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Abstract— Characterizing the network delay distribution is
a fundamental step to properly compensate the delay of
Networked Control Systems (NCSs). Due to the random backoff
mechanism employed by Wireless Personal Area Network
(WPAN) protocols, it is difficult to derive such a distributi on.
In this paper, the probability distribution of the delay for
successfully received packets in WPANs is characterized. The
analysis uses a moment generating function method based on
an extended Markov chain model. The model considers the
exponential backoff process with retry limits, acknowledge-
ments, unsaturated traffic, and variable packet size, and gives
an accurate explicit expression of the probability distribution of
the network delay. The probability distribution of the delay is a
function of the traffic load, number of nodes, and parametersof
the communication protocol. Monte Carlo simulations validate
the analysis for different network and protocol parameters. We
show that the probability distribution of the delay is signifi-
cantly different from existing network models used for NCS
design. Furthermore, the parameters of the communication
protocol result to be critical to stabilize control systems.

Keywords: Delay distribution, Wireless Personal Area
Networks, Networked Control Systems, Markov chain.

I. I NTRODUCTION

The wireless technology has a tremendous potential to
improve the efficiency of control systems [1]. The Wireless
Personal Area Networks (WPANs) have received consid-
erable attention as major low data rate and low power
standard for Wireless Sensor Network (WSN) applications,
for instance, in building automation and process control [1],
[2]. Networked Control Systems (NCSs) require practical
delay models in order to properly design the control strategy.
Otherwise, the network delay can degrade the performance of
NCSs and even destabilize the system [3], [4]. The network
delay models currently used for NCSs can be classified into
two categories: constant delay and variable delay. Several
works in literature investigate the NCS design by assuming
the constant delay model [4]. Although this technique is
useful for developing control laws of NCSs, it fails to assess
general stability condition for random communication delays.
The random delay significantly reduces the maximum allow-
able transfer interval to stabilize a NCS with respect to the
constant delay model [5]. In particular, the delay jitter ofa
network is difficult to compensate in control loops, especially
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if the delay variability is large [6]. Many protocols for
wireless communications [2], [7], introduce random delays
that can vary significantly from packet to packet. One of
the common approaches to compensate random delays is to
define the finite set of possible network delays and compute
the transition probability between the states. In this way,
the NCS can be modeled as a jump linear Markov system
where the random variation of network delays corresponds
to randomly varying structure of the state-space model [8].
In [8], the transition probability matrix is assumed to be
known. In [9], a simple Markov chain is used to model the
network delay depending on the traffic load of a network.
Each state of the Markov chain presents a particular delay
distribution. However, the transition probabilities between
the state and the delay distribution model of each state
are not explicitly defined to be used in practice. In [10],
a continuous probability density function (PDF) is used to
model the random delay process in order to analyze the
stability of the NCS. Most studies describe the random delay
by an Independent and Identically Distributed (IID) random
process with a known PDF. The PDF of the delay is known
a priori in most methods. However, in practice, the network
delay depends on the traffic load, number of nodes, and
parameters of the communication protocol, which typically
vary over time.

This paper focuses on the IEEE 802.15.4 WPAN protocol,
because it is becoming the most popular standard for low data
rate and low power WSNs in many application domains.
A simulations-based study of the delay of WPANs has
been proposed [11] without paying attention to delay jitter.
Several analytical models have been developed by using the
Markov chain model of Bianchi [12] for Wireless Local
Area Networks (WLANs) [7]. The probability distribution
of the delay for WLANs is investigated in [13]. A Markov
model for WPANs based on Bianchi’s model has been
proposed in [14]. However, the packet retransmission and
the delay distribution are not considered. Our previous work
in [15] introduces a generalized Markov chain model for
the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) mechanism of WPANs [2], but only average
performance indicators are derived.

To the best of our knowledge, there is no explicit deriva-
tion of the delay distribution of WPANs. We use a moment
generating function method based on an extended Markov
chain model to derive the practical probability distribution
of the delay. We show that existing analytical studies are
not adequate to capture the real-world protocol behavior
of the delay distribution. We consider simultaneously the
maximum number of packet transmissions attempts, the
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Fig. 1. Overview of the NCS setup.N plants need to be controlled byN
controllers. The wireless network closes the loop from the sensor nodes to
the controllers.

acknowledgement mechanism, unsaturated traffic load, and
packet size. These characteristics make the delay analysisof
WPANs proposed in this paper different from the previous
results available from the literature.

Several parameters including the traffic load, number of
nodes, physical link quality, and network protocol parameters
significantly affect the network performance in terms of
reliability, delay, channel utility, and energy consumption.
The performance of NCSs is improved by tuning those
parameters, and several adaptive algorithms are developed
and used in practice [16]. However, it is not always pos-
sible to tune those parameters depending on the particular
scenario [16]. For example, changing the sampling period
of the plant and the number of sensor nodes attached to the
plant is not a trivial task in the physical environment. We
illustrate the effect of communication protocol parameters
on the performance of state feedback control systems.

The remainder of this paper is as follows. In Section II, we
introduce the Markov chain model of CSMA/CA mechanism.
Section III analyzes the distribution of the service time and
delay for successfully received packet. In Section IV, we val-
idate our analysis by Monte Carlo simulations. We also show
how different network parameters affect the performance of
a control system. Section V concludes the paper.

II. M ARKOV CHAIN MODEL

The problem considered is depicted in Fig. 1, where
multiple plants are controlled over a WPAN.N plants
contend to transmit sensor measurements to the controller
over a wireless network that induces time varying delays. We
assume that the controller commands are always successfully
received by the actuator [1]. We consider a single cell
wireless network, where every node can hear the other nodes
of the network. We assume that a sensor node is attached
to each plant. The CSMA/CA mechanism of WPANs is
used to determine which sensor node accesses the wireless
channel. The wireless channel is assumed to be perfect and
the collision may occur only when two (or more) frames
are transmitted at the same time. Throughout this paper we
consider control applications where nodes asynchronously
generate packets with probability1−q, when a node sends a
packet successfully, discard a packet or the sampling interval
is expired. Otherwise a node stays forL0Sb seconds without
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Fig. 2. Markov chain model proposed in [15] for the CSMA/CA mechanism
of WPANs. Note thatLs is the successful transmission time andLc is the
collision time.

generating packets with probabilityq, whereL0 is an integer
andSb is the time unitaUnitBackoffPeriodcorresponding to
10 bytes. The data packet transmission is successful if an
acknowledgement packet is received.

An accurate analytical model of the CSMA/CA mecha-
nism was presented in [15], where we introduced a Markov
chain model for CSMA/CA mechanism. We build upon this
model to analyze the delay distribution in Section III.

Let s(t), c(t) and r(t) be the stochastic process repre-
senting the backoff stage, the state of the backoff counter
and the state of retransmission counter at timet, respec-
tively, experienced by a node to transmit a packet, as
indicated in Fig. 2. By assuming independent probability
that nodes start sensing, the stationary probabilityτ that
the node attempts a first carrier sensing in a randomly
chosen slot time is constant and independent of other
nodes. It follows that(s, c, r) results in a three dimensional
Markov chain. The protocol parameters are denoted by
W0 = 2macMinBE,m0 = macMinBE,mb = macMaxBE,m =
macMaxCSMABackoffs, n = macMaxFrameRetries. The
states from(i,Wm − 1, j) to (i,W0 − 1, j) represent the
backoff states. States(Q0, . . . , QL0−1) consider the idle state
that the packet queue is empty and node is waiting for new
packet arrival. Note that the idle states(Q0, . . . , QL0−1) take
into account the unsaturated traffic condition. States(i, 0, j)
and (i,−1, j) represent the first clear channel assessment
(CCA1) and second assessment(CCA2), respectively.α is
the probability thatCCA1 is busy, andβ is the probability
thatCCA2 is busy. If all nodes transmit with probabilityτ ,



the collision probabilityPc is

Pc = 1− (1− τ)N−1

where N is the number of nodes. The termPc is the
probability that at least one of theN − 1 remaining
nodes transmit in the same time slot. States(−1, k, j) and
(−2, k, j) consider the successful transmission and packet
collision. The probabilityτ that a node attemptsCCA1 and
the busy probabilitiesα andβ are derived by solving the state
transition probabilities associated with the Markov chain
model [15]. In particular, we use the solutions ofτ, α andβ
to derive the probability distribution function of the service
time and of the delay to transmit a packet successfully.

III. D ELAY ANALYSIS OF CSMA/CA MECHANISM

In this section we give one of the core contribution of
the paper, which is the derivation of the distribution of
the service timeTs and the distribution of the delayTd

experienced by a packet to be successfully received. These
distributions are discrete because the time unit of the backoff
timer is an integer given byaUnitBackoffPeriod.

We derive the distribution ofTd by its probability gener-
ating function (PGF)D(Z). Recall that the moments ofTd

of any order and degree can be obtained by derivation of
D(Z). For example, the mean and variance ofTd are

E[Td] = D
′

(1) (1)

E[(Td − E[Td])
2] = D

′′

(1) +D
′

(1)− {D
′

(1)}2 , (2)

where ′ indicates the derivative with respect toZ. Same
argument applies for the derivation of the distribution of
Ts by its PGF B(Z). The expression ofB(Z) is given
by Proposition 1, andD(z) is provided by Proposition 2
later in this section. Two intermediate technical results are
as follows: (a) the derivation of PGF of the random backoff
process, (b) the derivation of the transfer function of sensing
fails due to the busy channel. Details follow in the sequel.

The PGF of the random backoff processHi(Z) is given
by the product from the0 to the i-th stage of Fig. 2 as

Hi(Z) =

i
∏

k=0

Wk(Z) , (3)

whereWi(Z) is the PGF of the backoff time at thei-th:

Wi(Z) =







∑2iW0−1
l=0

Md(Z)l

2iW0

= 1−Z2
iW0

2iW0(1−Z) if i ≤ mb −m0
∑2mb−1

l=0
Md(Z)l

2mb
= 1−Z2

mb

2mb(1−Z) otherwise

where we used thatMd(Z) = Z, because the decrement of
backoff counter happens with probability1. Then, we have
the following result:

Lemma 1: LetCαβ(i) be the set containing all the combi-
nations of choosingi elements out of a set of busy channel
probabilities{α, (1 − α)β}. Let Sc(Z) be the PGF of the
sensing time. Then the transfer function of the event ofi

sensing fails due to the busy channel condition is

Gi(Z) =

2i
∑

k=1

Ck
αβ(i)Sc(Z)

Nk
α(i)+2Nk

β̂
(i) (4)

whereSc(Z) = Z is the sensing time,Ck
αβ(i) returns the

k-th combination ofCαβ(i) and Nk
α(i), N

k
β (i) returns the

number ofα and(1−α)β in the combination, respectively.
Proof: During the backoff process, the backoff timer

at i-th stage decreases by one unit time regardless of the
channel state1. When the random backoff time of node is
equal to zero the node goes to sensing state. If the medium
is idle (with probability1−α) at CCA1 then the node goes
to CCA2. If an ongoing transmission (with probabilityα)
is detected, the backoff exponent is increased by one and a
random backoff time is generated until the maximum number
of stages is reached. The node repeats the same mechanism
during the second sensing in Fig. 2. The total number of
combinations fori elements is equal to2i and are collected
in the setCαβ(i). Ck

αβ(i) is one of the combinations out
of 2i events. The function2Nk

β (i) gives the sensing fails at
second sensing state from which Eq. (4) follows.

Now, we derive the PGF ofTs andTd:
Proposition 1: Let B(Z) be the PGF of the service time

Ts. Then,

B(Z) =St(Z)

n
∑

j=0

Pr(Sj |Ut)Ct(Z)j
(

Sc(Z)2

×

m
∑

i=0

Gi(Z)Hi(Z)

)j+1

+

n
∑

j=0

Pr(Cj |Ut)

×

(

Ct(Z)Sc(Z)2
m
∑

i=0

Gi(Z)Hi(Z)

)j

Gm+1(Z)

×Hm+1(Z) + Pr(F|Ut) (Ct(Z)

× Sc(Z)2
m
∑

i=0

Gi(Z)Hi(Z)

)n+1

(5)

where

Pr(Sj |Ut) =
P j
c (1 − Pc)(1− xm+1)j+1

Pr(Ut)
, (6)

Pr(Cj |Ut) =
P j
c (1 − xm+1)jxm+1

Pr(Ut)
, (7)

Pr(F|Ut) =
Pn+1
c (1− xm+1)n+1

Pr(Ut)
, (8)

with,

Pr(Ut) =
1− (Pc(1− xm+1))n+1

1− Pc(1− xm+1)

(

1− Pc + Pc x
m+1

)

+ Pn+1
c (1− xm+1)n+1 (9)

andGi(Z) is given by Lemma 1.
Proof: The PGF of the service time is derived by

considering the Markov chain given in Fig. 2. Whenever
the node succeeds two CCAs, a transmission commences.
According to the probabilityPc of a collision seen by a
packet being transmitted on the medium, the node has a
probability 1 − Pc to finish the transmission afterSt(Z),

1Note that this mechanism is different from WLAN which sensesthe
channel state during the backoff time
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(c) N = 10,mb = 8
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Fig. 3. Probability distribution of delayTd for successfully received packets as a function of different number of nodesN = 10, 30 andmb = 5, 8 with
given m0 = 3, m = 4, n = 3 and a fixed length of packetL = 70 bytes.

and a probabilityPc to initialize the backoff procedure
until the maximum retransmission limit is reached after
Ct(Z). Let Sj , Cj be the event of successful transmissions
and discarded packet due to channel access failure afterj

collisions, respectively. Denote withF the event of discarded
packets due to retry limits andUt all the possible events
Sj , Cj ,F . By considering the normalization withPr(Ut)
in (9), the probabilitiesPr(Sj |Ut),Pr(Cj |Ut),Pr(F|Ut) are
given by Eqs. (6), (7), (8), respectively. Since a packet is
transmitted after successful channel access during two CCAs,
the probability for successful channel access is1 − (α +
(1− α)β)m+1. Note thatHm+1(Z), Gm+1(Z) consider the
random backoff process and sensing delay for discarded
packets due to channel sensing fails, respectively. We derive
the generalized state transition diagramB(Z) for the packet
transmission process as shown in Fig. 2.B(Z) is simply the
signal transfer function from the start state to the end state
as a function ofPc, α, β,m, n andZ. B(Z) is given by the
sum of three terms: the first one is the successful packet
transmission, the second and third terms consider the time
period of discarded packet due to the channel access failure
and retry limits, respectively. Then, by including Eqs. (3), (4)
and (6), the PGFB(Z) given in (5) follows.

Proposition 2: Let D(Z) be the PGF of the packet delay
Td for successfully received packet. Then,

D(Z) =St(Z)
n
∑

j=0

Pr(Aj |At)Ct(Z)j

×

(

Sc(Z)2
m
∑

i=0

Gi(Z)Hi(Z)
∑m

k=0 Cαβ(k)

)j+1

, (10)

where

Pr(Aj |At) =

(

1− Pc(1− xm+1)
) (

Pc(1− xm+1)
)j

1− (Pc(1− xm+1))
n+1 .

(11)
Proof: Let Aj be the event of a successful transmission

at timej+1 after j collisions andAt be event of successful
transmission within the total attemptsn. The probability
of Aj given that a node transmits packet successfully is
obtained as (11). From Eq. (5), the PGF of packet delay for
successfully received packet follows after simple passages.

The results provided us by the previous propositions are
used to derive the probability distribution function ofTs and
Td, as explained in Eqs. (1) and (2).

SinceD(Z) is a smooth function ofZ, it can be written
as power series

D(Z) =
∞
∑

i=0

Pr(Td = i)Zi ,

and we can obtain the mean value and variance of the packet
delay Td from D(Z). The same argument applies for the
service timeTs, which is derived byB(Z).

IV. SIMULATIONS AND NUMERICAL RESULTS

Here we first present extensive Monte Carlo simulations
to validate our theoretical results based on the specifications
of the IEEE 802.15.4 [2]. We also investigate the effects of
traffic load, number of nodes, length of the packet and the
protocol parameters(m0,mb,m, n) in terms of delayTd.
Furthermore, we show the effect of protocol parameters on
the stability of control systems.

A. Validation of Delay Distribution

We validate the probability distribution for the delay
Td of successfully received packets. We show that such a
probability distribution matches well the simulation results,
which means that we can compute the average and variance
of the delayTd accurately, as discussed in Section III.

Fig. 3 shows the probability distribution of the delayTd

as a function of different number of nodesN = 10, 30
and mb = 5, 8 with given m0 = 3, m = 4, n = 3
and a fixed length of packetL = 70 bytes. We observe
that the analytical probability distribution predicts well the
simulation results. The low trafficq = 0.9 gives a distribution
similar to a deterministic one. This is due to that the collision
probability is lower as traffic decreases and most of packets
are successfully transmitted at the first backoff stage without
channel sensing fails or retransmissions. The saturated traffic
q = 0 results in a heavy tail of the delay distribution due
to the high interference. Figs. 3(a), 3(b) show the effect of
the number of nodes in terms of the delay. It is interesting
to observe that as the number of nodes increases the side
lobe increases. This is due to that as the traffic and number
of nodes increase, the busy channel probabilityα, β and
collision probabilityPc are also increasing.
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Fig. 4. Average of the delayTd as a function of traffic loadq = 0, 0.3, 0.6
with a given length of packetL = 70 bytes and default parameters
(m0 = 3, mb = 5, m = 4, n = 3) compared with Pollin’s Markov chain
model [14].
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with a given length of packetL = 70 bytes and default parameters(m0 =
3, mb = 5,m = 4, n = 3) compared to Pollin’s Markov chain model [14].

By comparing Figs. 3(a), 3(b) to 3(c), 3(d), we observe
thatmb = 8 gives a longer tail thanmb = 5. The probability
of delay larger than50ms is almost zero formb = 5 while
the probability of delay larger than50ms is still nonzero
for mb = 8. Hence, the tail formb = 8 is much longer
than the distribution ofmb = 5. The random backoff time
increases for increasingmb. As the traffic, number of nodes
and mb increase, the probability distribution has a longer
tail. Remark that the probability distribution of the delay
is significantly different from the existing network models
used for NCS design such as a Poisson distribution [5] and
exponential distribution [17].

B. Effect of Network and Protocol Parameters

We evaluate the average and variance of delay given in
Eqs. (1) and (2), respectively, and analytical model [14] for
different number of nodesN = 10, . . . , 60, as a function
of traffic loadsq = 0, 0.3, 0.6, whereas a fixed lengthL of
the packet and default protocol parameters (m0 = 3,mb =
5,m = 4, n = 3) are used.

Figs. 4 and 5 report the effect of the number of nodes
on the average and variance of the delayTd as a function
of the traffic load. In the figure, note that “Pollin” refers to
the analytical expression which is derived from the Markov
model in [14]. The analytical models of Eqs. (1) and (2)
follow well the simulation results, while Pollin’s model has
weak matching since it does not consider retransmissions.
Such a weak matching increases as the number of nodes
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30, 70, 140 bytes with given traffic loadq = 0.6 and default parameters
(m0 = 3, mb = 5, m = 4, n = 3) compared to Pollin’s Markov chain
model [14].
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Fig. 7. Average of the delayTd as a function of different CSMA/CA
parametersm0 = 3, mb = 5, 8, n = 0, 3, m = 4 with given traffic load
q = 0 and packet sizeL = 70 bytes compared to Pollin’s Markov chain
model [14].

increases due to higher busy channel and collision probability
for the limited number of retransmissions. We observe that
the average delay is linearly increasing when the traffic load
is low q = 0.6. Recall that the trafficq = 0 models the
saturated traffic. Note that the busy channel probabilities
α, β and collision probabilityPc are mainly dependent on
the number of nodes at saturated traffic modelq = 0. The
average and variance of delay are saturated forN ≥ 50 due
to high busy channel probability and collision probability. In
addition, we observe a strong dependence between average
delay and variance of delay.

Fig. 6 illustrates the average delay as achieved by the
analytical model and simulations as a function of the packet
sizeL = 30, 70, 140 bytes with unsaturated traffic loadq =
0.6 and default parameters. The good matching between the
analytical model and simulation results is evident. Observe
that the average delay is linearly increasing as the number
of nodes increases when the length of packet is small, and
that the busy channel and collision probabilities decreaseas
the length of packet decreases. The accuracy of the model
slightly decreases when the length of packets increases,
due to the assumption of the independent channel access
probability in Section II. However, for control applications,
the packet size is typically smaller than 20 bytes [1].

Fig. 7 shows the average of the delayTd as a function
of different protocol parameters(m0 = 3,mb = 5, 8,m =
4, n = 0, 3) for saturated traffic modelq = 0 and a



given length of packetL = 70 bytes. The analytical model
matches well the simulation results. As we have mentioned in
Section IV-A, the average delay increases as the parameter
mb increases. This is due to that as the parametermb in-
creases the maximum random backoff time is also increasing.
Observe that the average delay is strongly dependent on retry
limits n = 0, 3, even if we consider saturated traffic load.

C. Effect of the Network Parameter on Control Systems

In this section, we illustrate the effect of the protocol
parameter on the stability of a control system. We consider
a Linear Time Invariant (LTI) system, where each sensor
transmits measurements of a plant to a controller over a
WPAN. We consider the state-space model given in [4]:

ẋ(t) =

[

0 5
0 0

]

x(t) +

[

0
1

]

u(t) (12)

y(t) =
[

1 0
]

x(t)

whereu(t) = −[25 10]x(t) is the feedback state control
decision. The delay of such a transmission is modeled
statistically by the results given in the previous sections. We
assume that all packets are successfully transmitted so to
observe the pure effect of packet delay distribution on the
stability of the control system.

In Fig. 8, we compare the step response of the packet delay
with different protocol parametersm0 = 3, 7, 8, mb = 8,
n = 0, m = 4 with respect to ideal step response when
the delay is ignored at a fixed sampling periodh = 0.02 s.
Recall that the packet delay distribution is heavily affected by
the parameters of CSMA/CA mechanism as we observed in
Section IV-A and IV-B. The packet delay causes the closed-
loop plant to be underdamped, resulting in larger overshootin
the step response. Observe that as the CSMA/CA parameter
m0 increases, the settling time of control system increases.
Moreover, the system is unstable when the parameterm0 = 8
due to a longer packet delay and higher delay variance. The
heavy tail of packet delay distribution degrades the stability
of LTI systems. In [15], we show that the packet loss prob-
ability decreases as the parameterm0 increases. However,
there is a tradeoff between the packet loss probability and
the delay jitter in WPANs. Therefore, the selection of the
parameter plays a fundamental role for the stability.

V. CONCLUSIONS

In this paper, we characterized the probability distribution
functions of the service time and the delay to receive packet
successfully for the CSMA/CA mechanism of WPANs. The
explicit expression of the delay distribution is a functionof
the traffic load, number of nodes, length of data packets, and
protocol parameters (macMinBE, macMaxBE, macMaxCS-
MABackoffs, macMaxFrameRetries). Monte Carlo simula-
tions validated the analysis. If the traffic load is very low,
then the average delay is linearly increasing with the number
of nodes. The delay distribution is significantly different
from commonly used delay models of NCSs. Furthermore,
the protocol parameters affect the delay distribution and the
performance of a state feedback control system.
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Fig. 8. Effect of the packet delay distribution on a state feedback control
system over a WPAN. The sampling period ish = 0.02 s, the packet size is
L = 30 bytes with CSMA/CA parametersm0 = 3, 7, 8, mb = 8, n = 0,
andm = 4 and a number of nodesN = 10.
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