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ABSTRACT
Motivated by a peer-to-peer estimation algorithm in which
adaptive weights are optimized to minimize the estima-
tion error variance, we formulate and solve a novel non-
convex Lipschitz optimization problem that guarantees
global stability of a large class of peer-to-peer consensus-
based algorithms for wireless sensor network. Because
of packet losses, the solution of this optimization prob-
lem cannot be achieved efficiently with either traditional
centralized methods or distributed Lagrangian message
passing. We prove that the optimal solution can be ob-
tained by solving a set of nonlinear equations. A fast
distributed algorithm, which requires only local compu-
tations, is presented for solving these equations. Anal-
ysis and computer simulations illustrate the algorithm
and its application to various network topologies.
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1. INTRODUCTION
Wireless sensor networks are equipped with wireless

communication and sensing capabilities for communica-
tion, control and monitoring purposes, see [7] and refer-
ences therein. Given the small dimensions of the sens-
ing devices and their inaccessibility when deployed in
the environment, the operations of these networks are
often characterized by the absence of a central control
unit and by limited communication capabilities.

The absence of central coordination is the strength
of consensus-based estimation algorithms, where each
node locally produces accurate estimates by filtering
data received only by neighboring nodes. The challenge
of these estimators is that local processing must be care-
fully designed to avoid local errors escalating through-
out the network. For a new class of consensus-based
distributed estimators [1, 4, 16, 18, 22, 19, 12, 15], the
filter weights are chosen at each node so that the esti-
mation error of the entire network is bounded. In these
peer-to-peer algorithms, it is necessary to guarantee the
stability of a global matrix collecting the weights that



all nodes use to fuse information received from neigh-
bors [10, 18]. This is a difficult constraint to satisfy
when there is not central coordination and a cost func-
tion needs to be optimized.

The main contribution of this paper is the formulation
and the development of an efficient distributed strategy
to solve a novel Lipschitz optimization problem, whose
solution guarantees that locally computed weights yield
local estimation errors that decrease when estimates are
exchanged throughout the entire network. In particular,
given a network of N nodes, we show that a positive
linear combination of N positive decision variables, to
be maximized under N Lipschitz constraints, can be
solved with a fast decentralized algorithm. We show
that the optimal solution is provided by a system of
nonlinear equations, and then we investigate a method
to distribute quickly the computation of the optimal
solution.

A strategy where the computation of the optimal so-
lution is centralized, namely where nodes provide local
information to a central unit, demands a large amount
of communication resources, such as radio power, band-
width, routing, etc., which is a major drawback. Mes-
sage passing algorithms have been developed to dis-
tribute the computation by exchanging series of La-
grange multipliers associated to local constraints, see [2,
11] and references therein. However, these approaches
require a large number of iterations to reach conver-
gence. This is a major limitation, since a large amount
of data exchanged by the wireless nodes has strong ef-
fects on the battery lifetime. Furthermore, the presence
of packet losses may increase significantly the number
of iterations.

We show that our distributed computation of the so-
lution of the Lipschitz optimization problem provides
a method to adapt the filter weights so that the esti-
mation error variance is minimized and, at the same
time, the error propagation is bounded. The main ad-
vantage of our method is that we do not need to rely
on fixed (sub-optimal) Laplacian matrix associated to
the communication graph or to the Metropolis weights
to design the filter weights, as done in [1, 4, 22]. In
contrast to our earlier work [17], where we considered
the special case of packet losses i.i.d. across the net-
work, here we assume a much more general model of
the packet loss distribution. A substantial novel orig-
inal analysis is therefore developed to characterize the
estimator in the presence of these packet losses. Hence,
we show that our method allows to build a peer-to-peer
estimator that outperforms significantly other solutions
from the literature even in the presence of severe packet
losses.

The paper is organized as follows: In Section 2, we
show that the Lipschitz optimization problem investi-

gated here is of major relevance in distributed estima-
tion. Section 3 presents the optimization problem in de-
tail. In Section 4, an efficient algorithm is presented to
compute the optimal solution of the optimization prob-
lem. In Section 5, we apply the algorithm to an esti-
mation problem. We characterize in Section 5.1 perfor-
mance of the estimator by incorporating the distributed
algorithm developed in the previous section. Monte
Carlo simulations illustrate the analysis for various packet
loss probabilities in Section 6. Finally, conclusions are
given in Section 7.

1.1 Notation
Given a stochastic variable x, Ex denoted its ex-

pected value. E yx denotes that the expected value is
taken with respect to the probability density function of
y. ‖ · ‖ denotes the ℓ2-norm of a vector or the spectral
norm of a matrix. Given a matrix A, its largest singu-
lar value is denoted by γ(A). We denote the element
(i, j) of A with aij and with ai the ith row of A. Given
the matrix B, A ◦ B is the Hadamard (element-wise)
product between A and B. We denote with a � b

and a � b element-wise inequalities. I and 1 denote
the identity matrix and the vector (1, . . . , 1)T , respec-
tively. Let N0 = N ∪ {0}. To keep the notation light,
the time dependence of the variables and parameters is
disregarded when the meaning is clear from the context.

2. PRELIMINARIES
Consider a network of N > 1 nodes located at fixed

positions. We model the network as a weighted graph.
At time t, the graph is G(t) = (V , E), where V = {1, . . . ,
N} is the vertex set and E ⊆ V × V is the edge set. A
weighting function W : E ×N0 → R : (i, j)(t) 7→ gij(t)
assigns a weight to each edge of the graph. The set of
neighbors of node i ∈ V plus node i is denoted as

Ni(t) = {j ∈ V : (j, i) ∈ E} ∪ (i, i) .

Namely, Ni(t) represents the neighbors a node i has,
including itself.

We assume that each node of the network updates its
state zi(t) at time t ∈ N0 by a linear combination of
states and inputs of the neighboring nodes:

zi(t) =
∑

j∈Ni(t)

kij(t)φij(t)zj(t− 1) +
∑

j∈Ni(t)

hij(t)φij(t)uj(t) ,

(2.1)

where kij(t) and hij(t) are weighting coefficients and
φij(t) is a binary random variable describing the packet



loss process:

Pr(φij(t) = ϕij|t = 1) = pij ,

Pr(φij(t) = ϕij|t = 0) = 1 − pij = qij

Pr(φii(t) = ϕii|t = 1) = 1 .

The probability pij denotes the successful packet recep-
tion at the receiver of the link from node i to node j.
Thus a node j is a neighbor of i by sending successfully
(ϕij|t = 1) its state zj(t−1) and input uj(t). Note that
ϕij|t is a realization of the packet loss process φij(t).
Eq. (2.1) can be written for all nodes of the network as

z(t) = (K(t) ◦ Φ(t)) z(t − 1) + (H(t) ◦ Φ(t))u(t) ,
(2.2)

where z(.) ∈ RN , K(t) = [kij ] ∈ RN×N , H(t) = [hij ] ∈
RN×N , and Φ(t) = [ψij(t)] ∈ RN×N .

The difference equations in (2.2) are common in the
area of distributed consensus [5, 10] or distributed es-
timation and data fusion [4, 18, 23]. In particular,
Eq. (2.2) is used in average consensus problems [10, 21],
when H(t) = 0, or when H(t) = I and uij are Gaussian
zero mean i.i.d. random variables [23].

Eq. (2.2) models also consensus-based estimation of
a common scalar signal d(t), where u(t) assumes the
meaning of the input vector of noisy measurements [4,
14, 18]. In these estimators, K(t) is designed such that
the expected estimation error e(t) = z(t) − d(t)1 is
bounded

lim
t→+∞

‖E e(t)‖ ≤ α , (2.3)

where α ≥ 0. It is possible to show that the state con-
verges to a neighborhood of the origin if ((K(t)+H(t)−
I)◦Φ(t))1 = 0 and ‖K(t)◦Φ(t)‖ < 1 for any packet loss
realization [18, 6]. Therefore, accurate estimates can be
achieved by solving the following optimization problem:

min
K(t)

E e(t)T e(t) (2.4)

s.t. ((K(t) + H(t) − I) ◦ Φ(t)) 1 = 0

‖K(t) ◦ Φ(t)‖ ≤ γmax < 1

This optimization problem cannot be solved by a central
coordination unit, because we are assuming that no such
unit is available for the network. Besides, if a central
unit were used, it should have been able to know all
information in the network at each time instant, which
is not possible because of packet losses. Therefore, the
problem must be solved by a distributed strategy.

The objective functions and the first constraint in
problems (2.4) can be easily distributed, since the for-
mer is given by a sum of node’s estimation variance,
whereas the elements of the constraint vector include
only local information. By contrast, the last constraint
is difficult to distribute efficiently among the nodes. One

could use the max-norm or the infinity-norm, which give
simple local conditions to ensure global stability. Un-
fortunately, these norms make the optimization prob-
lem (2.4) infeasible. As a result, to ensure that a matrix
has a bounded norm by local conditions is a challenging
task. We approach this problem in the following.

3. A LIPSCHITZ OPTIMIZATION
PROBLEM

Let us define the set Θϕ
i
= {j 6= i : Ni(t)∪Nj(t) 6= ∅},

for i = 1, . . . , N , where ϕi is a realization at time t of the
process φi(t). The set Θϕ

i
is the collection of commu-

nicating subsystems located at two-hops distance from
the subsystem i, plus the neighbors of i, at time t. Then
we have the following result.

Proposition 3.1 ([18]). Let K = [ki] ∈ R
N×N ,

where ki ∈ R
1×N . Let 0 < γmax < 1. Suppose there

exists a vector x = (x1, x2, . . . , xN )T ≻ 0 , such that

xi +
√
xi

∑

j∈Θϕi

√
xj ≤ γmax , (3.1)

for all i = 1, . . . , N . If ‖ki‖2 ≤ xi, i = 1, . . . , N , then
‖K‖2 = γ(K) ≤ γmax.

This proposition suggests that, given some thresholds
xi > 0 satisfying a set of non-linear inequalities, then
as long as the norms of the rows ki are not above the
thresholds xi, for i = 1, . . . , N , the matrix K is stable.
Obviously, the condition on ‖ki‖2 ≤ xi leaves much
freedom in choosing the single elements in the vector
ki. It can be shown that the estimation cost function
of problem (2.4) decreases as ‖ki‖ increases. Therefore,
we need to solve the following problem:

max
x

1T x (3.2)

s.t. xi +
√
xi

∑

j∈Θϕi

√
xj ≤ γmax i = 1, . . . , N (3.3)

x ≻ 0 .

Such a problem is non-linear and non-convex. Writing
the constraints in the canonical form, it becomes a Lips-
chitz optimization problem [9]. No closed form solution
is available. The solution can be computed via standard
centralized numerical approaches, but the presence of
packet losses introduces a very large delay as informa-
tion must be transmitted from all the nodes to a central
one, which would compute the solution and send it back
to local nodes. We show in the following that by exploit-
ing that the problem is Lipschitz, it is possible to find a
decentralized algorithm to compute the solution to the
problem.



4. OPTIMAL SOLUTION
The distributed computation of the solution of (3.2)

could be performed by parallelization and decomposi-
tion techniques, as in [2]. However, the convergence
speed may be prohibitive, particularly due to the pres-
ence of packet losses.

The fact that in (3.3) the only information from two-
hop neighboring nodes is required, and not of the entire
network, allows us to develop a decentralized algorithm
to compute the optimal solution. This is obtained in
two steps. First we show that the optimal solution sat-
isfies the inequality constraints with equality. Second,
we build on this to distribute the computation among
nodes to obtain the optimal solution. We provide details
in the sequel.

4.1 Equality constraints
In this section, we show that there is a global opti-

mal solution of (3.2) that satisfies the inequality con-
straints (3.3) with equality. In particular we have the
following important result:

Theorem 4.1. Problem (3.2) admits a global opti-
mum x∗, which is the solution of the following set of
nonlinear equations:

x∗i +
√

x∗i
∑

j∈Θϕi

√

x∗j − γmax = 0 , (4.1)

with i = 1, . . . , N and Θϕ
i
= {j 6= i : Ni ∪ Nj 6= ∅}.

Proof. See Appendix A.1.

We use Theorem 4.1 in the next sections to develop a
strategy for the distributed computation of the optimal
solution.

4.2 Distribution of the Computation
From the previous section, we see that the thresholds

required in Proposition 3.1 are the solution of the set of
nonlinear equations (4.1). Unfortunately, an explicit so-
lution is not available. Numerical techniques have to be
used. In the following, we present a quick decentralized
algorithm with guaranteed convergence.

Let y2
i = xi for i = 1, . . . , N . Define the class of func-

tions parameterized in the scalar βi > 0, i = 1, . . . , N ,

fi(y) = yi − βi



y2
i + yi

∑

j∈Θϕi

yj − γmax



 , (4.2)

and let f(y) = (f1(y), . . . , fN(y))T . Note that the solu-
tion y∗ to the system of nonlinear equations y = f(y) is
related to the solution of the system (4.1) by y∗i

2 = ψ∗
i ,

as explained in the proof of Lemma (A.2). When f(y)
is contractive, then it is easy to show that the fixed

point of the mapping y(k + 1) = f(y(k)) is the solu-
tion of (4.1) [2, Pag.191]. Furthermore, the convergence
speed can be tuned at a local node i by the parameter
βi. The following result provides us with the best βi:

Proposition 4.2. Let

β∗
i (k) =

2yi(k) +
∑

j∈Θϕi

yj(k)

∑

j∈Θϕi

y2
j (k) +

(

2yi(k) +
∑

j∈Θϕi

yj(k)
)2 .

(4.3)

Then yi(k + 1) = fi(y(k)) is a contraction map having
the largest convergence speed among the mappings (4.2)
with respect to the 2-norm.

Proof. See Appendix A.2.

From previous proposition, the overall mapping y =
f(y) is a contraction. The component solution method [2,
Pag.187] can be applied, so that the solution of (3.2) is
given by the algorithm

yi(k + 1) = fi(y(k)) . (4.4)

Using the β∗
i (k) given by Proposition 4.2, the mapping

converges quickly. From Monte Carlo simulations, dis-
cussed in Section 6, we observed that the algorithm con-
verges in about 5 − 10 iterations.

4.3 Computation of the Thresholds
The distributed computation of the thresholds xi re-

quires that the neighboring nodes communicate the in-
stantaneous values of the local threshold, until (4.4) con-
verges. Clearly, the thresholds are transmitted over the
same channel used for broadcasting the nodes’ state and
inputs, and thus they are subject to packet losses. These
losses may happen during the phase between the begin-
ning of the iterations (4.4) and the convergence. As a
result, no convergence may be reached. In the following,
we develop a strategy to cope with this problem.

First, notice that the optimization problem is not
sensitive to perturbations of the constraints. In other
words, if x∗ is the solution of the system of non-linear
equations (4.1), then x∗ is not significantly perturbed
by packet losses. We can see this from the proof of The-
orem 4.1, form where we know that the optimal solution
is such that J(x∗)T ξ∗ = 1, with J(x∗) being the Jaco-
bian of the constraints and ξ∗ the Lagrange multipliers
associated to the dual problem of (3.2). Specifically, the
i-th equation of J(x∗)T ξ∗ = 1 is given by

ξ∗i



1 +
1

2
√

x∗i

∑

j∈Θϕi

√

x∗j



+
∑

j∈Θϕi

ξ∗j

√

x∗j

2
√

x∗i
= 1 .

(4.5)

It follows that ξ∗i < 1 for i = 1, . . . , N , because such
a system of equations has positive coefficients, ξ∗ � 0



(for strong duality holds), and the coefficient of ξ∗i in
Eq. (4.5) is strictly greater than 1. Then, ξ∗ < 1 implies
that the optimal solution is not sensitive to perturba-
tions of the constraints [3, pag. 249].

Since a change in the number of two-hops neighbors
of a node, caused by packet losses, can be regarded as
a perturbation of the constraints, we conclude that the
optimal solution of the problem (3.2) is not much sen-
sitive to the packet losses. By this argument, we can
compute just once the optimal solution. In particular,
we assume that the nodes compute the optimal thresh-
olds before the updating (2.1) starts by considering the
maximum number of neighbors. This is accomplished
by using high transmission radio powers and a retrans-
mission protocol that guarantee a successful packet re-
ception. Such a preliminary phase is very short, since
from Proposition 4.2 the computation of the thresholds
according to (4.4) requires few iterations to converge.
During the estimation phase, if the packet loss prob-
ability is very high, the perturbation might be large,
resulting in a significant change of the optimum. How-
ever, simulations reported in Section 6 show that the
solution we adopt for the threshold computation is ro-
bust to rather intense packet losses.

5. APPLICATION: PEER-TO-PEER
ESTIMATION

We show in the following that having a distributed
algorithm for the solution of the Lipschitz optimization
problem (3.2) is instrumental for designing a peer-to-
peer accurate estimator of time-varying signals.

Let us consider the problem of estimating a scalar
signal d(t) from noisy measurements

ui(t) = d(t) + vi(t) , t ∈ N0

for all i = 1, . . . , N . We assume that vi(t) ∼ N (0, σ2)
for all i and that E vi(t)vj(t) = 0 for all t ∈ N0, and
that |d(t) − d(t − 1)| ≤ ∆. We remark here that we do
not assume any model of the signal to track, in contrast
to, e.g., [13]. No central coordination point is present
either, in contrast to [20], since we are interested in
peer-to-peer solutions.

We consider an estimator where each node i computes
an estimate zi(t) of d(t) by taking a linear combination
of its own and of its neighbors’ estimates and measure-
ments, as described in Eq. (2.1). Defining the estimator

error as e(t) = d̂(t) − d(t)1 we have that its dynamics
are described by

e(t) = (K(t) ◦ Φ(t)) e(t− 1) + (H(t) ◦ Φ(t))u(t)

+ (K(t) ◦ Φ(t)) d(t− 1)1− d(t)1 . (5.1)

Under the conditions that ((K(t)+H(t)−I)◦Φ̄(t))1 = 0
for any realization Φ̄(t) of the stochastic process Φ(t),

we obtain

E ve(t) = (K(t) ◦ Φ(t))E ve(t− 1) − δ(t)(K(t) ◦ Φ(t))1 .
(5.2)

To design a minimum variance estimator of d(t) we need
to impose that the estimation error converges, which is
ensured if ‖K(t)‖ ≤ γmax < 1 [6].

The optimal choice of the filter coefficients are given
by solving the optimization problem (2.4). As a conse-
quence of the main results of this paper, Theorem 4.1
and the distributed algorithms described in Section 4,
we can replace the global constraint (2.4) with a lo-
cal one, given by ‖ki ◦ φi‖2 ≤ xi. The value of xi is
obtained by the distributed iterations presented in Sec-
tion 4.3. Therefore, the global optimization problem
can be decomposed into local optimization problems:

min
ki(t),hi(t)

kT
i (t)

(

Pi(t− 1) ◦ (ϕi|tϕ
T
i|t)
)

ki(t)

+ σ2hT
i (t)ϕi|tϕ

T
i|thi(t) (5.3)

s.t.
(

(ki(t) + hi(t))
T ◦ ϕi|t

)

1 = 1

‖ki(t) ◦ ϕi|t‖2 ≤ xi .

where Φ̄(t) is a realization of the packet loss process
Φ(t) and P (t− 1) = E (e(t− 1)− E e(t− 1))(e(t− 1)−
E e(t− 1))T .

The optimization problem 5.3 is a Quadratically Con-
strained Quadratic Problem [3]. It can be numerically
solved efficiently as shown in [6]. Therefore, the optimal
local weights ki(t) and hi(t) that minimize the estima-
tion error variance at each time instant can be computed
locally at each node:

Proposition 5.1. For a given covariance matrix Pi(t−
1) and a realization ϕi|t of φi(t), the values of ki(t) and
hi(t) that minimizes (5.3) are

ki(t) = (5.4)
(

(Pi(t− 1) + λi(t)I) ◦ ϕi|tϕ
T
i|t

)†

ϕi|t

ϕT
i|t

(

(

(Pi(t− 1) + λi(t)I) ◦ ϕi|tϕ
T
i|t

)†

+ σ−2I

)

ϕi|t

,

hi(t) = (5.5)
(

ϕi|tϕ
T
i|t

)†

ϕi|t

σ2ϕT
i|t

(

(

(Pi(t− 1) + λi(t)I) ◦ ϕi|tϕ
T
i|t

)†

+ σ−2I

)

ϕi|t

,

with the optimal Lagrange multiplier

λi(t) ∈
[

0,max
(

0, σ2/
√

|Nϕ
i
|ψi(t) − ℓm(Γi(t− 1))

)]

.

Proof. The proof is similar to the proof of Proposi-
tion III.2 in [18].



Remark 5.2. The modeling of the packet losses by
the Hadamard product allows us to obtain weights hav-
ing a similar form to those we obtained in the case of no
packet loss [18]. However, this result is not a straight-
forward application of [18] because (5.4) and (5.5) are
obtained by exploitation of the Hadamard product and
the Moore-Penrose pseudo-inverse in the computation
of the Lagrange dual function and the KKT conditions.
Therefore, the previous proposition generalizes our ear-
lier result for any given realization of the packet loss
process. In the special case when ϕi|t = 1, namely when
there are no packet losses, we reobtain the result in [18].

Previous proposition provides us with an interval within
which the optimal λi is located. Simple search algo-
rithms can be considered to solve numerically the KKT
condition (ki(t)◦ϕi|t)

T (ki(t)◦ϕi|t)−ψi = 0 for λi, such
as, for example, the bisection algorithm.

We can now summarize the analysis so far developed
and describe the estimator: At time t, node i makes
a measurement ui(t), receives estimates and measure-
ments that neighboring nodes send successfully, and builds
the estimate by Eq. (2.1). In such an equation, node i
uses the coefficients ki(t) and hi(t) given by Proposi-
tion 5.1 and the thresholds x computed by algorithm (4.4)
as descried in Subsection 4.3. We recall that algorithm (4.4)
requires simple calculations, whereas the matrix inver-
sions needed in Proposition 5.1 can be easily computed
either by pre-stored equations or by well-known numer-
ical algorithm [2], by considering that the number of
neighboring nodes is not large.

Performance of the estimator described above is char-
acterized in the next subsection.

5.1 Performance Analysis
In this section we characterize the performance of our

peer-to-peer estimator by investigating the variance of
the estimation error. We have the following results:

Proposition 5.3. For any packet loss realization ϕi|t

of φi(t), the optimal value of ki(t) and hi(t) are such
that the error variance at node i satisfies

E v(e
2
i − E e2i |φi(t) = ϕi|t)

2 <
σ2

|Ni|
.

Proof. See [6].

Notice that previous proposition guarantees that the
instantaneous estimation error in each node is always
upper-bounded by the variance of the estimator that
just takes the averages of the received ui(t).

The previous results can be made more tight and de-
pendent directly on the packet losses by taking the av-
erage over the packet loss distribution. To show this,
we need an intermediate technical result:

0 0.05 0.1 0.15 0.2 0.25 0.3
0.1

0.2

0.3

0.4

0.5

0.6

q

|Ni|

1
−
q|

N
i
|

(1
−
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Figure 1: Eq. (5.9) (which is the second factor of (5.8)
for packet losses i.i.d.) as function of q for increasing
values of |Ni| ranging from 2 to 10. The factor is always
less than 1. The smallest values are achieved when q is
small and |Ni| is large. This is explained by that the
packet loss probability has a decreasing negative effect
when the number of neighbors of a node increases, which
translates into a smaller value of the coefficient.

Lemma 5.4.

Eφ[φT
i φi]

−1 =

|Ni|−1
∑

k=0

χ(k)

k + 1
, (5.6)

where

χ(k) =

(|Ni|−1

k
)

∑

ℓ=1





k
∏

n=1

qis(n) ×
|Ni|−1
∏

m=k+1

pis(m)



 , (5.7)

and the function s : {1, 2, . . . , |Ni|−1} → {1, 2, . . . , |Ni|−
1} is a permutation. Namely the k-th coefficient of the

polynomial is the sum of
(

|Ni|−1
k

)

terms in which there
are k factors qij and |Ni| − 1− k factors pir with j 6= r.

Proof. See [6].

Proposition 5.5. It holds

Eφ E v(e2i − E ve
2
i )

≤ (
√

5 − 1)
√
γmax + 2N

2(
√

5 − 1)
√
γmax + 2N

|Ni|−1
∑

k=0

χ(k)

k + 1
σ2 . (5.8)

Proof. See Appendix A.3.

Observe that the estimation error variance given by
the previous proposition depends on the packet loss prob-
abilities qij , on the maximum number of neighbors for
each node |Ni|, the total number of nodes in the net-
works N , and the largest singular value of the matrix
K(t). The first factor of the coefficient of (5.8) is always
less than 1. The smallest values are achieved when γmax

is large andN small. The second factor in (5.8) depends
clearly on the value attained by the various qij . If we



consider the simple case when qij = q for all i, j, then

|Ni|−1
∑

k=0

χ(k)

k + 1
=

1 − q|Ni|

(1 − q)|Ni|
. (5.9)

This function decreases very fast as the maximum num-
ber of neighbors of a node increases, for all values of
q, as we show in Fig 1. This is rather intuitive, since
as the number of neighbors increases packet losses have
less impact on the estimation and thus better perfor-
mance are achieved. Notice also that the value of the
function (5.9) for q = 0 is 1/|Ni|. Thus in presence
of non-identical packet loss probabilities the degrada-
tion in performance is not remarked. In particular even
when the first factor of (5.8) is very close to 1 with a
packet loss of q = 0.3 we have that the product of the
two coefficients does not exceed 0.65 and it is just 30%
higher than the case when no packet losses are present.

Corollary 5.6. Consider as benchmark the estima-
tor computing the estimates by the instantaneous aver-
age of the available measurements, namely the estima-
tor for which the weights are chosen to be kij = 0 and
hij = 1/|Ni|, for all i = 1, . . . , N , and j ∈ Ni. Then,
limt→+∞ E vei(t) = 0 and the variance is

E φ E ve
2
i = Eφ

σ2

φT
i φi

= σ2

|Ni|−1
∑

k=0

χ(k)

k + 1
. (5.10)

From this corollary we see that the difference in the
expected performance between the proposed estimator,
given by (5.8), and the unbiased estimator that does an
arithmetic average, given by (5.10), is on the first coef-
ficient of (5.8). Clearly, the proposed estimator outper-
forms the latter, since the first factor in (5.8) is always
less than one.

6. SIMULATIONS AND NUMERICAL
RESULTS

In this section we illustrate the theoretical analysis
carried out in the previous sections, and show the ben-
efits of the distributed computation of the Lipschitz op-
timization problem.

An example of the distributed computation as ob-
tained with mapping (4.2) is reported in Fig. 2 for N =
10 nodes, with an average number of 5 neighbors per
node. The algorithm converges quickly. Specifically, we
assumed that convergence is reached when |xi(k + 1)−
xi(k)| ≤ ̟, with ̟ being the desired accuracy. From
Monte Carlo simulations, we observed that the algo-
rithm converges in about 5 − 10 iterations on average
by setting ̟ = 10−8, which is a quite small value if
compared to the order of magnitude of the optimal so-
lution (10−2). We remark that in general the worst case
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Figure 2: Qualitative convergence behavior of the con-
traction mapping (4.2) for N = 10 nodes. The conver-
gence is reached quickly, in this case with less than 6
iterations. The iterations are initialized with 1/N .
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Figure 3: Test signals used to compare performance
with various estimator. The signals are generated
accordingly to di(t) = 3(sin(2πωit/300)) + 10 −
0.5 sin(2πωit/300)(1− exp(−t/300))/(sin(2ωiπt/500) +
1.2) with ω1 = 1, ω2 = 0.5 and ω3 = 0.

convergence behavior is dependent on the average con-
nectivity of the network and it does not depend on the
total number of nodes of the network. The reason is that
the convergence speed is given by the Lipschitz constant
of the mapping (4.2), (see the proof of Proposition 4.2
and [2] for further details). Such a constant depends on
the local connectivity Θϕ

i
, and since 0 ≺ x ≺ 1 regard-

less the number of nodes of the network, it follows that
it can be upper bounded by just a function of the local
connectivity. It is also interesting to observe that pos-
sible rounding errors in the computations have a small
effect since these errors can be modelled by constraints
perturbations, and the Lipschitz optimization problem
investigated in this paper is not sensitive to perturba-
tions, as studied in Section 4.3.

In Fig. 3, we report the test signals d1(t), . . . , d4(t) to
estimate, which are used to assess our estimator. We
compared our estimator with three other solutions. We



considered the estimator that computes the average of
the measurements received at each node (which we de-
fine estimator E1), the estimator that uses Eq. (2.1)
with coefficients given by the weights associated to the
Laplacian of the graph (which we define estimator E2),
and our peer-to-peer estimator (which we define esti-
mator Ep). In the simulations, we set γmax = 0.995,
∆ = 3.25 × 10−2, and σ2 = 1.5. These values are cho-
sen so that the noise variance is very high if compared
to the signal to estimate. The value of ∆ used in the
computation of γmax was considered about 3% larger
then the real value, as to simulate an imperfect a-priori
knowledge on the signal to estimate.

We first considered the case when packet losses are
i.i.d. processes. Fig. 4 shows the Mean Square Error
(MSE) for the three estimators under consideration, E1,
E2 and Ep, for a network with 10 nodes and for four
packet loss probabilities: q = 0%, q = 10%, q = 20%
and q = 30%. As a performance metric, we used the
average and variance over 30 simulation of the relative
MSE:

MSErel =
MSE(Ei) − MSE(Ep)

MSE(Ei)
.

As it can be seen the proposed estimator outperforms
the other ones. We remark that as the packet loss rate
grows, performance of Ep approaches E2, but it is al-
ways better for packet losses below 50%. Notice also
that when the signal is faster then MSE is higher since
∆ is larger.

Fig. 5 shows the estimates computed by 30 nodes for
three different estimators with non-i.i.d. packet loss
probabilities qij = 0%, 10%± 5%, 20%± 5% and 30%±
5%. The first plot shows the actual measurements, the
second shows the estimates computed by estimator E1,
the third plot shows the estimates computed estimator
E2, and the last plot shows the estimates obtained by
our estimator Ep. The simulations reported in Fig. 5
are obtained with qij = 20%± 5% and the signal d2(t),
shown in Fig. 3, has to be tracked. By using our esti-
mator, nodes are able to reconstruct d2(t) with very low
error even in presence of high measurement noise and
with a high packet loss probability. Similar results as
those obtained for the estimation of d2(t) are achieved
for the estimation of d1(t) and d3(t). The difference is
that the quality of the estimator is slightly reduced for
d1(t), as already discussed about Fig. 4. Analogously,
if we had used the signal d3(t), we would have a better
quality of the estimates.

Numerical results obtained when packet losses are non-
i.i.d. random variables are collected in Tab. 1. We
see that our peer-to-peer estimator outperforms signifi-
cantly the other solutions in all considered cases.

We carried out numerical simulations to show how the
distributed solution of the Lipschitz optimization prob-
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Figure 4: Mean Square Error (MSE) performance com-
parison among estimators for various i.i.d. packet loss
probabilities q for a network with N = 10 nodes.
Each plot is associated to one of the three test signals
d1(t), . . . , d3(t), see Fig. 3. The dashed line refers to the
estimator E1, the dashed-dotted line refers to the esti-
mator E2 and the solid line to the proposed estimator
Ep. The vertical bars represent the variance of the MSE
computed for the 20 simulations.



Estimator Type MSErel

Mean Variance Mean Variance Mean Variance Mean Variance

Signal test d1

qij = 0% qij = 10% ± 5% qij = 20% ± 5% qij = 30% ± 5%
Average of measurements (E1) 0.596 0.183 0.628 0.201 0.665 0.214 0.710 0.236
Laplacian based (E2) 0.478 0.161 0.434 0.128 0.452 0.102 0.472 0.083
Proposed Estimator (Ep) 0.277 0.045 0.295 0.048 0.323 0.065 0.362 0.081

Signal test d2

qij = 0% qij = 10% ± 5% qij = 10% ± 5% qij = 10% ± 5%

Average of measurements (E1) 0.596 0.146 0.628 0.159 0.665 0.177 0.709 0.201
Laplacian based (E2) 0.414 0.167 0.431 0.128 0.449 0.102 0.469 0.082
Proposed Estimator (Ep) 0.214 0.077 0.215 0.058 0.226 0.042 0.260 0.067

Signal test d3

qij = 0% qij = 10% ± 5% qij = 10% ± 5% qij = 10% ± 5%

Average of measurements (E1) 0.596 0.149 0.631 0.167 0.667 0.178 0.711 0.193
Laplacian based (E2) 0.415 0.159 0.432 0.119 0.449 0.097 0.469 0.076
Proposed Estimator (Ep) 0.098 0.041 0.087 0.049 0.126 0.044 0.174 0.045

Table 1: Comparison of the performance of the proposed estimator with two other estimators, the Laplacian based
and the Average, in a network with 30 nodes. The first one uses fixed weights which are associated to the Laplacian
of the graph, the second uses K(t) = 0 and all the weights in H(t) equal to 1/|Ni|. We compare the estimators under
various packet loss conditions and for the three different test signals of Fig. 3.
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Figure 5: Comparison between the measurements taken
by N = 30 nodes about the signal d(t), shown in thin
dashed red line, and the estimate computed by the es-
timator discussed in Section 5.

lem (3.2) guarantees γ(K(t) ◦ Φ(t)) ≤ γmax in the esti-
mation problem of Section 5. Simulations are referred to
non-i.i.d. packet loss probabilities qij = 0%, 10% ± 5%,
20%±5% and 30%±5% for a network of N = 30 nodes.
Fig. 6 shows the maximum value of γ(K(t)◦Φ(t)). Such
a value is the maximum obtained in 30 Monte Carlo
simulations, in which the network topology was main-
tained constant, but with difference realizations of mea-

surement noise and packet loss process. The values of
γ(K(t) ◦ Φ(t)) is always below the limit γmax (dashed
line), for various packet losses probabilities. The gap
between the value γmax and the actual value of γ(K(t)◦
Φ(t)) is mainly caused by that the condition (4.1) is de-
rived without using any a-priori knowledge on the net-
work topology, which yields a conservative bound.

7. CONCLUSIONS AND FUTURE WORK
We presented a novel strategy for the distributed com-

putation of the solution of a Lipschitz optimization prob-
lem. Specifically, we showed that the problem arises
peer-to-peer consensus based estimation, where the net-
work lacks of central coordination.

We showed that the optimization problem is very use-
ful for decentralized tracking of time-varying signals.
Our approach allows designing an estimator that runs
locally in each node of the network and that does not
require a central processing unit. Numerical results il-
lustrate the validity of our analysis.

Future work will be devoted to the extension of the
method presented here to problems for distributed re-
source control in wireless communication systems.
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APPENDIX
A.1 Proof of Theorem 4.1

To prove Theorem 4.1, we need some intermediate
technical results:

Lemma A.1. Problem (3.2) admits a non-trivial fea-
sible solution xℓ = (xℓ

1, . . . , x
ℓ
i , . . . , x

ℓ
N )T ≻ 0 where

xℓ
i =

γmax

4

(√

|Θϕ
i
|2 + 4 − |Θϕ

i
|
)2

i = 1, . . . , N .

(A.1)

Proof. See [6].

This lemma is useful, because it allows us to establish
the existence of an optimal solution:

Lemma A.2. Problem (3.2) admits an optimal solu-
tion x∗, which is the solution of the following set of
nonlinear equations:

x∗i +
√

x∗i
∑

j∈Θϕi

√

x∗j − γmax = 0 i = 1, . . . , N .

Proof. The proof is based on a useful rewriting of
the optimization problem and by a reductio ad absurdum
argument.

Let y2
i = xi for i = 1, . . . , N . Then, the optimization

problem (3.2) can be rewritten as follows

max
y

yT y (A.2)

s.t. y − f(y) � 0 (A.3)

y ≻ 0 .

where f(y) = (f1(y), . . . , fN (y))T and

fi(y) = yi − β



y2
i + yi

∑

j∈Θϕi

yj − γmax



 ,

with β being any positive scalar. This problem and (3.2)
are obviously equivalent: for all β > 0, S(x) � 0 if and
only if y − f(y) � 0. Let y∗ be an optimal solution
of (A.2), then x∗i = y∗i

2. Problem (A.2) admits optimal
solutions, since from Lemma A.1 the problem is feasi-
ble. We show next that the optimal solutions satisfy the
constraints at the equality.

Let y∗ be an optimal solution. Suppose by contra-
diction that there is constraint i that is satisfied at a
strict inequality, namely y∗i < fi(y

∗), while suppose
y∗j ≤ fj(y

∗) for i 6= j. In the following, we show that
from y∗ we can construct a feasible solution t∗ such that
t∗T t∗ > y∗Ty∗, so that it is not possible that y∗ be an
optimal solution.

Since β is arbitrary, we can select a convenient value
that makes the Lipschitz constant of the constraints
small enough so that we can construct a feasible so-
lution t∗ such that t∗T t∗ > y∗Ty∗, as we show later.
Let

β ≤ β̄ < min
0≺y�1

1

2yi +
∑

j∈Θϕi

yj

=
1

2 + Θϕ
i

.

This choice of β makes fi(y) being an increasing func-
tion of yi, and a decreasing function of yj , for j 6= i.
Indeed

∇ifi(y
∗) = 1 − β



2y∗i +
∑

j∈Θϕi

y∗j



 > 0 ,

∇jfi(y
∗) =

{

−βy∗i < 0, if j ∈ Θϕ
i

0, if j /∈ Θϕ
i
, j 6= i

and ∇2
i fi(y

∗) = −2β < 0, ∇2
jfi(y

∗) = 0 if j 6= i. Let

v ∈ R
N such that vi ∈ (0, 1]. We have

fi(v) =fi(y
∗) + ∇fi(y

∗)(v − y∗)T

+
1

2
(v − y∗)T∇2fi(y

∗)(v − y∗) , (A.4)

because the third order derivatives are zero. Then, we
chose a small positive scalar 0 < ε ≤ fi(y

∗)−y∗ so that
v be an augmented vector of y∗, with vi = ε+ y∗i , vj =
y∗j for j = 1, . . . , N , j 6= i, and vi = y∗i + ε ≤ fi(y

∗) <
fi(v). The last inequality is allowed by that fi(y) is an
increasing function of yi. From (A.4) it follows

fi(v) = fi(y
∗) + ∇ifi(y

∗)ε+
1

2
ε2∇2

i fi(y
∗)

= fi(y
∗) +



1 − β



2y∗i +
∑

j∈Θϕi

y∗j







 ε− βε2

, fi(y
∗) + ∆fi ,

fj(v) = fj(y
∗) + ∇ifj(y

∗)ε+
1

2
ε2∇2

i fj(y
∗)

= fj(y
∗) − βy∗j ε , fj(y

∗) − ∆fj if j ∈ Θϕ
i
,

fℓ(v) = fℓ(y
∗) otherwise .

By using ε and ∆fj , j 6= i, we can define a vector t∗

such that t∗i = y∗i + ε, t∗j = y∗j − ∆fj if j ∈ Θϕ
i
, and

t∗ℓ = y∗ℓ otherwise. Notice that f(v) � f(t∗) since t∗ �
v. The solution t∗ is feasible for problem (A.2), namely
t∗ � f(t∗), because t∗i = y∗i + ε = vi ≤ fi(v) ≤ fi(t

∗),
t∗j = y∗j − ∆fj ≤ fj(y

∗) − ∆fj = fj(v) ≤ fj(t
∗) if

j ∈ Θϕ
i

and t∗ℓ = y∗ℓ ≤ fℓ(y
∗) = fℓ(t

∗) if ℓ 6= i and



l /∈ Θϕ
i
. Now, observe that

t∗
T
t∗ − y∗T

y∗ = ε2 +

N
∑

j∈Θϕi

∆f2
j + 2y∗i ε+ 2

N
∑

j∈Θϕi

y∗j ∆fj

=ε2 + β2ε2
∑

j∈Θϕi

y∗j
2 + 2y∗i ε− 2βε

∑

j∈Θϕi

y∗j
2 .

The last right-hand side of previous equation is always
positive, provided that one chooses

ε <
2β
∑

j∈Θϕi

y∗j
2

1 + β2
∑

j∈Θϕi

y∗j
2 .

This implies that t∗T t∗ > y∗Ty∗, namely that t∗ is a
feasible solution of (A.2) with higher cost function than
y∗, which is a contradiction because y∗ was assumed to
be an optimal solution. It follows that optimal solutions
must satisfy all the constraints at the equality.

The previous lemma guarantees that there are optimal
solutions satisfying the constraints at the equality. How-
ever, we do not know yet if there is a global optimal
solution. If there were multiple optimal solutions, we
would have to chose the most fair for all nodes. Recall
that a small x∗i means smaller estimation quality. To es-
tablish the uniqueness of the optimal solution, we need
the following lemma, which will be used for the proof of
Theorem 4.1:

Lemma A.3. Let J(x) = ∇S(x) be the Jacobian of
S(x). Then J(x) is a nonsingular matrix.

Proof. See [6].

We are now in the position of proving Theorem 4.1.
From Lemma A.2, we know that there is an optimal
solution satisfying the constraints at the equality. We
show next that such a solution is unique, thus proving
Theorem 4.1.

Proof of Theorem 4.1. The proof of the unique-
ness of the optimal solution is based on the Lagrange
dual theory. First, observe that from Lemma A.2 the
optimization problem admits optimal solutions. The op-
timization problem is non-convex, since the constraints
(3.3) are not convex. The Lagrange dual theory for
non-convex non-linear optimization problems can be ap-
plied. A qualification constraint from [9, pag. 25] states
that strong duality holds if the optimization problem
is feasible and the Jacobian of S(x) is non-singular,
which we know from Lemma A.1 and Lemma A.3, re-
spectively. Therefore, the optimal solution of the prob-
lem can be investigated via the Lagrange dual function
L(ξ,x) = −xT 1 + ξTS(x), where ξ � 0 is the La-
grangian multiplier. From the KKT conditions it fol-
lows that J(x)T ξ = 1. We see that previous equality

trivially holds also for the optimal solution x∗, namely
J(x∗)T ξ∗ = 1. From Lemma A.3, we know that the Ja-
cobian is non-singular. It follows that there is a unique
solution to the previous system of equations, namely
ξ∗ = J(x∗)−T1, and since strong duality holds, we
conclude that the optimal solution given by (4.1) is
unique.

A.2 Proof of Proposition 4.2
Given y ∈ R

N and z ∈ R
N such that yi ∈ (0, 1] and

zi ∈ (0, 1], from the proof of Lemma A.2 we have that

fi(z) =fi(y) + ∇fi(y)(z − y)T +
1

2
(z − y)T∇2fi(y)

× (z − y) ≤ fi(y) + ∇fi(y)(z − y)T , (A.5)

because the third order derivatives of fi(y) are zero,
whereas ∇2fi(y) � 0 ∀βi > 0. It follows that

‖fi(z) − fi(y)‖2 ≤ ‖∇fi(y)‖2‖z− y‖2 ,

where

‖∇fi(y)‖2
2 =



1 − βi



2yi +
∑

j∈Θϕi

yj









2

+ β2
i

∑

j∈Θϕi

y2
j ,

It is evident that ‖∇fi(y)‖ is the Lipschitz constant of
the mapping yi = fi(y). The value of βi that minimizes
the Lipschitz constant, while keeping such a constant
strictly less than 1, maximizes the convergence speed
of the mappings (4.2). Simple algebraic computations
show that (4.3) is such an optimal value.

A.3 Proof of Proposition 5.5
By using the filter weights given by Proposition 5.1,

the i-th component of the expectation of (5.1) can be
upper bounded as follows:

Eφ E v(e2i − E ve
2
i ) (A.6)

≤ Eφ

σ2

φT
i

(

(P(t− 1) + λi(t)I) ◦ φiφ
T
i

)†

φi + φT
i φi

.

The previous inequality follows from that the expec-
tation is taken on a positive argument having a posi-
tive distribution, thus the sign of the argument is main-
tained [8, pag.392]. From Lemma V.2 in [6] it follows

φT
i

(

(P(t − 1) + λi(t)I) ◦ φiφ
T
i

)†

φi

≥ φT
i φi

[

σ2

(

1 +
2N

(
√

5 − 1)
√
γmax

)]−1

.

By using previous inequality in (A.6), we have

Eφ E v(e2i−E ve
2
i ) ≤

(
√

5 − 1)
√
γmax + 2N

2(
√

5 − 1)
√
γmax + 2N

Eφ

σ2

φT
i φi

.

The proposition follows by invoking Lemma 5.4.
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