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A Generalized Markov Chain Model
for Effective Analysis of Slotted IEEE 802.15.4
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Abstract—A generalized analysis of the IEEE 802.15.4 medium
access control (MAC) protocol in terms of reliability, delay and
energy consumption is presented. The IEEE 802.15.4 exponential
backoff process is modeled through a Markov chain taking into
account retry limits, acknowledgements, and unsaturated traffic.
Simple and effective approximations of the reliability, delay and
energy consumption under low traffic regime are proposed. It
is demonstrated that the delay distribution of IEEE 802.15.4
depends mainly on MAC parameters and collision probability.
In addition, the impact of MAC parameters on the performance
metrics is analyzed. The analysis is more general and gives more
accurate results than existing methods in the literature. Monte
Carlo simulations confirm that the proposed approximations
offer a satisfactory accuracy.

Keywords: IEEE 802.15.4 standard, Markov chain model,
Retry limits and acknowledgement, Model approximation.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have revolutionized the
world of distributed systems and have enabled several new
applications. The IEEE 802.15.4 standard has received con-
siderable attention in academy and industry as a possible low
data rate and low power protocol for WSNs [1]. Understanding
reliability, delay and energy consumption of IEEE 802.15.4
networks is essential to characterize the fundamental limita-
tions of this protocol and optimize its parameters.

Several simulations-based studies e.g., [2]–[4], as well as
more recent analytical works, e.g., [5]–[8], investigate the
delay, throughput, and energy consumption of IEEE 802.15.4.
Most of the theoretical studies are based on the Markov
model initially proposed by Bianchi [9] for the IEEE 802.11
standard [10]. The model describes the basic functionalities
of IEEE 802.11 through a Markov chain under saturated
traffic and ideal channel conditions. Extensions of this model
have been used to analyze the packet reception rate [11],
the delay [12], [13], the medium access control (MAC) layer
service time [14], [15] and throughput [16], [17] of IEEE
802.11. A simple and effective analysis of delay distribution
is studied for IEEE 802.11 in [18].

Inspired by Bianchi’s work, a Markov model for IEEE
802.15.4 and an extension with acknowledgement mechanism
have been proposed in [5] and [8], respectively. A modified
Markov model including retransmissions with finite retry limit
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has been studied in [7] for the slotted carrier sense multi-
ple access with collision avoidance (CSMA/CA) mechanism
of IEEE 802.15.4. However, the energy consumption and
throughput analysis under unsaturated traffic show a weak
matching with the simulation results.

In this paper we present an accurate model and analysis
of IEEE 802.15.4 MAC protocol in terms of reliability, de-
lay and energy consumption. Unlike previous related works,
we propose a generalized Markov model of the exponential
backoff process with retry limits and acknowledgements under
unsaturated traffic regime. We show that our Markov chain
gives an accurate model of the reliability, delay and energy
consumption of IEEE 802.15.4. Evaluating these performance
metrics asks in general for heavy computations. As such,
these expressions may not be directly applied to optimize the
IEEE 802.15.4 MAC parameters by an in-network processing
of the nodes [19] since complex computations are out of
reach for today’s sensing devices. To overcome this problem,
we devise a simplified and effective method that drastically
reduces the computation complexity while ensuring a satis-
factory accuracy. Furthermore, we use these results to analyze
the performance of IEEE 802.15.4 as functions of the MAC
parameters and collision probability. Monte Carlo simulations
confirm the validity of our analysis.

The remainder of this paper is as follows. In Section II, we
describe the slotted CSMA/CA mechanism of IEEE 802.15.4
standard. We propose a Markov chain model of CSMA/CA
with retry limits and unsaturated traffic in Section III. In Sec-
tion IV we present an accurate analysis of the reliability, delay
and energy consumption. Then, in Section V an approximated
analysis is developed. In Section VI, we validate our analysis
by Monte Carlo simulations. Section VII concludes the paper.

II. OVERVIEW OF THE IEEE 802.15.4

The IEEE 802.15.4 standard specifies MAC and physical
(PHY) layers. The CSMA/CA is used along with a slotted Bi-
nary Exponential Backoff (BEB) scheme to reduce collisions
due to simultaneous node transmissions. The standard defines
two channel access modalities: the Beacon-enabled modality,
which uses a slotted CSMA/CA and exponential backoff, and
a simpler unslotted CSMA/CA without beacons.

Consider a node trying to transmit. In slotted CSMA/CA
of IEEE 802.15.4, first the MAC sub-layer initializes four
variables, i.e., the number of backoffs (NB=0), contention
window (CW=2), backoff exponent (BE=macMinBE) and
retransmission times (RT=0). Then the MAC sub-layer de-
lays for a random number of complete backoff periods in
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Fig. 1. IFS data transmission mechanism with and without acknowledgement.

the range [0, 2BE − 1] units. When the backoff period is
zero, the node performs the first clear channel assessment
(CCA). If two consecutive CCAs are idle, then the node
commences the packet transmission. If either of the CCA
fails due to busy channel, MAC sublayer will increase the
value of both NB and BE by one up to a maximum value
macMaxCSMABackoffs and macMaxBE, respectively. Hence,
the value of NB and BE depend on the number of CCA
failures of a packet. Once the BE reaches macMaxBE, it
remains at the value of macMaxBE until it is reset. If NB
exceeds macMaxCSMABackoffs, then the packet is discarded
due to the channel access failure. Otherwise the CSMA/CA
algorithm generates a random number of complete backoff
periods and repeat the process. Here, the variable macMaxC-
SMABackoffs represents the maximum number of times the
CSMA/CA algorithm is required to backoff. If channel access
is successful, the node starts transmitting packets and waits for
acknowledgement (ACK). The reception of the corresponding
ACK is interpreted as successful packet transmission. If the
node fails to receive ACK due to collision or ACK timeout, the
variable RT is increased by one up to macMaxFrameRetries.
If RT is less than macMaxFrameRetries, the MAC sublayer
initializes two variables CW=0, BE=macMinBE and follows
the CSMA/CA mechanism to re-access the channel. Otherwise
the packet is discarded due to the retry limit. Note that the
default MAC parameters are macMinBE = 3, macMaxBE =
5, macMaxCSMABackoffs = 4, macMaxFrameRetries = 3.

To account for the data processing time required at the MAC
sublayer, two successive frames transmitted from a device are
separated by at least an Inter-Frame Spacing (IFS) period; if
the first transmission requires an acknowledgment, the sepa-
ration between the ACK frame and the second transmission is
at least an IFS period. Fig. 1 illustrates the IFS period of data
frame with and without ACK. Note that the waiting time to
receive ACK is in the range aTurnaroundTime (12 symbols)
to aTurnaroundTime + aUnitBackoffPeriod (12 + 20 symbols).
The IFS period depends on the length of the transmitted data
frames. See [1] for further details.

III. MARKOV CHAIN MODEL

In this section, we propose a generalized analytical model
of the slotted CSMA/CA mechanism of beacon enabled IEEE
802.15.4 with retry limits for each packet transmission.

We consider a star network with a personal area network
(PAN) coordinator, and N nodes with beacon-enabled slotted
CSMA/CA and ACK. All nodes contend to send data to the
PAN coordinator, which is the data sink. Assume that the
network generates an unsaturated traffic, which is a natural
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Fig. 2. Markov chain model for CSMA/CA algorithm for IEEE 802.15.4

scenario for many WSN applications. We study the behavior
of a single node by using a Markov model.

Let s(t), c(t) and r(t) be the stochastic processes represent-
ing the backoff stage, the state of the backoff counter and the
state of retransmission counter at time t, respectively, experi-
enced by a node to transmit a packet as indicated in Fig. 2.
By assuming independent probability that nodes start sensing,
the stationary probability τ that a node attempts a first carrier
sensing in a randomly chosen time slot is constant and inde-
pendent of other nodes, and the tuple (s(t), c(t), r(t)) is a three
dimensional Markov chain. We denote the MAC parameters by
W0 , 2macMinBE,m0 , macMinBE,mb , macMaxBE,m ,
macMaxCSMABackoffs, n , macMaxFrameRetries. The states
from (i,Wm − 1, j) to (i,W0 − 1, j) represent the backoff
states. States (Q0, . . . , QL0−1) consider the idle state when the
packet queue is empty and the node is waiting for new packet
arrivals. Note that the idle states (Q0, . . . , QL0−1) take into
account the unsaturated traffic condition. States (i, 0, j) and
(i,−1, j) represent CCA1 and CCA2, respectively. Let α be
the probability that CCA1 is busy, β the probability that CCA2
is busy. Let q0 the probability of going back to the idle state
Q0, and let Pc be the probability that a transmitted packet en-
counters a collision. The states (−1, k, j) and (−2, k, j) model
the successful transmission and packet collision, respectively.
The state transition probabilities associated with the Markov
chain of Fig. 2 are

P (i, k, j|i, k + 1, j) = 1, for k ≥ 0 , (1)

P (i, k, j|i− 1, 0, j) =
α + (1− α)β

Wi
, for i ≤ m, (2)



P (0, k, j|i, 0, j − 1) =
(1− α)(1− β)Pc

W0
, for j ≤ n , (3)

P (Q0|m, 0, j) = q0(α + (1− α)β), for j < n , (4)
P (Q0|i, 0, n) = q0(1− α)(1− β), for i < m , (5)
P (Q0|m, 0, n) = q0, (6)

P (0, k, 0|Q0) =
1− q0

W0
, for k ≤ W0 − 1 . (7)

Eq. (1) is the decrement of backoff counter, which happens
with probability 1. Eq. (2) represents the probability of finding
busy channel either in CCA1 or CCA2 and of selecting a
state uniformly the in the next backoff stage. Eq. (3) gives
the unsuccessful transmission probability after finding an idle
channel in both CCA1 and CCA2, and a node picks uniformly
a state in the next retransmission stage. Eqs. (4) and (5)
represent the probability of going back to the idle stage due to
the channel access failure and retry limits, respectively. Eq. (6)
is the probability of going back to the idle stage at backoff
counter m and retransmission stage n, as function of the traffic
conditions q0. Eq. (7) models the probability of going back to
the first backoff stage from the idle stage. In the following,
we use Eqs. (1)–(7) to compute the stationary distribution of
the Markov chain.

Let bi,k,j = limt→∞ Pr(s(t) = i, c(t) = k, r(t) = j), i ∈
(−2,m), k ∈ (−1, max(Wi − 1, Ls − 1, Lc − 1)), j ∈ (0, n)
be the stationary distribution of the Markov chain where
Ls, Lc are the time period for successful transmission and
packet collision, respectively. Next, we derive the closed form
expression for such distribution chain. Owing to the chain
regularities and Eqs. (1)– (7), we have

bi,k,j =
Wi − k

Wi
bi,0,j , (8)

where

Wi =
{

2iW0 i ≤ mb −m0

2mb−m0W0 i > mb −m0 .

From Eq. (2), for i ≤ m we obtain

bi,0,j = (α + (1− α)β)ib0,0,j . (9)

From Eq. (3), b0,0,j is rewritten as follows

b0,0,j = (1− α)(1− β)Pc

m∑
i=0

bi,0,j−1 (10)

=
(

(1− α)(1− β)Pc

m∑
i=0

(α + (1− α)β)i

)j

b0,0,0 .

By the normalization condition, we know that

m∑
i=0

Wi−1∑
k=0

n∑
j=0

bi,k,j +
m∑

i=0

n∑
j=0

bi,−1,j

+
n∑

j=0

(
Ls−1∑
k=0

b−1,k,j +
Lc−1∑
k=0

b−2,k,j

)
+

L0−1∑
l=0

Ql = 1 . (11)

We next derive the expressions of each term in Eq. (11).

From Eqs. (8), (9), (10), we have

m∑
i=0

Wi−1∑
k=0

n∑
j=0

bi,k,j (12)

=
m∑

i=0

n∑
j=0

Wi + 1
2

(α + (1− α)β)i b0,0,j

=





b0,0,0
2

(
1−(2x)m+1

1−2x W0 + 1−xm+1

1−x

)
1−yn+1

1−y

if m ≤ mb −m0

b0,0,0
2

(
1−(2x)mb−m0+1

1−2x W0 + 1−xmb−m0+1

1−x +

(2mb + 1)xmb−m0+1 1−xm−mb+m0

1−x

)
1−yn+1

1−y

otherwise,

where x = α + (1− α)β and y = Pc(1− xm+1). Similarly,
m∑

i=0

n∑
j=0

bi,−1,j =
m∑

i=0

n∑
j=0

(1− α)(α + (1− α)β)i b0,0,j

= (1− α)
1− xm+1

1− x

1− yn+1

1− y
b0,0,0 , (13)

and
n∑

j=0

(
Ls−1∑
k=0

b−1,k,j +
Lc−1∑
k=0

b−2,k,j

)
(14)

= (Ls(1− Pc) + LcPc)(1− xm+1)
1− yn+1

1− y
b0,0,0 .

By considering that the successful transmission and the failure
events are due to the limited number of backoff stages m and
the retry limits n, the idle state probability is

Q0 =q0QL0−1 + q0

[
n∑

j=0

(α + (1− α)β) bm,0,j

+
m∑

i=0

Pc (1− β) bi,−1,n +
m∑

i=0

n∑
j=0

(1− Pc) (1− β) bi,−1,j

]

=
q0

1− q0

[
xm+1(1− yn+1)

1− y
+ Pc(1− xm+1)yn

+(1− Pc)
(1− xm+1)(1− yn+1)

1− y

]
b0,0,0 , (15)

where L0 is the idle state length without generating packets
and

∑L0−1
l=0 Ql = L0Q0. Note that Eqs. (12)–(15) give

the state values bi,k,j as a function of b0,0,0. By replac-
ing Eqs. (12)–(15) in the normalization condition given by
Eq. (11), we obtain the expression for b0,0,0.

IV. ACCURATE ANALYSIS

In this section, we derive the accurate expressions of the
reliability, delay and energy consumption offered by IEEE
802.15.4 by using the Markov chain developed in the previous
section.

A. Reliability

To derive the probability of successful packet reception, or
reliability, we derive first the probability τ that a node attempts



a first carrier sensing (CCA1) in a randomly chosen time slot
is

τ =
m∑

i=0

n∑
j=0

bi,0,j =
(

1−xm+1

1−x

)(
1−yn+1

1−y

)
b0,0,0. (16)

The probability τ depends on the probability Pc that a trans-
mitted packet encounters a collision, the probability α that
CCA1 is busy, and the probability β that CCA2 is busy. We
study these three probabilities next.

The term Pc is the probability that at least one of the N−1
remaining nodes transmits in the same time slot. If all nodes
transmit with probability τ , Pc is

Pc = 1− (1− τ)N−1 ,

where N is the number of nodes. Similarly to [8], we derive
the busy channel probabilities α and β as follows. Since

α = α1 + α2 , (17)

where α1 is the probability of finding channel busy during
CCA1 due to data transmission, namely

α1 = L(1− (1− τ)N−1)(1− α)(1− β) ,

and α2 is the probability of finding the channel busy during
CCA1 due to ACK transmission, which is

α2 = Lack
Nτ(1− τ)N−1

1− (1− τ)N
(1− (1− τ)N−1)(1− α)(1− β) ,

where Lack is the length of the ACK. Finally,

β =
1− (1− τ)N−1 + Nτ(1− τ)N−1

2− (1− τ)N + Nτ(1− τ)N−1
. (18)

The expressions of the carrier sensing probability τ and the
busy channel probabilities α and β form a system of non-linear
equations that can be solved through a numerical method.

In slotted CSMA/CA, packets are discarded due to two
reasons: (i) channel access failure (ii) retry limits. Channel
access failure happens when a packet fails to obtain idle
channel in two consecutive CCAs within m + 1 backoffs.
Furthermore, a packet is discarded if the transmission fails
due to repeated collisions after n + 1 attempts. Following the
Markov model presented in Fig. 2, the probability that the
packet is discarded due to channel access failure is

Pcf =
n∑

j=0

x bm,0,j =
xm+1(1− yn+1)

1− y
. (19)

The probability of a packet being discarded due to retry limits
is

Pcr =
m∑

i=0

Pc(1− β)bi,−1,n = yn+1 . (20)

Therefore, by using Eq. (19) and (20), the reliability is given
by

R = 1− Pcf − Pcr . (21)

B. Delay

The average delay for a successfully received packet is
defined as the time interval from the instant the packet is at
the head of its MAC queue and ready to be transmitted, until
an ACK for such a packet is received. If a packet is dropped
due to either the limited backoffs m or the finite retry limit
n, its delay is not included into the average delay.

Let Dj be the event that a node sends a packet successfully
at the jth time. Then, from the Marov model, the random
variables (Dj − Dj−1) and (Dj+1 − Dj) are independent.
Let Th,i be the random time needed to obtain two successful
CCAs from the selected backoff counter value in backoff level
i. Recalling from Section II, a node transmits the packet when
the backoff counter is 0 and two successful CCAs occur.
The transmission may be successful with probability 1 − Pc,
or collide with probability Pc. The total delay D to have a
successful transmission within n unsuccessful attempts is

D =
n∑

j=0

1(Aj |At)Dj ,

where Dj = Ls + j Lc +
∑j

h=0 Th, Th is the backoff stage
delay, Ls and Lc are the time periods for successful packet
transmission and collided packet transmission, respectively.
The event Aj denotes the occurrence of a successful packet
transmission at time j + 1 given j previous unsuccessful
transmissions, whereas the event At denotes the occurrence
of a successful packet transmission within n attempts. By
knowing the time duration of ACK frame, ACK timeout, IFS,
data packet length and header duration, we compute Ls, Lc as

Ls = L + tack + Lack + IFS ,

Lc = L + tm,ack,

where L is the total length of packet including overhead and
payload, tack is ACK waiting time, Lack is the length of ACK
frame, IFS is Inter-Frame Spacing and tm,ack is the timeout
of ACK, see the details in Section II and [1]. We then have

Pr(Aj |At) =
P j

c (1− xm+1)j

∑n
k=0 (Pc(1− xm+1))k

,

=

(
1− Pc(1− xm+1)

)
P j

c (1− xm+1)j

1− (Pc(1− xm+1))n+1 (22)

where Pc is the collision probability per sending attempt and
(1− xm+1) is the probability of successful channel accessing
within the maximum number of m backoff stages. Note that
the probability of the event Aj is normalized by considering
all the possible events of successful attempts At. Hence, the
expected value of D is

E[D] =
n∑

j=0

Pr(Aj |At)E[Dj ] , (23)

where E[Dj ] = Ts + j Tc +
∑j

h=0 E[Th] .
By following a similar approach as the one for the char-

acterization of D, we see that the total backoff delay Th is
modelled by

Th =
m∑

i=0

1(Bi|Bt)Th,i ,



where

Th,i = 2 Tsc +
i∑

k=1

T sc
h,k +

i∑
k=0

T b
h,k , (24)

and where 2Tsc is the successful sensing time,
∑i

k=1 T sc
h,k

is the unsuccessful sensing time due to busy channel during
CCA, and

∑i
k=0 T b

h,k is the backoff time. The event Bi

denotes the occurrence of a busy channel for i-th times, and
then of idle channel at the i+1th time. By considering all the
possibilities of busy channel during two CCAs, the probability
of Bi is conditioned on the successful sensing event within m
attempts Bt, given that the node senses an idle channel in
CCA. It follows that

Pr(Bi|Bt) =

∑2i

k=1 Ck
αβ(i)∑m

k=0 Cαβ(k)
, (25)

where Cαβ(i) gives all possibilities of choosing i elements
from a set of busy channel probabilities {α, (1 − α)β} and
Ck

αβ(i) is one of the elements in the set Cαβ(i). Hence, the
total number of combinations for i elements is equal to 2i

and Ck
αβ(i) returns one combination out of 2i. The expected

backoff delay is

E[Th] =
m∑

i=0

Pr(Bi|Bt)E[Th,i] .

Note that E[Th,i] follows from Eq. (24). The unsuccessful
sensing time

∑i
k=1 T sc

h,k in Eq. (24) is related to the picking
of i elements in the set Cαβ(i). For instance, the combination
(α, α) returns the unsuccessful sensing delay Tsc + Tsc and
the combination (α, (1− α)β) gives the unsuccessful sensing
delay Tsc +2Tsc. Furthermore, the backoff time T b

h,k of k un-
successful sensing tries is uniformly distributed in [0,Wk−1].
Hence, we can rewrite the expected backoff delay E[Th] as

E[Th] =2 Tsc +
m∑

k=0

Pr(Bi|Bt)
i∑

k=0

Wk − 1
2

Sb

+
Tsc∑m

k=0 Cαβ(k)

m∑
i=0

2i∑
k=1

Ck
αβ(i)(Nk

α(i) + 2Nk
β̂
(i)) ,

where Sb is the time unit aUnitBackoffPeriod, and Nk
α(i),

Nk
β̂
(i) return the number of α and (1−α)β of the combination

Ck
αβ(i), respectively.
By a similar approach, the variance of the total delay is

σ2[D] =
n∑

j=0

Pr(Aj |At)
[
E[D2

j ]− (E[D])2
]

. (26)

C. Energy Consumption
By considering the Markov chain model given in Fig. 2, the

average energy consumption is given as follow

Etot =Pi

m∑
i=0

Wi−1∑
k=1

n∑
j=0

bi,k,j + Psc

m∑
i=0

n∑
j=0

(bi,0,j + bi,−1,j)

+ Pt

n∑
j=0

L−1∑
k=0

(b−1,k,j + b−2,k,j) + Pi

n∑
j=0

(b−1,L,j

+ b−2,L,j) +
n∑

j=0

L+Lack+1∑
k=L+1

(Pr b−1,k,j + Pi b−2,k,j)

+ Psp

L0−1∑
l=0

Ql , (27)

where Pi, Psc, Pt, Pr and Psp are the average energy con-
sumption in idle-listen, channel sensing, transmit, receiving,
and sleep states, respectively. We assume that the radio is
set in idle-listen state during the backoff stages and the
timeout of ACK, tm,ack = Lack + 1, in time units Sb. In
Eq. (27), the first and second terms take into account the
energy consumption during idle backoff state and channel
sensing state, respectively. The third, fourth and fifth terms
consider the energy consumption of packet transmission stage.
The last term is the energy consumption of idle stage without
packet generation. By substituting Eqs. (12)–(15) to Eq. (27),
we obtain the average energy consumption in closed form.

V. APPROXIMATED ANALYSIS

In previous sections we presented a generalized Markov
chain model of the CSMA/CA mechanism, and we gave
the expressions of the reliability, delay for successful packet
delivery, and energy consumption. These expressions are based
on the nonlinear Eqs. (16)-(18), which must be solved through
a numerical method. However, these expressions may be
computationally demanding and inadequate for usage in sensor
devices. For instance, a node may need to solve locally
an optimization problem where the cost function is given
by the energy (27), and the constraints are imposed by the
reliability (21) and delay (23) expressions. We argue that
simpler expressions for such an optimization problem are
needed for an in-network solution [19].

In this section, we approximate the accurate model and
analysis developed in Section III by simpler expressions. The
key idea is that sensor nodes can easily estimate the busy
channel probabilities α, β and the probability τ . Therefore,
we propose some approximated expressions where nodes
exploit local measurements to evaluate reliability, delay, and
energy consumption, rather than solving nonlinear equations.
In the following, we give these approximations. Recall that we
defined x = α + (1− α)β and y = Pc(1− xm+1).

A. Reliability
To approximate the reliability expression of Eq. (21), we

first consider the carrier sensing probability τ of Eq. (16),
where the state b0,0,0 follows from the normalization condition
in Eq. (11). Given z ≥ 0, note that

1− zm+1

1− z
≈ 1 + z if z ¿ 1 (28)

By using this approximation, Eq. (12) is approximated as
m∑

i=0

Wi−1∑
k=0

n∑
j=0

bi,k,j ≈ b0,0,0

2
[(1 + 2x)W0 + 1 + x] (1 + y)

(29)

Similarly, Eq. (13) is approximated by
m∑

i=0

n∑
j=0

bi,−1,j ≈ b0,0,0(1− α)(1 + x)(1 + y) (30)

and Eq. (14) is approximated by
n∑

j=0

(
Ls−1∑
k=0

b−1,k,j +
∑Lc−1

k=0 b−2,k,j

)

≈ b0,0,0Ls(1− xm+1)(1 + y), (31)



where we assume that the successful packet service time is
equal to the packet collision time, namely Ls = Lc. Finally,
let K0 = L0q0/(1 − q0), then the approximate idle stage of
Eq. (15) is

L0−1∑
l=0

Ql ≈ b0,0,0K0

[
1 + y + Pc(1− xm+1)(yn − y − 1)

]
.

(32)

By summing together Eqs. (29)–(32), the approximated state
probability b̃0,0,0 is

b̃0,0,0 ≈
[
W0

2
(1 + 2x) (1 + y) + Ls(1− x2)(1 + y)

+ K0

(
(Pc(1− x2))2

(
(Pc(1− x2))n−1 + 1

)
+1)

]−1
,

where we neglect the term in Eq (30) and use 1 − xm+1 ≈
1− x2.

In a similar way, the carrier sensing probability given by
Eq. (16) is approximated as τ̃ = (1 + x)(1 + y)̃b0,0,0. Hence,
the approximated reliability is

R̃ = 1− xm+1(1 + ỹ)− ỹn+1, (33)

where ỹ = (1− (1− τ̃)N−1)(1− x2). R̃ is a function of the
busy channel probability α, β, the collision probability Pc and
the MAC parameters m0,mb,m, n.

B. Delay

The average delay given by Eq. (23) is approximated as

E[D̃] = PT D (34)

where P = [Pr(A0|At) · · · Pr(An|At)]T ∈ R(n+1)×1, D =
[d0 · · · dn]T ∈ R(n+1)×1, dj = Ts + j Tc + (j + 1)E[T̃ ],
and where Pr(Aj |At) is given by Eq. (22). E[T̃ ] is the
approximation of the average backoff period:

E[T̃ ] = 2Tsc +
m∑

i=0

P̃ (Bi|Bt)
i∑

k=0

(
W02k − 1

2
Sb + 2Tsc k

)

= 2Sb

(
1 + P̃T T

)
(35)

where P̃ = [P̃ (B0|Bt) · · · P̃ (Bm|Bt)]T ∈ R(m+1)×1, T =
[t0 · · · tm]T ∈ R(m+1)×1, P̃ (Bi|Bt) is given by Eq. (36)
and ti =

[
(2i+1 − 1)W0 + 3i− 1

]
/4. The approximation

considers the worst case, i.e., a failure of the second sensing
(CCA2), which implies that Tsc = Sb and that each sensing
failure takes 2Tsc. Under these assumptions, the probability of
the event Bi in Eq. (25) is approximated by

P̃ (Bi|Bt) =
max(α, (1− α)β)i

∑m
k=0 max(α, (1− α)β)k

, (36)

where we did a further approximation by not considering all
the possibilities of busy channel during two CCAs.

Now, we are in the position to give an approximation
of the discrete probability distribution function of the delay.
A probability generation function approach can be used to
compute the discrete probability distribution of the delay.
However, such an approach is computationally quite expen-
sive. For analysis and optimization, some continuous well-
known distributions are used to approximate the simulation

results. The approximated distribution is obtained by using a
moment matching approach. Namely, the discrete probability
distribution function of the delay is approximated by known
distributions whose average and variance is matched to the
actual average and variance of the delay. More specifically,
let Da be an approximating delay distribution having average
µDa

and variance σ2
Da

. Then, we impose that µDa
and σ2

Da
are

given by Eqs. (23) and (26), respectively. Typical distribution
for Da should be one-sided, as the Exponential, Log-normal,
Poisson, and Chi-square ones, since the delay is positively
distributed. In Section VI, we evaluate the accuracy of the
approximated probability distribution function of the delay as
given by these one-sided distributions.

C. Energy Consumption

Finally, we propose an approximation of the average energy
consumption. From Eq. (12), the average energy consumption
of the backoff stage is

Pi

m∑
i=0

Wi−1∑
k=1

n∑
j=0

bi,k,j

=
Piτ

2

(
(1− x)(1− (2x)m+1)
(1− 2x)(1− xm+1)

W0 − 1
)

, (37)

where we assume that the carrier sensing probability τ is
measured by the node, i.e., it is not computed analytically.

By putting together Eqs. (12), (13) and (16), the average
energy consumption of the sensing state is

Psc

m∑
i=0

n∑
j=0

(bi,0,j + bi,−1,j) = Psc(2− α)τ . (38)

Similarly, by substituting Eq. (14) and Eq. (16), the average
energy consumption for packet transmission including both
successful transmission and packet collision is

Pt

n∑
j=0

L−1∑
k=0

(b−1,k,j + b−2,k,j) + Pi

n∑
j=0

(b−1,L,j + b−2,L,j)

+
n∑

j=0

L+Lack+1∑
k=L+1

(Pr b−1,k,j + Pi b−2,k,j) (39)

= (1− α)(1− β)τ (PtL + Pi + Lack (Pr(1− Pc) + PiPc)) .

We assume that the energy consumption at sleeping state is
negligible, namely Psp ≈ 0. By summing up Eqs. (37), (38)
and (39), the approximated average energy consumption is

Ẽtot =
Piτ

2

(
(1− x)(1− (2x)m+1)
(1− 2x)(1− xm+1)

W0 − 1
)

+ Psc(2− α)τ

+ (1− α)(1− β)τ (PtL + Pi + Lack (Pr(1− Pc)
+PiPc)) . (40)

VI. MODEL VALIDATION AND PERFORMANCE ANALYSIS

Here we present extensive Monte Carlo simulations of slot-
ted IEEE 802.15.4 to validate our accurate and approximated
expressions of the reliability, delay and energy consumption.
The simulations are based on the specifications of the IEEE
802.15.4 [1] with several values of the traffic condition and
MAC parameters. A performance analysis is also conducted.
We investigate the effects of MAC parameters m0,mb,m, n
on the performance metrics. Details follow in the sequel.
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Fig. 3. Reliability as a function of the traffic conditions q0 = 0, 0.3, 0.9, and MAC parameters m0 = 3, . . . , 8, mb = 8, m = 2, . . . , 5, n = 0, . . . , 7.
The length of the packet is L = 7 and the number of nodes is N = 10.
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Fig. 4. Reliability as a function of traffic condition q0 = 0.3, 0.6, 0.9 with
a given MAC parameters (m0 = 3, mb = 8, m = 4, n = 3) and packet
length L = 7.

A. Reliability Validation

Fig. 4 illustrates the reliability as obtained by Monte Carlo
simulations and the accurate expression Eq. (21) and approxi-
mated one Eq. (33) as a function of the traffic q0 = 0.3, 0.6, 0.9
with a length of the packets L = 7, and MAC parameters
m0 = 3,mb = 8,m = 4, n = 3. The accurate analytical
model and approximated model match the simulation results
quite well under low traffic condition q0 = 0.6, 0.9. However,
the approximated expression shows a weak matching for the
high traffic q0 = 0.3 and large number of nodes N ≥ 30. The
reason is that the approximation given by Eq. (28) holds if
x ¿ 1, but x increases as the traffic and the number of nodes
increases.

Fig. 3 shows the reliability as obtained by Monte Carlo
simulations, the accurate and approximated expressions as
a function of the traffic conditions q0 = 0, 0.3, 0.9 with a
given number of nodes N = 10 and different MAC param-
eters m0,m, n. The accurate and approximated expressions
match quite well the simulation results. The expressions are
closer to simulation results under unsaturated traffic condition
q0 = 0.3, 0.9 than saturated traffic condition q0 = 0. The
reliability approaches 1 under very low traffic regime q0 = 0.9.
In Figs. 3(a), 3(b), the reliability increases as MAC parameters
m0,m increase, respectively. In Fig. 3(c), it is interesting to
observe that the reliability does not improve as the retry limits
n increases for high traffic conditions q0 = 0. Notice that the
reliability saturates to 0.6 if n ≥ 2. Hence, the retransmissions
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Fig. 5. Average delay as a function of traffic condition q0 = 0.3, 0.6, 0.9
with a given MAC parameters (m0 = 3, mb = 8, m = 4, n = 3) and packet
length L = 7.

are necessary but not sufficient for high reliability under high
traffic conditions.

B. Delay Validation

In Fig. 5 we report the average delay as obtained by Monte
Carlo simulations, the accurate expression given by Eq. (23),
and approximated one given by Eq. (34). The average delay
is reported as a function of the traffic q0 = 0.3, 0.6, 0.9,
with a length of the packet L = 7 and MAC parameters
m0 = 3, mb = 8,m = 4, n = 3. Similarly to the reliability,
both the accurate and approximated expressions predict well
the simulation results under low traffic condition q0 = 0.6, 0.9,
whereas the approximation becomes less accurate for high
traffic q0 = 0.3 and large number of nodes N ≥ 30.

Fig. 6 shows the average delay as a function of different
traffic conditions q0 = 0.3, 0.6, 0.9 with a given number of
nodes N = 10 and different MAC parameters m0,m, n.
Both the accurate and approximated expressions match well
the simulation results, but the approximated model does not
predict well the simulation results under high traffic condition
q0 = 0.3 due to the approximation given by Eq. (28). Observe
that the average delay increases as traffic condition increases
due to high busy channel probability and collision probability.
Fig. 6(a) shows that the average delay increases exponentially
as m0 increases. Hence, we conclude that m0 is the key
parameter in terms of average delay with respect to m and
n.
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Fig. 6. Average delay as a function of the traffic conditions q0 = 0.3, 0.6, 0.9 and MAC parameters m0 = 3, . . . , 8, mb = 8, m = 2, . . . , 5, n = 0, . . . , 7.
The length of the packet is L = 7 and the number of nodes is N = 10.
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Fig. 7. Cumulative distribution function of the delay for successfully received packets as a function of the traffic conditions q0 = 0, 0.3, 0.9 and different
MAC parameters m0 = 3, 5, mb = 5, 8, m = 4, n = 3. The length of the packet is L = 7 and the number of nodes is N = 20. The Exponential,
Log-normal, Poisson, and Chi-square distribution are used for moment matching.

We check the validity of the delay distribution by using
the approximation given by the moment matching approach
described in Section V-B. Fig. 7 shows the cumulative dis-
tribution function (CDF) of packet delay as obtained by
Monte Carlo simulations and the approximated distribution
as a function of different parameters m0 = 3, 5, mb = 5, 8,
m = 4, n = 3, the packet length L = 7, the number of
nodes N = 20 and different traffic conditions q0 = 0, 0.3, 0.9.
The moment matching has been obtained by using the Expo-
nential, Log-normal, Poisson, and Chi-square distributions. In
Figs. 7(a), 7(b), 7(d), 7(e), we see that the Exponential distri-
bution predicts well the CDF for high collision probabilities.
By contrast, in Figs. 7(c), 7(f), we observe that the Log-normal
or Poisson distributions provide a good approximation for low
collision probability. In addition, the Exponential distribution
provides us with a fair approximation except for cases of very
low collision probabilities. For these probabilities, the delay
distribution is more similar to a deterministic distribution (see

Figs. 7(c), 7(f)). By comparing Figs. 7(a), 7(b) to 7(d), 7(e), we
observe that a larger MAC parameter gives longer tails. From
Figs. 7(c) and 7(f), we conclude that a good approximation
of the distribution depends on both MAC parameters and
collision probability.

To validate the accuracy of the approximated distributions
by using a moment matching with the Exponential, Log-
normal, Poisson, Chi-square distributions, the correlation co-
efficients ρ2 between the simulation results and approximated
distribution has been evaluated. Recall that the closer ρ2 to
1, the better the approximation. In the following, we validate
the dependence between collision probability and correlation
coefficient of the approximated distributions.

Figs. 8 show the relation of the correlation coefficient ρ2

between the simulation results and the approximated distri-
bution over different collision probabilities as a function of
the different traffic condition q0 = 0.6, 0.9 and parameters
m0 = 3, 5, mb = 5, 8, m = 4, n = 3, the length of packet
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Fig. 8. Correlation coefficients of approximated delay cumulative distribution function including Exponential, Log-normal, Poisson, Chi-square distributions as
a function of different parameters m0 = 3, 5, mb = 5, 8, m = 4, n = 3, the length of packet L = 7, 14 and the number of node N = 10, 20, 30, 40, 50, 60.

L = 7, 14 and the different number of nodes N . Hence, six
different correlation coefficients and collision probabilities are
displayed for a given traffic condition. From Fig. 8, we observe
that the correlation coefficient depends mainly on collision
probability Pc. In Fig. 8(a) and 8(b), the correlation coefficient
is reported for a given set of MAC parameter (m0 = 3,
mb = 5) and similar collision probabilities as those of Fig. 8.
Observe that the correlation coefficient varies smoothly over
different collision probabilities (see Figs. 8(c) and 8(d)).
Therefore, we conclude that if the BEB mechanism does not
have a strict limitation on the maximum value of the backoff
exponent mb (as in IEEE 802.11), then the delay distribution
is mainly dependent on collision probability (see Figs. 8(c)
and 8(d)). Otherwise, if MAC parameters (m0,mb,m, n)
have strict limitations as currently done in IEEE 802.15.4,
then the delay distribution depends on both MAC parameters
and collision probability.

Fig. 8 shows a good matching between the CDF of sim-
ulation results and the approximated distributions. Notice
that the best correlation coefficient for the MAC parameters
m0 = 5 and mb = 8 is very close to 1. The Exponential
distribution gives the better match with the simulation results
for Pc > 0.1. In [14], the delay distribution of IEEE 802.11
matches well with a Log-normal distribution for almost all
cases. However, the Log-normal distribution does not match
well the simulation results for IEEE 802.15.4 as the collision
probability increases. The reason is that the delay distribution
for IEEE 802.15.4 does not have long tails compared to IEEE
802.11, because the MAC parameters have a strict limitation.
Hence, for given MAC parameters, from our results we can
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Fig. 9. Average energy consumption as a function of traffic condition q0 =
0.3, 0.6, 0.9 with MAC parameters (m0 = 3, mb = 8, m = 4, n = 3) and
a given length of packet L = 7.

choose the best approximated distribution out of Exponential,
Log-normal, Poisson, Chi-square distributions by measuring
collision probability.
C. Energy Consumption Validation

In Fig. 9 we reported the average energy consumption as
achieved by Monte Carlo simulations, for the accurate expres-
sion given by Eq. (27) and the approximated expression given
by Eq. (40). The curves depend on the traffic q0 = 0.3, 0.6, 0.9
with a length of the packet L = 7, and MAC parameters
m0 = 3,mb = 8,m = 4, n = 3. We observe that both
the accurate and approximated expressions predict well the
simulation results under different traffic conditions.

Fig. 10 shows the energy consumption as a function of dif-
ferent traffic conditions q0 = 0, 0.3, 0.9 with a given number of
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Fig. 10. Average energy consumption as a function of the traffic conditions q0 = 0.3, 0.6, 0.9 and MAC parameters m0 = 3, . . . , 8, mb = 8, m = 2, . . . , 5,
n = 0, . . . , 7. The length of the packet is L = 7 and the number of nodes is N = 10.

nodes N = 10 and different MAC parameters m0,m, n. The
accurate analytical model and approximated model match well
the simulation results for all traffic conditions. It is interesting
to observe that the energy consumption decreases as the MAC
parameters m0,m, n increase under a high traffic condition
q0 = 0. In essence, as the MAC parameters increase, the node
may stay more time in idle backoff stage than transmit or
receiving mode i.e., Pr > Pi > Psp and Pt > Pi > Psp.
We observe that the energy consumption increases as MAC
parameters (m0,m, n) increase under low traffic condition
q0 = 0.3, 0.9. Since the node needs to stay more time in
idle sleep stage without packet generation under low traffic
condition q0 = 0.3, 0.9, the main component of average energy
consumption is the idle backoff time rather than transmit or
receiving energy consumption. It is interesting to observe that
the energy consumption has a weaker dependence on the retry
limits n than the other MAC parameters m0,m.

VII. CONCLUSIONS

In this paper, we presented a generalized approach to ana-
lyze performance of the slotted CSMA/CA mechanism in the
IEEE 802.15.4 standard. The approach is based on a Markov
chain that considers retry limits, the acknowledgement mecha-
nism, and unsaturated traffic, which are important components
of most wireless sensor network applications. We derived the
reliability, delay and energy consumption expressions offered
by the slotted IEEE 802.15.4 standard by both an accurate and
computationally demanding approach, and an approximate and
simple approach. We showed that the approximated analysis
is effective for low traffic. Furthermore, unlike 802.11, we
observed that the delay distribution of IEEE 802.15.4 depends
mainly on the MAC parameters and the collision probability.
In addition, we analyzed the impact these parameters on the
reliability, delay and energy consumption.

Future investigations include the use of the aforementioned
achievements to the systematic design of optimized IEEE
802.15.4 MAC based on specific application requirements.
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