spanning tree.
(B4) {ηi(k)}, i = 1, . . . n, are zero-mean sequences of independent and bounded w.p.1 random

variables. {ηi(k)} is independent of the process {x(t)}, with E{ηi(k)2} = (σ
η
i )

2 for all k.
Assumptions (B3) and (B4) are essentially the same as (A3) and (A8).
The φ-mixing condition (B1) represents one of the strong mixing conditions, usually satisfied for

sensory signals [64–66].
Assumption (B2) represents an extension of the assumption (A4), adapted to the presence of the

instrumental variable yi(di(k)) in (31). It guarantees the persistence of excitation in the sense that the
variance of x(k) must be greater than zero (for all k, because of stationarity) so that constant signals are
not allowed [13,55]. However, it also ensures sufficent correlation between the instrumental variable
and the current measurement, so that e.g., white noise signals are also not allowed. It can be easily
derived [14] that (B2) is satisfied if the autocovariance function of x(t) is positive in a sufficiently large
interval around zero. Also, if the rates µj are adjustable we can choose µmin = minj∈N µj large enough,
such that (B2) is always satisfied. Therefore, (B2) is, in general, not restrictive for processes having
dominant low frequency spectrum, which is typical in practical applications of SNs.

Based on the above modified problem definition, the following result was proved in ref. [14],
stating that both corrected gains and corrected offsets will converge to consensus points (which depend
on the realizations of the stochastic processes) for all the nodes.

Theorem 6 ([14]). Let Assumptions (B1)–(B4) be satisfied. Then φ̂(k) given by (37) converges to φ̂∞ = χ1i1 +
χ2i2 in the mean square sense and w.p.1, where χ1 and χ2 are random variables with bounded second moments.

6. Discussion

6.1. Rate of Convergence

In the above subsections we did not discuss on how quickly the presented algorithms can achieve
convergence to the specified points. Since the basic Equation (5) have constant step size, it can be
concluded that the asymptotic convergence rate in the noiseless case is exponential. In the cases
of measurement and additive communication noise, the convergence rate of the algorithms can be
obtained following general methodology applied to the analysis of standard stochastic approximation
algorithms. The following result gives an upper bound on the mean-square error with respect to the
consensus point:
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Theorem 7 ([17]). Under the assumptions of any of the Theorems 3, 4 or 5, together with limt→∞(δ(t +
1)−1 − δ(t)−1) = d ≥ 0, there exists such a positive number σ′ < 1 that for all 0 < σ < σ′ the asymptotic
consensus is achieved by the presented algorithms with the convergence rate o(δ(t)σ).

It might be problematic to obtain the precise value of σ′ in concrete applications. However, it
can be shown that it directly depends on the sensor and network properties (encoded by matrix B(t)
or B(t, d)) and on the connectivity of the underlying communication graph [67]. On one hand, if the
number of nodes is increased without increasing network connectivity, the rate of convergence will
decrease; however, if the graph connectivity is increased, the convergence rate will also increase.
For example, if the graph is fully connected, the convergence rate will be high at the expense of very
large number of communication links. In practice, a compromise between the rate of convergence and
the network complexity needs to be found.

Another compromise to be found is between algorithm’s noise immunity and convergence rate.
Indeed, according to [68], assuming that δ(t) is given as δ(t) = m1/(m2 + tµ), m1, m2 > 0, 1

2 < µ ≤ 1,
the values of µ closer to 1

2 give larger rate of convergence but higher sensitivity to noise; the values of
µ closer to 1 give the opposite effect.

6.2. Stationarity of the Measured Signal

In the previous section, we made comments about all the introduced assumptions, explaining
their practical applicability. Let us make some additional comments on the stationarity assumption for
the random process {x(t)}, introduced in (A2), (A2’) and (B1). From the point of view of applications,
it cannot be considered restrictive, since it encompasses a large variety of quickly and slowly varying
real signals. This assumption is not essential for proving convergence of the presented algorithms:
it has been introduced primarily for the sake of focusing on the essential structural aspects of the
algorithm and avoiding complex notation [13,14,17]. Notice, according to Lemmas 2 and 3, that the
similarity transformation T can be applied even in the case of time varying matrix B̄(t), owing to its

specific structure; namely, we have T−1B̄(t)T =

[
02×2 02×(2n−2)

0(2n−2)×2 B̄(t)∗

]
, where B̄(t)∗ is Hurwitz and

T is obtained from B̄(t) for any selected t = t′. Moreover, notice that the conclusions of Theorem 1
hold, in general, provided the following unrestrictive condition holds: limt ∏τ(I − B̄(t− τ)∗) = 0.
Also, it is possible to conclude directly that the results of the above theorems hold for changes of B̄(t)∗

sufficiently slow. Moreover, it is not difficult to prove that the above convergence results exactly hold
when the signal is asymptotically stationary.

6.3. Network Weights Design

As already discussed in the previous subsections, the implicit goal of the presented calibration
scheme is to exploit the sensors with a priori good calibration properties by enforcing their dominating
effect in the final consensus value to which all the nodes converge. This can be done in two ways,
by adjusting the design weights γij: (1) if the majority of sensors are “good”, we can set all γij for the
neighborhood of any node i to the same value; or (2) if there is a smaller subset N f ⊂ N of a priori
“good” sensors in the network we should appropriately tune the values of γij. For this scenario,
in this subsection, we give a more detailed analysis of the weights adjusting problem for the case of
asynchronous communications treated in Section 5.3.

According to the theoretical results presented in detail in ref. [14], the dominant component of the
random variables [χ1 χ2] in Theorem 6 is given by a weighted sum of the unknown sensor parameters
αi and βi. The positive weights are determined by the left eigenvectors w1 and w2 of B̄ corresponding
to the zero eigenvalue. In turn, these weights are functions of the design parameters γij, the wake-up
probabilities qj, and the dropout probabilities pji, i, j = 1, . . . , n. Therefore, it is clear that the initial
characteristics of a selected sensor i will have larger influence on the asymptotic consensus value if the
appropriate elements of w1 and w2 are increased. This can be achieved in two ways:
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1. By reducing the values of all the elements in the i-th row of Γ̄, or
2. By increasing the values γji, j 6= i, from the i-th column (keeping in mind that Γ̄ must be

row stochastic).

Probabilities qj can in certain situations also be adjusted since they depend on the rate of the local
clock of node j. By increasing the clock rate of the node j, the influence of that node on the asymptotic
calibration parameter values achieved at consensus, is also increased. Adjusting dropout probabilities
1− pji might also be possible in certain situations: by decreasing the probability of a node i of receiving
a message from a neighbor, we increase its influence on the asymptotic consensus. Hence, there are
several design variables which can be adjusted so that the desired convergence point is achieved.

6.4. Macro Calibration for Networks with Reference Nodes

As discussed in the previous subsection, the selection of the weights in the matrix Γ̄ is important
for attaining the calibration goal of emphasizing a priori selected “good” sensors (“leaders”). Besides
the described methods, this can be ultimately done by leaving the nodes from a set N f ⊂ N with
unchanged calibration parameters (reference nodes), and only apply the recursions (31) (or (5), or (26))
to the rest of the nodes i ∈ N −N f . An example of a SN with such topology corresponding to the
smart city example in Figure 1 is shown in Figure 2.

Figure 2. An example sensor network used in smart-city applications with multiple (four) reference
nodes. The reference nodes (RNs) have fixed calibration parameters: only the rest of the nodes
implement the given distributed sensor calibration recursions.

In practice, this situation emerges, for example, when a SN needs to be expanded, i.e., when several
uncalibrated sensors needs to be added to an already calibrated SN. In this subsection, the convergence
results for this case are presented assuming asynchronous calibration algorithm [14].

First, we treat the special case in which |N f | = 1, i.e., there is only one reference sensor, and we
want to calibrate the rest of the SN so that their calibrated outputs converge to the output of the
reference sensor. For this case, all of the above results still hold, since the resulting communication
graph will again have a spanning tree (with the reference node as a center node), which implies that
(B3) (and (A3)) holds. Therefore, by applying the above convergence theorems, one concludes that the
corrected gains and offsets φ̂i(k), i = 1, . . . , n, will converge to the same value, dictated by the “leader”.

In the general case, assume, without loss of generality, that N f = {1, 2, . . . , n f }, n f = |N f | > 0,

is the set of reference senors which have fixed parameters: φ
f
i =

 g f
i

f f
i

, i ∈ N f . Assume that

φ̄ f = [φ
f T
1 . . . φ

f T
n f ]

T . The calibration algorithms above are now applied in the same way, except
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that the reference nodes do not change the calibration parameters: θ̂i(k) = θ̂i(k − 1) for all i ∈
N f . Let N −N f = {n f + 1, . . . , n} and let φ̂v(k) = [φ̂n f +1(k)T . . . φ̂n(k)T ]T be the vector of all the
calibration parameters to be tuned. In this case, all of the above theorems do not hold anymore,
since, when n f > 1, the communication graph does not necessarily satisfy (B3) (the graph does not
have a center node anymore, since two or more reference nodes are not mutually reachable). Hence,
a separate convergence theorem is needed which treats this case:

Theorem 8 ([14]). Let Assumptions (B1)–(B4) be satisfied and let all the nodes from N −N f be reachable
from all the nodes in N f . Then the algorithm (31), in which γij = 0 for all i ∈ N f , provides convergence of
φ̂v(k) in the mean square sense and w.p.1 to the limit defined by

φ̂v
∞ = −(Γ̄v ⊗ I2)

−1(Γ̄ f ,v ⊗ I2)φ̄
f , (38)

where matrices Γ̄v and Γ̄ f ,v are (n− n f )× (n− n f ) and (n− n f )× n f submatrices of matrix P−cΓ̄, with
indices i, j = n f + 1, . . . , n and i = n f + 1, . . . , n, j = 1, . . . , n f , respectively; P = diag{p1, . . . , pn} and c is
defined in (31).

It can be easily concluded that if the calibration parameters of all the reference nodes are the same,
equal to some φ f , then the calibration parameters of the rest of the nodes will also converge to φ f .
If this is not the case, it can be seen from (38) that the calibration parameters of different nodes will
converge to different values. These values will be typically dictated by the reference sensors which are
the closest to a given node.

6.5. Autonomous Gain Correction and Relationship with Time Synchronization

After presenting the most important aspects of the presented blind calibration methodology
encompassing both noiseless and noisy environments, we will now make a few comments on the
problem of its relationship with the algorithms for time synchronization in sensor networks, which has
attracted a lot of attention (e.g., [40–47,69–71] and the references therein). Indeed, after coming back
to the main measurement model, one easily realizes that in the case of time synchronization one has
the form (1) with the absolute time t replacing the signal value x(t). The estimation schemes used
in the mentioned analogous time synchronizaion algorithms are, indeed, related to the estimation of
the parameters of the calibration functions (2) based on the use of local time measurements; however,
they consist of one separate recursion for the relative drift estimation and one separate recursion for the
estimation of offsets, relying on the obtained relative drifts. In ref. [72] this scheme was reformulated
in the light of the calibration problem and the above described methodology. One starts from the
difference model ∆yi(t) = yi(t + 1)− yi(t) = αi∆x(t), where ∆x(t) = x(t + 1)− x(t), and construct
a gradient recursion for âi following the above methodology, having in mind that ∆yi(t) does not
depend on βi. On the other hand, the estimation of bi has to start from (1); it has the form of the
recursion for b̂i in (5), but should use âi generated by first recursion. Such a combined gradient
algorithm based on use of ∆yi(t) resembles typical time synchronization algorithms. In general, it is
important to observe that the introduction of t instead of x(t) in the basic relation (1) suffers from
the very basic problem that unboundedness of the linear function contradicts the requirements for
boundedness of the second order moments of x(t) (typical for stochastic approximation algorithms)
and that it is not possible to guarantee convergence of the obtained recursions. This indicates that
formal transfers of methodologies from one domain to the other should be done with extreme caution.

7. Simulation Results

In this section we present the results of extensive simulations, illustrating that the algorithms
are applicable to real-world problems involving sensor networks with decentralized architectures.
The results are presented using several figures which demonstrate all of the important properties
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theoretically addressed in the previous sections. In all of the simulations, a SN with ten nodes,
with randomly generated communication graph satisfying assumption (A3), has been chosen. To show
that the algorithms are applicable to a large variety of sensor characteristics, the sensor parameters αi
and βi have been generated randomly from uniform distribution with means one and zero, respectively,
and with standard deviation 0.3.

In Figure 3 the corrected gains ĝi(t) and offsets f̂i(t) obtained by the presented algorithm (5) in the
noiseless case are presented, for a preselected step size, equal for all the nodes, δ = 0.01. It is clear from
the figure that the convergence to consensus, and, hence, implicit asymptotic calibration is achieved
with the asymptotic values close the desired (one for corrected gains, and zero for corrected offsets).
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1.8
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Figure 3. Noiseless synchronous algorithm without references: convergence to consensus is achieved
for corrected gains and corrected offsets.

In Figure 4 the simulation results are presented for the situation in which the first node is set to be
a reference node (“leader”) with perfect parameters α1 = 1 and β1 = 0. Obviously, all of the rest of the
nodes converge to this ideal characteristic.

In Figure 5 the corrected gains ĝi(t) and offsets f̂i(t) are depicted for the case in which all
the theoretically discussed unreliabilities are included: communication dropouts with p = 0.2 for
all the links in the network, normally distributed communication additive noise with variance 0.1,
and normally distributed measurement noises with variances different for all the nodes, uniformly
generated in the range (0, 0.1). In this case, in order to achieve convergence in the presence of noise,
the time varying diminishing step-size sequences are chosen δ(t) = 0.01/t0.6, equal for all the nodes.
The algorithm which works in this case is the one based on the instrumental variables (26), so that the
measured signal x(t) is assumed to be generated by a second order linear system with white noise at the
input, resulting in a correlated sequence with zero mean and standard deviation one. It is obvious from
the figure that the convergence is achieved despite the presence of all the introduced unreliabilities.
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Figure 4. Noiseless synchronous algorithm with one reference sensor: convergence to the reference
is chieved.
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Figure 5. The modified algorithm (25): convergence to consensus is achieved for corrected gains and
corrected offsets despite measurement noise presence.

Next we simulate the asynchronous algorithm (31) which includes instrumental variables. It is
assumed that the local clocks of all the nodes are driven by Poisson processes with the same rates.

In Figure 6, the corrected gains ĝi(k) and offsets f̂i(k) generated by (31) are depicted assuming
the steps δ(k) = 0.01/k0.6 and the presence of communication dropouts with probabilities pij = 0.2 for
each link. The measurement noises and the signal x(k) are assumed to be the same as in Figure 5.



Sensors 2018, 18, 4027 22 of 27

Iterations
200 400 600 800 1000 1200 1400 1600 1800 2000

-1.5

-1

-0.5

0

0.5

1

1.5
Gains

Offsets

Figure 6. The asynchronous algorithm based on instrumental variables without reference sensors:
convergence to consensus is achieved for corrected gains and corrected offsets.

In Figure 7 the necessity of introducing the instrumental variables is demonstrated when the
noise is present. The basic algorithm (5), without instrumental variables, has been simulated and
the convergence is not achieved in this case. It can be seen that all the corrected gains ĝi(k) slowly
converge to zero which is very undesirable.
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Figure 7. Stochastic gradient algorithm: convergence to consensus is not achieved.
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Figure 8 illustrates the case discussed in Section 6.4 in which there are two reference sensors in the
given SN. It can be seen from the figure that, as predicted by Theorem 8, the consensus is not achieved,
and that all the calibration parameters converge to different values, determined by Equation (38).
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Figure 8. The asynchronous algorithm with two reference sensors with different characteristics: both
the corrected gains and the corrected offsets converge to different values determined by (38).

8. Conclusions

In this paper, we consolidate the existing results on distributed recursive blind macro-calibration
based on consensus, present the algorithms in a unified way, and provide additional analysis of several
important theoretical and practical issues. The studied algorithms are completely decentralized,
not requiring any fusion center. It was shown that the algorithms successfully perform on lossy
sensor networks, characterized by unreliable communications, limited only to the local neighbors.
Convergence properties have been presented under both noiseless conditions, and the conditions
typical for noisy and unreliable environments. The practically important case of asynchronous
communication based on a broadcast gossip scheme has also been treated. Extensive discussions have
been provided, explaining in detail several important practical issues: convergence rate, design of
tunable network weights, and calibration of sensor networks with multiple reference nodes. Extensive
simulation results illustrating the behavior of the algorithms have been presented.

Future Work

The presented results can be extended in several directions.
The first future direction, which is imposed naturally, is to extend the presented algorithms,

or develop new ones, for the case when the nodes measure spatially varying but correlated
signals. Treating this situation would drastically increase the practical applicability of the described
methodology. The performance of such a scheme would highly depend on a priori knowledge about
the interrelatedness of the measurements of different nodes.

Another direction of possible future work is to extend the results to include the possibility that
individual nodes measure vector values (instead of scalars treated in this paper). This case would arise
in practically frequent situations when there are multiple diverse sensors on each node, and when
each sensor possibly measures different (overlapping) subsets of all the available sensed values.
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One possible idea for treating these situations is to use the wide existing literature in overlapping
decentralized estimation (e.g., [20,73–76]). One typical example where this situation arises are networks
of cameras with different view angles and scene coverage.

Third future direction emerges if one interprets the above results not in the context of calibration,
but as pure synchronization (consensus) results for certain special types of linear time-varying systems.
Indeed, the derivations and results of the presented convergence theorems open up a possibility
of extending them to the case of synchronization of general higher order linear parameter-varying
systems, which is a topic of high theoretical importance (e.g., [77] and references therein).

Finally, sensor networks often operate in hostile environments where battery usage and power
consumption of the sensor nodes are of crucial importance. In this context it would be of high
importance to analyze, for a given particular sensor network mission, how to formulate optimization
problem and achieve optimal compromise between sensor network calibration and the nominal
operation dictated by the given mission.
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17. Stanković, M.S.; Stanković, S.S.; Johansson, K.H. A consensus-based distributed calibration algorithm for
sensor networks. Serb. J. Electr. Eng. 2016, 13, 111–132. [CrossRef]

18. Olfati-Saber, R.; Fax, A.; Murray, R. Consensus and cooperation in networked multi-agent systems. Proc. IEEE
2007, 95, 215–233. [CrossRef]

19. Ohta, Y.; Siljak, D. Overlapping block diagonal dominance and existence of Lyapunov functions. J. Math.
Anal. Appl. 1985, 112, 396–410. [CrossRef]

20. Šiljak, D.D. Decentralized Control of Complex Systems; Academic Press: New York, NY, USA, 1991.
21. Pierce, I.F. Matrices with dominating diagonal blocks. J. Econ. Theory 1974, 9, 159–170. [CrossRef]
22. Levin, A.; Weiss, Y.; Durand, F.; Freeman, W. Understanding and evaluating blind deconvolution algorithms.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 1964–1971.

23. Yu, C.; Xie, L. On Recursive Blind Equalization in Sensor Networks. IEEE Trans. Signal Process. 2015,
63, 662–672. [CrossRef]

24. Nandi, A. Blind Estimation Using Higher-Order Statistics; Kluwer Academic Publishers: Boston, MA,
USA, 1999.

25. Balzano, L.; Nowak, R. Blind Calibration; Technical Report TR-UCLA-NESL-200702-01; Networked and
Embedded Systems Laboratory, UCLA: Los Angeles, CA, USA, 2007.

26. Lipor, J.; Balzano, L. Robust blind calibration via total least squares. In Proceedings of the 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May
2014; pp. 4244–4248.

27. Bilen, C.; Puy, G.; Gribonval, R.; Daudet, L. Convex Optimization Approaches for Blind Sensor Calibration
Using Sparsity. IEEE Trans. Signal Process. 2014, 62, 4847–4856. [CrossRef]

28. Bychkovskiy, V.; Megerian, S.; Estrin, D.; Potkonjak, M. A Collaborative Approach to In-Place Sensor
Calibration. In Proceedings of the International Conference on Information Processing in Sensor Networks,
Palo Alto, CA, USA, 22–23 April 2003; pp. 301–316.

29. Wang, C.; Ramanathan, P.; Saluja, K.K. Moments Based Blind Calibration in Mobile Sensor Networks.
In Proceedings of the 2008 IEEE International Conference on Communications, Beijing, China, 19–23 May
2008; pp. 896–900.

30. Takruri, M.; Challa, S.; Yunis, R. Data Fusion Techniques for Auto Calibration in Wireless Sensor Networks.
In Proceedings of the International Conference on Information Fusion, Seattle, WA, USA, 6–9 July 2009;
pp. 132–139.

31. Wang, Y.; Yang, A.; Li, Z.; Wang, P.; Yang, H. Blind drift calibration of sensor networks using signal space
projection and Kalman filter. In Proceedings of the 2015 IEEE Tenth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 7–9 April 2015; pp. 1–6.

32. Wang, Y.; Yang, A.; Li, Z.; Chen, X.; Wang, P.; Yang, H. Blind Drift Calibration of Sensor Networks Using
Sparse Bayesian Learning. IEEE Sens. J. 2016, 16, 6249–6260. [CrossRef]

33. Wang, Y.; Yang, A.; Chen, X.; Wang, P.; Wang, Y.; Yang, H. A Deep Learning Approach for Blind Drift
Calibration of Sensor Networks. IEEE Sens. J. 2017, 17, 4158–4171. [CrossRef]

34. Yang, J.; Tay, W.P.; Zhong, X. A dynamic Bayesian nonparametric model for blind calibration of sensor
networks. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 4207–4211.

35. Lee, B.; Son, S.; Kang, K. A Blind Calibration Scheme Exploiting Mutual Calibration Relationships for
a Dense Mobile Sensor Network. IEEE Sens. J. 2014, 14, 1518–1526. [CrossRef]

http://dx.doi.org/10.1109/TAC.2015.2426272
http://dx.doi.org/10.1109/TCNS.2016.2633788
http://dx.doi.org/10.2298/SJEE1601111S
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1016/0022-247X(85)90250-1
http://dx.doi.org/10.1016/0022-0531(74)90064-7
http://dx.doi.org/10.1109/TSP.2014.2376884
http://dx.doi.org/10.1109/TSP.2014.2342651
http://dx.doi.org/10.1109/JSEN.2016.2582539
http://dx.doi.org/10.1109/JSEN.2017.2703885
http://dx.doi.org/10.1109/JSEN.2013.2297714


Sensors 2018, 18, 4027 26 of 27

36. Dorffer, C.; Puigt, M.; Delmaire, G.; Roussel, G. Blind Calibration of Mobile Sensors Using Informed
Nonnegative Matrix Factorization. In Latent Variable Analysis and Signal Separation; Vincent, E., Yeredor, A.,
Koldovský, Z., Tichavský, P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 497–505.

37. Dorffer, C.; Puigt, M.; Delmaire, G.; Roussel, G. Blind mobile sensor calibration using an informed
nonnegative matrix factorization with a relaxed rendezvous model. In Proceedings of the 2016
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China,
20–25 March 2016; pp. 2941–2945.

38. Schulke, C.; Caltagirone, F.; Zdeborova, L. Blind sensor calibration using approximate message passing.
J. Stat. Mech. Theory Exp. 2015, 2015. [CrossRef]

39. Kumar, D.; Rajasegarar, S.; Palaniswami, M. Geospatial Estimation-Based Auto Drift Correction in Wireless
Sensor Networks. ACM Trans. Sens. Netw. 2015, 11, 50. [CrossRef]
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41. Stanković, M.S.; Stanković, S.S.; Johansson, K.H. Distributed time synchronization for networks with random
delays and measurement noise. Automatica 2018, 93, 126–137. [CrossRef]

42. Giridhar, D.; Kumar, P.R. Distributed clock synchronization over wireless networks: Algorithms and analysis.
In Proceedings of the IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006;
pp. 263–270.

43. Sommer, P.; Wattenhofer, R. Gradient clock synchronization in wireless sensor networks. In Proceedings of
the 2009 International Conference on Information Processing in Sensor Networks, San Francisco, CA, USA,
13–16 April 2009; pp. 37–48.

44. Schenato, L.; Fiorentin, F. Average TimeSynch: A consensus-based protocol for time synchronization in
wireless sensor networks. Automatica 2011, 47, 1878–1886. [CrossRef]

45. Carli, R.; Chiuso, A.; Schenato, L.; Zampieri, S. Optimal Synchronization for Networks of Noisy Double
Integrators. IEEE Trans. Autom. Control 2008, 56, 1146–1152. [CrossRef]

46. Liao, C.; Barooah, P. Distributed clock skew and offset estimation from relative measurements in mobile
networks with Markovian switching topologies. Automatica 2013, 49, 3015–3022. [CrossRef]
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63. Nedić, A. Asynchronous broadcast-based convex optimization over a network. IEEE Trans. Autom. Control

2011, 56, 1337–1351. [CrossRef]
64. Bradley, R.C. Basic Properties of Strong Mixing Conditions a Survey and Some Open Questions. Probab. Surv.

2005, 2, 107–144. [CrossRef]
65. Ibragimov, I. Some limit theorems for stochastic processes stationary in the strict sense. Dokl. Akad.

Nauk SSSR 1959, 125, 711–714.
66. Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Natl. acad. Sci. USA 1956,

42, 43–47. [CrossRef] [PubMed]
67. Godsil, C.; Royle, G. Algebraic Graph Theory; Springer: New York, NY, USA, 2001.
68. Borkar, V.; Meyn, S.P. The ODE method for convergence of stochastic approximation and reinforcement

learning. SIAM J. Control Optim. 2000, 38, 447–469. [CrossRef]
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