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Remote State Estimation With Smart Sensors
Over Markov Fading Channels

Wanchun Liu , Daniel E. Quevedo , Yonghui Li , Karl Henrik Johansson , and Branka Vucetic

Abstract—We consider a fundamental remote state esti-
mation problem of discrete-time linear time-invariant (LTI)
systems. A smart sensor forwards its local state estimate
to a remote estimator over a time-correlated multistate
Markov fading channel, where the packet drop probability
is time-varying and depends on the current fading channel
state. We establish a necessary and sufficient condition
for mean-square stability of the remote estimation error
covariance in terms of the state transition matrix of the LTI
system, the packet drop probabilities in different channel
states, and the transition probability matrix of the Markov
channel states. To derive this result, we propose a novel
estimation-cycle based approach and provide new elemen-
twise bounds of matrix powers. The stability condition is
verified by numerical results and is shown more effective
than existing sufficient conditions in the literature. We ob-
serve that the stability region in terms of the packet drop
probabilities in different channel states can either be con-
vex or nonconvex depending on the transition probability
matrix of the Markov channel states. Our numerical results
suggest that the stability conditions for remote estimation
may coincide for setups with a smart sensor and with a
conventional one (which sends raw measurements to the
remote estimator) though the smart sensor setup achieves
a better estimation performance.

Index Terms—Estimation, Kalman filtering, linear sys-
tems, Markov fading channel, mean-square error (mse), sta-
bility.

I. INTRODUCTION

A. Motivation

IN THE long-term evolution of wireless applications
from conventional wireless sensor networks to the
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Internet-of-Things (IoT) and the Industry 4.0, remote estimation
is a key component [1]–[4]. Driven by Moore’s law, the accel-
erated development and adoption of smart sensor technology
enables low-cost sensors with high computational capability [5].
Thus, in a number of remote estimation applications, it is practi-
cal to use smart sensors (e.g., with Kalman filters) to pre-estimate
the dynamic states and then send the estimated states rather than
the raw measurements to the remote estimator. In the presence of
communication constraints, the smart sensors provide better es-
timation performance than the conventional sensors that purely
send raw measurement data to the remote estimator [6].

Unlike wired communications, wireless communications are
unreliable and the channel status varies with time due to multi-
path propagation and shadowing caused by obstacles affecting
the wave propagation. The transition process of the fading chan-
nel states is usually modeled as a Markov process [7]–[9], and
different channel states lead to different packet drop probabilities
of transmissions. The presence of an unreliable wireless com-
munication channel degrades the estimation performance and, in
some cases, even lead to instability. Whilst stability when using
conventional sensors has been well investigated, see literature
survey below, stability when using a smart sensor has been much
less considered. In this article, we tackle the fundamental prob-
lem: What are the necessary and sufficient conditions on system
parameters that ensure stochastic stability of a smart sensor
based remote estimation system over a Markov fading channel?

B. Related Works

The existing work on remote estimation can be divided into
two categories based on the sensor’s computational capability.

In the conventional sensor scenario, the sensor sends raw
measurements to the remote estimator. When considering a
static wireless channel, where neither the transceivers nor the
wireless environment are moving, the packet drop probability
during the remote estimation process remains fixed; so the packet
arrival process is a Bernoulli process. It was proven in [10]
that there exists a critical packet drop probability such that
the mean estimation error covariance is bounded for all initial
conditions and diverges for some initial condition if the packet
drop probability is less or greater than the critical probability,
respectively. This result was further extended to a scenario with
random packet delays in [6]. By modeling the packet arrival
process as a Markovian binary switching process, sufficient
conditions for stability in the sense of peak covariance were
obtained in [11] and [12]. For situations where the number
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of consecutive packet dropouts constitutes a bounded Markov
process, peak covariance stability was investigated in [13].
By modeling the sequence of packet dropouts as a stationary
finite-order Markov process, a necessary and sufficient stability
condition was obtained in the sense of mean estimation error
covariance in [14]. In contrast to [11]–[14], which directly model
packet dropouts as a Markovian process and abstract away the
underlying wireless channel, Markovian fading channel states
were explicitly considered in [15]. A sufficient condition for
exponential stability was derived by using stochastic Lyapunov
functions. With the same multistate Markov channel model
as [15], optimal transmit power allocation policy under different
channel conditions was proposed in [16] to achieve the minimum
remote estimation error.

More recently, closed-loop control systems over multistate
Markov channels were investigated in [17]–[19]. Under an ideal
assumption of perfect sensor measurements, a necessary and
sufficient stability condition was obtained in [17], where the
sensor and the controller were colocated; a sufficient stability
condition of a half-duplex control system was obtained in [18],
where the controller applied a scheduling policy determining
when to receive the sensor’s packet or to transmit a control packet
to the actuator. In [19], sufficient stability conditions in terms of
maximum allowable transmission interval of a nonlinear system
was investigated. The work [20] focused on bit-rate limited
error-free communication channels, where the number of bits
to be transmitted in each time slot formed a Markov chain.
By combining results from quantization theory with insights
from Markov jump linear systems, [20] examined how the
quantization errors induced by finite-bit quantizers affect the
control and estimation quality.

In the smart sensor scenario, an estimator (e.g., based on
a Kalman filter) of the sensor side preprocesses the raw mea-
surements, such that an estimate is transmitted to the remote
estimator over the wireless channel. It has been rigorously
proved in [6] that smart sensor scenario performs better than
the conventional sensor scenario when taking into account the
transmission delay and failures. However, unlike the conven-
tional sensor based scenario, most of the theoretical research on
smart sensor based remote estimation considered static chan-
nels and assumed independent and identically distributed (i.i.d.)
packet dropouts [6], [21]–[28]. In [6], a necessary and sufficient
condition for remote estimation stability was derived in the
mean-square sense. In [21], an optimal sensor power scheduling
policy under a sum power constraint was obtained. In [22],
the optimal transmission scheduling policy of two sensors each
measuring the state of one of the two systems was obtained in a
closed form, where the sensors shared a single wireless channel.
This work was extended to a multisensor multichannel scenario
in [23], where the optimal transmission schedule policy was
obtained by solving a Markov decision process problem. In [24],
an optimal event-triggered transmission policy of a multisensor
multichannel remote estimation system was proposed with a
combined design target: the estimation error and the energy
consumption of sensor transmissions.

In addition, optimal smart sensor transmission scheduling
policies for single and multiple wireless channel scenarios were

investigated under the presence of jamming attacks in [25]
and [26], respectively; an optimal transmission scheduling pol-
icy under the presence of an eavesdropper was proposed in [27]
to minimize the remote estimation error at the dedicated receiver
while keeping the eavesdropper’s estimation error as large as
possible.

More recently, a remote estimation system with retransmis-
sions was proposed in [28], where the smart sensor can decide
whether to retransmit the unsuccessfully transmitted local esti-
mate (with a longer latency) or to send a new estimate (with a
lower reliability). The obtained optimal retransmission schedul-
ing policy found the optimal balance between the transmission
latency and reliability on the remote estimation performance.

C. Contributions

In this article, we investigate mean-square stability of smart
sensor based remote estimation over an error-prone multi-
state time-homogeneous Markov channel. The M -state fading-
channel model under consideration introduces an unbounded
Markov chain in the analysis of the remote estimation system,
which presents some nontrivial challenges. The main contribu-
tions are summarized as below.

1) We derive a necessary and sufficient condition on the
stability of a remote state estimation system in terms of the
system matrixA, the packet drop probabilities in different
channel states{d1, . . . , dM} and the matrix of the channel
state transitions M. The remote state estimation is mean-
square stable if and only ifρ2(A)ρ(DM) < 1, whereρ(·)
denotes the spectral radius, and D is the diagonal matrix
generated by {d1, . . . , dM}.

2) We derive asymptotic upper and lower bounds of the
estimation error function in terms of the number of con-
secutive packet dropouts i, which are in the same order
of (ρ(A) + ε)i and ρi(A), respectively, where ε is an
arbitrarily small positive number.

To obtain these results, we propose a novel estimation-cycle
based analytical approach. Moreover, we further develop the
asymptotic theory of matrix power, which provides new ele-
mentwise bounds of matrix powers.

D. Outline and Notations

The remainder of this article is organized as follows. Section II
presents the model of the remote estimation system using a
Markov fading channel. Section III presents and discusses the
main results of the article. Section IV proposes a stochastic
estimation-cycle based analysis approach and derives some ele-
mentwise bounds of matrix powers. They are used in Section V
to prove the main results. Section VI numerically evaluates the
performance of the remote estimation system and verifies the
theoretical results. Section VII draws conclusions.

Notations: Sets are denoted by calligraphic capital letters,
e.g., A. A\B denotes set subtraction. Matrices and vectors are
denoted by capital and lowercase upright bold letters, e.g., A
and a, respectively. |A| denotes the cardinality of the set A.
E[A] is the expectation of the random variable A. (·)� is the
matrix transpose operator. ‖v‖1 is the sum of the vector v’s
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Fig. 1. Remote state estimation system.

elements. |v| �
√
v�v is the Euclidean norm of a vector v.

Tr(·) is the trace operator. diag{v1, v2, . . ., vK} denotes the
diagonal matrix with the diagonal elements {v1, v2, . . ., vK}.
N and N0 denote the sets of positive and nonnegative integers,
respectively. Rm denotes the m-dimensional Euclidean space.
ρ(A) is the spectral radius ofA, i.e., the largest absolute value of
its eigenvalues. [u]B×B denotes theB ×B matrix with identical
elements u. [A]j,k denotes the element at the jth row and kth
column of a matrixA. {v}N0

denotes the semi-infinite sequence
{v0, v1, . . .}.

II. SYSTEM MODEL

We consider a basic system setting wherein a smart sensor pe-
riodically samples, pre-estimates, and sends its local estimation
of a dynamic process to a remote estimator through a wireless
link affected by random packet dropouts, as illustrated in Fig. 1.

A. Process Model and Smart Sensor

The discrete-time linear time-invariant (LTI) model is given
as (see, e.g., [6], [21], and [29])

xt+1 = Axt +wt,

yt = Cxt + vt (1)

where xt ∈ Rn is the process state vector, A ∈ Rn×n is the
state transition matrix, yt ∈ Rm is the measurement vector of
the smart sensor attached to the process, C ∈ Rm×n is the mea-
surement matrix, andwt ∈ Rn andvt ∈ Rm are the process and
measurement noise vectors, respectively. We assume thatwt and
vt are i.i.d. zero-mean Gaussian processes with corresponding
covariance matrices W and V, respectively. In this article, we
focus on the stability condition of the remote estimation of the
process xt in the sense of average remote estimation mean-
square error (mse). Note that if ρ2(A) < 1, then the covariance
of xt is always bounded, and stability will trivially be satisfied.
Thus, as commonly done in this context, in the sequel, we focus
on the more interesting case with ρ2(A) ≥ 1 indicating that the
plant state grows up exponentially fast.

Note that, in practice, feedback control of open-loop un-
stable LTI systems with Gaussian noise always requires

sensors with unbounded measurement range and adaptive
zooming-in/zooming-out measurement range have been widely
adopted [30]. Beyond the idealized situation of LTI systems, sys-
tem models with exponentially growing modes are also obtained
through linearization at unstable equilibria; see, for example, the
Pendubot system in [27] and references therein.

Since the sensor’s measurements are noisy, a smart sensor is
used to estimate the state of the process xt. For that purpose,
a Kalman filter [21], [29] is used, which gives the minimum
estimation mse, based on the current and previous raw measure-
ments

xs
t|t−1 = Axs

t−1|t−1 (2a)

Ps
t|t−1 = APs

t−1|t−1A
� +W (2b)

Kt = Ps
t|t−1C

�(CPs
t|t−1C

� +V)−1 (2c)

xs
t|t = xs

t|t−1 +Kt(yt −Cxs
t|t−1) (2d)

Ps
t|t = (I−KtC)Ps

t|t−1 (2e)

where I is the m×m identity matrix, xs
t|t−1 is the prior state

estimate, xs
t|t is the posterior state estimate at time t, and Kt

is the Kalman gain. The matrices Ps
t|t−1 and Ps

t|t represent
the prior and posterior error covariance at the sensor at time t,
respectively. The first two equations above present the prediction
steps while the last three equations correspond to the updating
steps [31]. Note thatxs

t|t is the output of the Kalman filter at time
t, i.e., the prefiltered measurement of yt, with the estimation
error covariance Ps

t|t.
Assumption 1 ([6], [21]–[24], [29]): (A,C) is observable

and (A,
√
W) is controllable, i.e., the matrix concatenations

[C�,A�C�, . . . , (An)�C�] and [
√
W,A

√
W, . . . ,An

√
W]

are of full rank.
Using Assumption 1, the local Kalman filter of system (1) is

stable, i.e., the error covariance matrix Ps
t|t converges to a finite

matrix P̄0 as the time index t goes to infinity [31]. In the rest
of the article, we assume that the local Kalman filter operates in
the steady state [6], [21]–[24], [29], i.e., Ps

t|t = P̄0. Further, to
simplify notation, the sensor’s estimation xs

t|t shall be denoted
by x̂s

t .
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B. Wireless Channel

The main characteristic of the wireless fading channel is
that the channel quality is a time-varying random process that
changes over time in a correlated manner [7]–[9]. We consider
a finite-state time-homogeneous Markov block-fading chan-
nel [7]. It is assumed that the channel power gain ht > 0 remains
constant during the tth time slot but may change slot by slot. We
assume that the Markov channel has M states, i.e.,

ht ∈ B � {b1, . . ., bM}.
The transition probability from state i to state j is time-
homogeneous and given by

pi,j � Prob [ht+1 = bj |ht = bi] , ∀i, j ∈ M, t ∈ N0 (3)

where M � {1, . . . ,M}. The matrix of channel state transition
probability is given as

M �

⎡
⎢⎢⎣
p1,1 · · · pM,1

...
. . .

...

p1,M · · · pM,M

⎤
⎥⎥⎦ . (4)

We assume that all the channel states are aperiodic and positive
recurrent. Thus, the Markov chain induced byM is ergodic [32].

We assume that the channel state information is available at
both the sensor and the remote estimator, which can be achieved
by standard channel estimation and feedback techniques; see,
e.g., [33] and the references therein. Let γt = 1 and γt = 0
denote the successful and failed packet detection of the remote
estimator during time slot t, respectively. The packet drop prob-
ability in channel state bi is

di � Prob [γt = 0|ht = bi] , ∀i ∈ M, t ∈ N0. (5)

Note that the transmission is always perfect if di = 0, ∀i ∈ M,
while no information-carrying packet is delivered to the remote
estimator if di = 1, ∀i ∈ M. We define the packet drop proba-
bility matrix as

D � diag{d1, d2, . . . , dM}. (6)

Example 1: Suppose that the Markov channel has only two
states, where the channel power gains, i.e., the effective signal-
to-noise ratios (SNRs), are b1 = 300 and b2 = 250. Assume the
estimate-carrying packet has ζ = 200 symbols and each symbol
carries R = 8 b information. The minimum achievable packet
drop rate is [34]

ε ≈ Q

(√
ζ

ν
(C −R)

)
(7)

where Q(x) = 1
2π

∫∞
x exp(−u2

2 )du

C = log2 (1 + h) , ν = h
2 + h

(1 + h)2
(log2 e)

2

and h is the SNR and e is the Euler’s number. Taking b1, b2, ζ,
and R into (7), the packet drop probabilities are d1 = 0.0039
and d2 = 0.2584.

In practice, the sensor can send a known sequence of symbols
(called a pilot or channel training sequence) to the receiver,

which can then estimate the channel power gain [35]. For the
packet error probability at a certain channel condition, accurate
value can be obtained by Monte Carlo simulation, i.e., sending a
large sequence of packets to the receiver and calculate the ratio
of failed packets.

C. Remote Estimation and Stability Criteria

The smart sensor sends its local estimate x̂s
t to the remote

estimator at every time slot. Each packet transmission has a unit
delay that is equal to the sampling period of the system. For
the considered fading model, packets may or may not arrive
at the receiver due to the random packet dropouts. To account
for packet transmission delays and the failures, the remote
estimation of the current system states is based on the previ-
ously detected information packet. The optimal remote estimator
in the sense of minimum mean-square error can be obtained
as [6], [22]

x̂t =

{
Ax̂t−1, γt−1 = 0

Ax̂s
t−1, γt−1 = 1.

(8)

Assuming a packet was successfully received at time t′,
and the following transmission consecutively failed for δ ≥ 1
times before the current time t, i.e., t = t′ + δ + 1, from (8), it
can be obtained that x̂t′+1 = Ax̂s

t′ , x̂t′+2 = A2x̂s
t′ , and x̂t =

x̂t′+δ+1 = Aδ+1x̂s
t′ . Thus, (8) can be uniformly written as

x̂t = Aδt+1x̂s
t−(δt+1) (9)

where δt ∈ N0 is the number of consecutive packet dropouts
before time slot t. In other words, (δt + 1) can be treated as the
age-of-information (AoI) of the remote estimator in time slot
t [36].

Then, the estimation error covariance is given as

Pt � E
[
(x̂t − xt)(x̂t − xt)

�] (10)

= v(δt+1)(P̄0) (11)

where (11) is obtained by substituting (9) and (1) into (10) and
with

v(X) � AXA� +W (12)

v1(·) � v(·), vm+1(·) � v(vm(·)), m ≥ 1.

Thus, the quality of the remote estimation error in time slot
t can be quantified via Tr(Pt). We introduce the following
function:

c(i) � Tr
(
vi(P̄0)

)
, ∀i ∈ N. (13)

From (11), we can write

Tr (Pt) � c(δt + 1). (14)

Since Pt is a countable stochastic process taking value from a
countable infinity set

{v1(P̄0), v
2(P̄0), . . . }

it will grow during periods of consecutive packet dropouts when
ρ(A) ≥ 1. Since periods of consecutive packet dropouts have
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unbounded support, at best, one can hope for some type of
stochastic stability. In the present article, our focus is on the
mean-square stability.

Definition 1 (Mean-Square Stability): The remote estimation
system is mean-square stable if and only if the average estimation
mse J is bounded, where

J � lim sup
T→∞

1

T

T∑
t=1

E [Tr (Pt)] (15)

and lim supT→∞ is the limit superior operator.
Note that establishing necessary and sufficient stability con-

ditions is nontrivial as we consider correlated fading-channel
model in the remote estimation system which induces a count-
able (and unbounded) Markov chain in the analysis. Some of the
existing works adopt stochastic Lyapunov functions to elucidate
such situations (see, e.g., [15]). These, however, merely lead to
sufficient conditions.

III. MAIN RESULTS

In this section, we present and discuss the main results of the
article, which will be proved in Section V.

A. Necessary and Sufficient Stability Condition

Theorem 1: Let Assumption 1 hold. The remote estimation
system described by (1), (2), and (9) is mean-square stable over
the Markov channel defined by (4) and (6) if and only if the
following condition holds:

ρ2(A)ρ (DM) < 1. (16)

Theorem 1 shows that the stability condition depends on the
system matrix A, the packet drop probability matrix D, and
the matrix of the channel state transitions M. It is important to
note that the necessary and sufficient condition is determined by
both the spectral radiuses of A and the product of two matrices
D and M. Since ρ(A) measures how fast the dynamic process
varies, ρ(DM) can be treated as an effective measurement of
the Markov channel quality.

Remark 1: In [15, Corollary 1], a sufficient condition in terms
of exponential stability of a conventional-sensor based remote
estimation system over Markov channel is obtained as

ρ̃2(A)max
i∈M

⎧⎨
⎩

M∑
j=1

pijdj

⎫⎬
⎭ < 1 (17)

where ρ̃(A) is the largest singular value ofA. Using the Perron–
Frobenius theorem [37], we have maxi∈M{∑M

j=1 pijdj} >
ρ(MD) = ρ(DM). In addition, due to the fact that the largest
singular value is no smaller than the spectral radius, i.e., ρ̃(A) ≥
ρ(A), it can be proved that the sufficient condition (17) is more
restrictive than (16).

Corollary 1 (Special Case I): Consider the same assumption
and system model in Theorem 1. For the special case of i.i.d.
packet dropout channel with packet dropout probability d, the
remote estimation system is mean-square stable if and only if

the following condition holds:

ρ2(A)d < 1. (18)

Remark 2: For the special case of i.i.d. packet dropouts, our
stability condition obtained from Theorem 1 is identical to the
conventional result in [6].

Corollary 2 (Special Case II): Consider the same assumption
and system model in Theorem 1. For the special case of Marko-
vian packet dropout channel with packet dropout probability
d1 = 0 and d2 = 1 and the channel state transition matrix

M =

[
p11 p12

p21 p22

]

the remote estimation system is mean-square stable if and only
if the following condition holds:

ρ2(A)p22 < 1. (19)

Remark 3: For the Markovian on–off channel considered in
Corollary 2, it is interesting to see that the stability condition
only depends on one element of the 2-by-2 matrix M, which is
the state transition probability from the bad state to the bad state.

We would like to compare our result with the one obtained
in [11], which considered a conventional sensor scenario. In [11,
Theorem 2], a necessary stability condition is obtained as

ρ2(A)min{p22, (1− p12)} < 1 (20)

which is less restrictive than our current result (19).

B. Upper and Lower Bounds of the Estimation
Error Function

A pair of asymptotic upper and lower bounds of the estimation
error function are given below.

Proposition 1 (Asymptotic Upper Bound of the Estimation-
Error Function): For any ε > 0, there exists N > 0 and κ > 0
such that

c(i) < κ
(
ρ2(A) + ε

)i
, ∀i > N.

Proposition 2 (Asymptotic Lower Bound of the Estimation-
Error Function): There exists a constantN > 0 and η > 0 such
that c(i) ≥ η(ρ(A))2i, ∀i > N .

Propositions 1 and 2 show that when a large number of consec-
utive packet dropouts occur, i.e., i � 1, the remote estimation
error is upper and lower bounded by exponential functions in
terms of i.

Remark 4: It can be observed that the estimation-error func-
tion c(i) grows as exponentially fast as ρ2i(A).

IV. ANALYSIS OF THE AVERAGE ESTIMATION MSE

In this section, we first investigate an estimation-cycle based
performance analysis approach of the remote state estimation
and then develop new elementwise bounds of matrix powers.
The results and technical lemmas obtained in this section will
be used for the proofs of the main results of the article.

As it is clear that Theorem 1 holds for the special cases with
D = 0 or I, in the following, we only focus on the cases with
D = 0 or I.
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Fig. 2. Illustration of estimation cycles, where red and green circles
denote failed and successful transmissions, respectively, and big circles
denote the beginning of estimation cycles.

A. Stochastic Estimation-Cycle Based Analysis

Before analyzing the long-term average mse of the remote
estimation system and derive the stability condition, we need to
introduce and analyze estimation cycle. To be specific, the kth
estimation cycle starts after the kth successful transmission and
ends at the (k + 1)th successful transmission as illustrated in
Fig. 2. In other words, the estimation process is divided by the
estimation cycles.

The channel state at the beginning of estimation cycle k, i.e.,
a postsuccess channel state, is denoted by Sk ∈ B′ ⊂ B, where

B′ � {bj : max
i∈M

(1− di)pi,j > 0, ∀j ∈ M} (21)

is the set of postsuccess channel states and the cardinality of
B′ is M ′ ≤ M . Without loss of generality, we assume that B′

contains the first M ′ elements of B. In other words, none of the
last (M −M ′) elements ofB can be a postsuccess channel state,
while the others can.

Example 2: Consider a two-state Markov channel with

M =

[
0 1

1 0

]

d1 = 1 and d2 = 0. It is clear that the channel states determin-
istically switches between the two states, and the transmission
can be successful only in channel state 2. Thus, channel state 1
is the only postsuccess state, i.e., B′ = {b1} ⊂ B = {b1, b2}.

Then, we have the following property of Sk.
Lemma 1: {S}N0

is a time-homogeneous ergodic Markov
chain withM ′ irreducible states ofB′. The state transition matrix
of {S}N0

is G′, which is the M ′-by-M ′ matrix taken from the
top-left corner of G, where

G =

∞∑
j=0

(DM)j(I−D)M (22)

and the last (M −M ′) columns of G are all zeros. The sta-
tionary distribution of {S}N0

is β � [β1, . . . , βM ′ ]�, which is

the unique null-space vector of (I−G′)� and βi > 0, ∀i ∈ M′,
where M′ � {1, 2, . . . ,M ′}.

Proof: See Appendix A. �
Remark 5: Our analysis investigates the sequence of success-

ful reception instances. This has also been considered in [38],
where the instances of successful reception are return times of a
Markov chain. Different to [38], we focus on the channel states
right after these instances, which form an ergodic Markov chain.
Our approach will shed lights on the future work of the analysis
of closed-loop control systems over Markov channels.

Let Tk denote the sum number of transmissions in the kth
estimation cycle. The sum mse in the kth estimation cycle, say
Ck, is given as

Ck = g(Tk) �
Tk∑
j=1

c(j). (23)

From (15), it directly follows that the average estimation mse
can be rewritten as

J = lim sup
K→∞

C1 + C2 + · · ·+ CK

T1 + T2 + · · ·+ TK
. (24)

Since Ck is determined by Tk and the distribution of Tk depends
on Sk and the distribution of Sk is time-invariant, the uncondi-
tional distributions of Tk and of Ck are also time-invariant. We,
thus, drop the time indexes of Tk, Ck, and Sk. Then, the time
average of {. . . , Tk, Tk+1, . . .} and {. . . , Ck, Ck+1, . . .} can be
translated to the following ensemble averages as

E [T ] = lim
K→∞

1

K

K∑
k=1

Tk =

M∑
m=1

βmE [T |S = bm] (25)

and

E [C] = lim
K→∞

1

K

K∑
k=1

Ck =
M∑

m=1

βmE [C|S = bm] (26)

where βm is defined in Lemma 1 for m ∈ {1, . . . ,M ′} and
βm = 0 when m > M ′.

From the definition of estimation cycle and the property of
channel state transition, the conditional probability of the length
of an estimation cycle is obtained as

Prob [T = i|S = bm] =

M∑
k=1

[
(DM)i−1(I−D)M

]
m,k

.

(27)
If we now replace (27) into (25) and into (26), then after some
algebraic manipulations, one can obtain

E [T ] =
M∑
j=1

M∑
k=1

∞∑
i=1

i [Ξ(i)]j,k (28)

E [C] =

M∑
j=1

M∑
k=1

∞∑
i=1

g(i) [Ξ(i)]j,k (29)

where

Ξ(i) = diag{β1, . . . , βM}(DM)i−1(I−D)M.
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Taking (28) and (29) into (24), we have

J = lim sup
K→∞

1
K (C1 + C2 + · · ·+ CK)
1
K (T1 + T2 + · · ·+ TK)

=
E [C]

E [T ]
. (30)

Therefore, it turns out that the average estimation mse J
depends on the estimation error function c(i) and the function
(DM)i(I−D)M, both of which involve matrix powers. In
what follows, we will introduce and prove some technical lem-
mas about the elementwise upper and lower bounds of matrix
powers, which are the key steps for analyzing the sufficient and
necessary stability conditions of the remote estimation system.

B. Elementwise Bounds of Matrix Powers

We give an elementwise upper bound of matrix powers
as below.

Lemma 2 (Elementwise Upper Bound of Matrix Power):
Consider a z-by-z matrix Z with A different eigenval-
ues {λ1, λ2, . . . , λA}, where 1 ≤ A ≤ z, and define Z �
{1, . . . , z}. Then, for any ε > 0, there exist N > 0 and κ > 0
such that

|[Zi]j,k|2 < κ (ρ(Z) + ε)2i , ∀j, k ∈ Z, ∀i > N.

Proof: See Appendix B. �
Definition 2 (Asymptotically and Periodically Lower

Bounded): A function r(k) is asymptotically and periodically
lower bounded by r(k)with a period l ∈ N if there existsN ∈ N
such that

max{r(i), r(i+ 1), . . . , r(i+ l − 1)} ≥ r(i), ∀i ≥ N.

Thus, if r(k) is asymptotically and periodically lower
bounded by r(k) with a period l, then the sum of the function
r(k) with a consecutive of l samples is lower bounded by r(k).
When a direct lower bound of the function r(k) is intractable
or very loose, we can resort to finding a periodical lower bound
r(k), which might introduce a tight lower bound of the average
of r(k) per l samples, i.e., r(k)/l. It is clear that the periodical
lower bound is tighter if the period l is smaller. In Lemma 3, we
will show how to determine the period of a specific problem in
detail. Definition 2 will be used to capture the lower bound of
the average sum mse in (23) for analyzing the necessary stability
condition.

Definition 3 (Asymptotically Lower Bounded): A func-
tion r(k) is asymptotically lower bounded by r(k) if it is
asymptotically and periodically lower bounded by r(k) with
period 1.

Given the preceding definitions, we can obtain an elementwise
lower bound of matrix powers as below.

Lemma 3 (Elementwise Lower Bound of Matrix Power):
1) Consider a z-by-z matrix Z. Then there exist η > 0 and

j, k ∈ Z such that |[Zi]j,k|2 is asymptotically and periodically
lower bounded by η(ρ(Z))2i. The period is a positive integer
no larger than the number of eigenvalues of Z with the same
maximum magnitude.

2) Consider a pair of z-by-z matrices Z and Q with the
assumptions that Q is symmetric positive semidefinite and

(Z,
√
Q) is controllable. Then there exist η > 0 and j, k ∈ Z

such that |[Zi
√
Q]j,k|2 is asymptotically and periodically lower

bounded by η(ρ(Z))2i. The period has the same property as
in 1).

Proof: See Appendix B. �

V. PROOF OF THE MAIN RESULTS

In this section, we prove Propositions 1 and 2, and Theorem 1.

A. Proof of Proposition 1

Taking (12) into (13), we have

c(i)=Tr
(
Ai
√
P̄0(A

i
√
P̄0)

�
)
+

i−1∑
m=0

Tr
(
Am

√
W(Am

√
W)�

)
.

(31)
From (31) and Lemma 2, for any ε > 0, there exists κ, κ,′ N > 0
such that for all i > N , we have

c(i)≤n2

(
max
j,k∈N

([
Ai
√
P̄0

]
j,k

)2

+

i−1∑
m=0

max
j,k∈N

([
Am

√
W
]
j,k

)2)

≤ n2

(
κ(ρ(A) + ε)2i +

i∑
m=N+1

κ′(ρ(A) + ε)2˜m

+

N∑
m=0

max
j,k∈N

([
Am

√
W
]
j,k

)2
)

≤ n2
(
(i−N + 1)max{κ, κ′}(ρ(A) + ε)2i

+
N∑

m=0

max
j,k∈N

([
Am

√
W
]
j,k

)2
)

(32)
where N � {1, . . . , n}. Recall that A is an n-by-n matrix.
Thus, for any ε′ > ε, we can find N ′ > N and κ′′ > 0 such that
c(i) ≤ κ′′(ρ(A) + ε′)2i, ∀i > N ′. This completes the proof of
Proposition 1.

B. Proof of Proposition 2

From 2) in Lemma 3, we note that there exists η > 0 and
j, k ∈ N such that |[AiW]j,k|2 is asymptotically and periodi-
cally lower bounded by η(ρ(A))2i with the period l, which is
no larger than the dimension of the matrix A. Then, from (31),
when i is sufficiently large, we have

c(i) ≥
i−1∑

m=i−l

Tr
(
Am

√
W(Am

√
W)�

)
(33)

≥
i−1∑

m=i−l

|[AmW]j,k|2 (34)

≥ η(ρ(A))2(i−l) = η (ρ(A))−2˜l (ρ(A))2i . (35)

This completes the proof of Proposition 2.
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C. Proof of Theorem 1

Besides the upper and lower bounds of the estimation er-
ror function, to obtain the necessary and sufficient stability
condition, we need some additional properties of (DM)i and
(DM)i((I−D)M).

Lemma 4 (Property of Matrix (DM)i): Consider the stochas-
tic matrix M and the diagonal matrix D defined in (4) and (6),
respectively. Let J0 � {j|dj = 0, j ∈ M} and J̄0 � M\J̄0 =
{j|dj = 0, j ∈ M} = ∅.

1) If J0 = ∅, there exists η > 0 such that [(DM)i]j,k
is asymptotically and periodically lower bounded by
ηρi(DM), ∀j, k ∈ M.

2) If J0 = ∅, there exists η > 0, j ∈ J̄0, and k ∈ J0 such
that [(DM)i]j,k is asymptotically and periodically lower
bounded by ηρi(DM).

3) ρ(DM) < 1.
Proof: See Appendix C. �
Lemma 5 (Property of Matrix (DM)i(I−D)M): Given the

stochastic matrix M and the diagonal matrix D defined in (4)
and (6), respectively, there exist η > 0 and j, k ∈ M such that
[(DM)i(I−D)M]j,k is asymptotically and periodically lower
bounded by ηρi(DM).

Proof: See Appendix C. �
By using the properties in Lemmas 4 and 5, Theorem 1 can

be proved as in Appendix D.

VI. NUMERICAL RESULTS

In this section, we illustrate and compare the stability regions
of the remote estimation system obtained using Theorem 1 of
the current article and based on our previous work [15, Corollary
1]. We also present simulated results of the average estimation
mse in (24) based on the average of 105 time steps.

We consider an example involving the Pendubot, a two-link
planar robot [39]. A linearized continuous time model for bal-
ancing the Pendubot in the upright position can be found in [40].
With a sampling time of 15 ms, we can then obtain the following
discrete time model [27]:

A =

⎡
⎢⎢⎢⎣

1.0058 0.0150 −0.0016 0.0000

0.7808 1.0058 −0.2105 −0.0016

−0.0060 0.0000 1.0077 0.0150

−0.7962 −0.0060 1.0294 1.0077

⎤
⎥⎥⎥⎦ , (36a)

C =

[
1 0 0 0

0 0 1 0

]
, (36b)

W = uu�,u =
[
0.003 1.0000 −0.005 −2.150

]�
,

(36c)

V = 0.001× I. (36d)

Thus, ρ(A) = 1.15 and ρ̃(A) = 2. Unless otherwise stated, we
consider a two-state Markov channel model characterized by

the transition matrix M =

[
0.1 0.9

0.5 0.5

]
and conditional dropout

probabilities d1 = 0.8 and d2 = 0.1.

Fig. 3. Necessary and sufficient stability region of Theorem 1 (i.e., the
solid line bounded area) and the sufficient stability region [15] (i.e., the
dashed line bounded area).

Fig. 3 shows the stability regions (in the dropout proba-
bility plane) for different A and M. In this figure, the solid
and dashed line bounded regions are obtained from Theo-
rem 1 and [15, Corollary 1], respectively. Specifically, we

set A = A1 =

⎡
⎢⎢⎢⎣

1.129 0.0150 −0.0016 0.0000

0.7808 1.0058 −0.2105 −0.0016

−0.0060 0.0000 1.0077 0.0150

−0.7962 −0.0060 1.0294 1.0077

⎤
⎥⎥⎥⎦

in case (b), where ρ(A1) = 1.2 and ρ̃(A1) = 2, and set M =

M1 =

[
0.1 0.9

0.9 0.1

]
and M2 =

[
0.9 0.1

0.1 0.9

]
in cases (c) and (d),

respectively. From cases (a)–(d), it is clear that our current
necessary and sufficient stability region is much larger than
the sufficient stability region established in [15]. Also, it can
be observed that the necessary and sufficient stability region is
convex in case (d) and is nonconvex in cases (a)–(c). Note that
the convexity of a stability region is important in practice. For
example, if one has tested a set of communications parameter
vectors that can stabilize the remote estimation system and the
stability region is proved to be convex, any parameter vector that
belongs to the convex hull of the set can stabilize the system as
well. Comparing (b) with (a), it is clear to see a smaller stability
region as the system in (b) is more unstable than (a). Comparing
(c) with (d), it is interesting to see that if the Markov channel
has a longer memory, i.e., it has a higher chance to stay in a
poor channel condition, then the remote estimation system has
a smaller stability region.

Fig. 4 shows the original unstable process xt of system (36)
and the remote estimation x̂t. We see that the estimator tracks
the unstable process well, and the relative estimation error, i.e.,
|xt − x̂t|/|xt|, decreases with time.

Fig. 5 shows the simulated average estimation mse’s of the
smart sensor based and a conventional sensor based remote
estimator [6] with different packet drop probabilities. Under
the stability condition [illustrated as the gray area in Fig. 3(a)],
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Fig. 4. Original process xt � [xt(1),xt(2),xt(3),xt(4)] of the sys-
tem (36) and the remote estimation x̂t � [x̂t(1), x̂t(2), x̂t(3), x̂t(4)].

Fig. 5. Average estimation mse versus packet drop probabilities for the
smart sensor based and conventional sensor based cases.

we see that although the local estimator guarantees a better
performance than the remote estimator, the performance gap
is non-negligible only when the packet dropout probabilities are
large at all channel states. It is interesting to note that the two
cases actually have the same stability condition when packet
dropout are i.i.d.; see [6]. This motivates the hypothesis that the
smart sensor based and the conventional sensor based remote
estimation systems have the same stability condition under the
Markov channel in terms of the LTI system transition matrix,
the packet drop probabilities, and the channel state transition
matrix.

In Figs. 6 and 7, we give contour plots of the average estima-
tion mse in the smart sensor based and the conventional sensor
based cases, respectively. It can be observed that the average
estimation mse’s grow up dramatically outside the theoretical
stability region [i.e., Fig. 3(a)] in both cases. This verifies the
correctness of the stability condition and also implies that the
stability condition of the two cases can be the same.

Fig. 6. Contour plot (in a base-10 logarithmic scale) of the average
estimation mse of the smart sensor based case and the theoretical
stability region (i.e., the thick line bounded region), i.e., Fig. 3(a).

Fig. 7. Contour plot (in a base-10 logarithmic scale) of the average es-
timation mse of the conventional sensor based case and the theoretical
stability region (i.e., the thick line bounded region), i.e., Fig. 3(a).

In Fig. 8, we consider a three-state Markov channel with the

state transition matrixM3 =

⎡
⎢⎣ 0.1 0.45 0.45

0.25 0.5 0.25

0.1 0.1 0.8

⎤
⎥⎦. Comparing

with the two-state channel model considered in Fig. 5, a third
channel state with a small packet drop rate d3 = 0.01 is added.
We see that the three-state channel case performs much better
than the two-state channel one in terms of the average estimation
mse as the former channel is less error-prone.

VII. CONCLUSION

In this article, we have established the necessary and sufficient
mean-square stability condition of a smart sensor based remote
estimation system over a Markov fading channel by developing
the asymptotic theory of matrices which provides new (peri-
odic) elementwise bounds of matrix powers. Our numerical
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Fig. 8. Average estimation mse versus packet drop probabilities for the
two-channel state and the three-channel state cases.

results have verified the correctness of the stability condition
and have shown that it is much more effective than existing
sufficient conditions in the literature. It has been observed that
the stability region in terms of the packet drop probabilities
in different channel states can either be convex or nonconvex
depending on the transition probability matrix. Our simulation
results have suggested that the stability conditions may coincide
for schemes with a smart sensor and with a conventional sensor.
This inspires our future work on analyzing the stability condition
of the case without a smart sensor. Furthermore, the derived
stability conditions can be used to design the optimal policy of
transmission power control (e.g., via offline design ofD) as well
as multisensor scheduling policies. In addition to stability, we
will look into the performance of the smart sensor based remote
estimation system and investigate the stationary distribution of
estimation error covariances.

Furthermore, we will investigate the stability condition of the
remote estimation system that adopts an aperiodic transmission
policy. For example, an energy-constrained sensor normally uses
an energy-saving protocol in practice, that is, to transmit only
when the channel condition is good and/or the receiver has not
received a packet for long time, i.e., with a large AoI state.
We will extend the stochastic estimation cycle based analytical
approach to this case. Specifically, when analyzing the lengths
of the stochastic estimation cycles, we will take into account
how the transmission decisions depend on the current AoI state
and the current channel conditions.

APPENDIX A

PROOF OF LEMMA 1

The time homogeneity of {S}N0
is clear due the time

homogeneous Markov channel states. Let us define the sets
I0 � {bi : di = 0, ∀i ∈ M}, I0/1 � {bi : di = 0, 1, ∀i ∈ M},
and I1 � {bi : di = 1, ∀i ∈ M} denoting the channel states in
which a packet transmission must succeed, can succeed or fail,
and must fail, respectively. SinceD = 0, the “can succeed” state

set I0 ∪ I0/1 = ∅. Due to the ergodicity of the Markov channel,
it can be proved that given any current channel state, the hitting
time of any state of I0 ∪ I0/1 is finite with a positive probability.
Also, given a postsuccess state in B′, it is reachable from a state
of I0 ∪ I0/1 in one step. Thus, given any state Sk ∈ B′, the
hitting time of anySk+1 ∈ B′ is finite with a positive probability.
This completes the proof of the ergodicity of {S}N0

. Then, the
stationary distribution β is the solution of

β� = β�G′ (37)

where the state transition probability is G′
i,j � Prob[Sk+1 =

bj |Sk = bi], ∀i, j ∈ M′. Let Hk+1 ∈ N denote the hitting time
fromSk toSk+1, andm�

i ∈ Rn andni ∈ Rn denote the ith row
and ith column of the matrix M. We further have

G′
i,j =

∞∑
l=1

Prob [Sk+1 = bj , Hk+1 = l|Sk = bi] (38)

=(1− di)pi,j+ dim
�
i (I−D)ni+ dim

�
i DM(I−D)ni+· · ·

(39)

which completes the proof of (22). From the definition of B′ in
(21), it is clear that the last (M −M ′) columns of (I−D)M
are all zeros, completing the proof of Lemma 1.

APPENDIX B

PROOFS OF LEMMAS 2 AND 3

A. Preliminaries

Assume a z-by-z matrix Z has A different eigenvalues
{λ1, λ2, . . . , λA}. Represent Z in its Jordan normal form of
Z = UJU−1, where U is a invertible matrix and

J =

⎡
⎢⎢⎣
J1

. . .

JA

⎤
⎥⎥⎦ , (40)

Jm =

⎡
⎢⎢⎢⎢⎢⎣

λm 1

λm
. . .
. . . 1

λm

⎤
⎥⎥⎥⎥⎥⎦ , ∀m = 1, . . . , A. (41)

Let um denote the size of Jordan block Jm. Then, U and U−1

can be represented as

U = [F1|F2| · · · |FA]

U−1 = [G1|G2| · · · |GA]
� (42)

whereFm andGm are z-by-um matrices. SinceU is of full rank,
Fm and Gm have full column rank of um, ∀m = 1, . . . , A.

Then, we have

Zi = UJiU−1 =

A∑
m=1

FmJi
mG�

m (43)
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where

Ji
m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λi
m

(
i
1

)
λi−1
m · · · · · · (

i
um−1

)
λi−um+1
m

. . .
. . .

...
...

. . .
. . .

...

λi
m

(
i
1

)
λi−1
m

λi
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(44)
Note that Ji

m has a full rank of um for all m ∈ N if λm = 0.
From (43) and (44), the element at the jth row and kth column

of FiJ
m
i G�

i denoted by [FmJi
mG�

m]j,k can be rewritten as a
polynomial in terms of m as

[FmJi
mG�

m]j,k = λi
m[ium−1, ium−2, . . . , i, 1]Λm,(j,k) (45)

where Λm,(j,k) is a column vector determined by Fm and Gm

and is independent with i.

B. Proof of Lemma 2

From (43) and (45), we have

|[Zi]j,k|=
∣∣∣∣∣

A∑
m=1

[FmJi
mG�

m]j,k

∣∣∣∣∣≤κiz
A∑

m=1

|λm|i ≤ Aκizρi(Z)

(46)
where κ is a positive constant.

The result follows upon noting that limi→∞ izρi(Z)/(ρ(Z) +
ε)i = 0, ∀ε > 0.

C. Proof of Lemma 3

Before proceeding to prove the elementwise lower bound of
matrix powers, we need the following technical lemma.

Lemma 6: Consider a z-by-z matrixZwithA different eigen-
values {λ1, λ2, . . . , λA}, where A ≤ z, and a z-by-z symmetric
and positive semidefinite matrix Q. If (Z,

√
Q) is controllable

and λm = 0 for some m ∈ {1, . . . , A}, then FmJi
mG�

m

√
Q =

0, ∀i ∈ N0.
Proof: Assume that there exists i ∈ N0 such that

FmJi
mG�

m

√
Q = 0. Then, we have

0 = Rank
(
FmJi

mG�
m

√
Q
)

(47)

≥ Rank (Fm) + Rank
(
Ji
mG�

m

√
Q
)
− um (48)

= Rank
(
Ji
mG�

m

√
Q
)

(49)

= Rank
(
G�

m

√
Q
)

(50)

where (48) is due to Sylvester’s rank inequality [41]. Thus,
G�

m

√
Q = 0.

From the definitions of Fm and Gm, it is clear that

A∑
k=1

FkG
�
k = I. (51)

By multiplying
√
Q on the both sides of (51), we have√
Q =

∑
k∈{1,...,A}\m

FkG
�
k

√
Q. (52)

Applying G�
m

√
Q = 0 on (43), it can be obtained that

Zi
√

Q =
∑

k∈{1,...,A}\m
FkJ

i
kG

�
k

√
Q, ∀i ∈ N0. (53)

Jointly using (52) and (53), it is easy to see that each column of
the matrix concatenation [

√
Q,Z

√
Q, . . . ,Zz−1

√
Q] is in the

span of the columns of {Fk|k ∈ {1, . . . , A}\m}. Therefore

Rank
([√

Q,Z
√

Q, . . . ,Zz−1
√

Q
])

≤
∑

k∈{1,...,A}\m
Rank (Fk)

= z − Rank (Fm)

< z (54)

which, however, contradicts with the assumption that
[
√
Q,Z

√
Q, . . . ,Zz−1

√
Q] is of full rank. This completes the

proof. �
Proof of 1) in Lemma 3: If λm = 0, Jm is a full-rank square

matrix, and, hence, Ji
mG�

m has a full row rank of um. Since
Fm has a full column rank of um, by using Sylvester’s rank
inequality, we have

Rank
(
FmJi

mG�
m

) ≥ Rank (Fm) + Rank
(
Ji
mG�

m

)− um

= um > 0.
(55)

Therefore, FmJi
mG�

m = 0, ∀i ∈ N. From (45), we can find a
pair of j, k ∈ Z such that Λm,(j,k) = 0. Thus, without loss of
generality, we assume that the dominant term of the polyno-
mial [FmJi

mG�
m]j,k = λi

m[ium−1, ium−2, . . . , i, 1]Λm,(j,k) is
Λm,(j,k)λ

i
mium,(j,k) when i → ∞, where Λm,(j,k) = 0 and

um,(j,k) ∈ {0, . . . , um − 1}.
If |λm| = ρ(Z) and λm is the unique eigenvalue that has

the maximum magnitude, it is clear that the dominant term of
[Zi]j,k =

∑z̃
m=1[FmJi

mG�
m]j,k is Λm,(j,k)λ

i
mium,(j,k) . Thus,

one can find η > 0 such that |[Zi]j,k|2 is asymptotically lower
bounded by ηρ2i(Z).

If there are multiple eigenvalues having the same maximum
magnitude, i.e., Z′ � {i : |λi| = ρ(Z), ∀i ∈ Z} and |Z′| > 1,
where Z � {1, 2, . . . , A}, we consider the following two com-
plementary cases.

Case 1): There exists m ∈ Z′ such that Λm,(j,k) = 0
and um,(j,k) > um,′(j,k), ∀m′ ∈ Z′\{m}. In this case, the

dominant term of [Zi]j,k =
∑z̃

m=1[FmJi
mG�

m]j,k is still
Λm,(j,k)λ

i
mium,(j,k) . Thus, one can findη > 0 such that |[Zi]j,k|2

is asymptotically lower bounded by ηρ2i(Z).
Case 2): There exists a set Z′′ ⊆ Z′ with cardinality z′′ ≥

2 such that um,(j,k) = um,′(j,k), ∀m,m′ ∈ Z′′ and um,(j,k) >
um,′(j,k), ∀m ∈ Z,′′ m′ ∈ Z′\Z′′. In this case, |[Zi]j,k|2 may
not be asymptotically lower bounded by ηρ2i(Z) due to the mul-
tiple eigenvalues with identical magnitude but different phases.
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In the following, we will show that∑
m∈Z′′ Λm,(j,k)λ

i
mium,(j,k) is asymptotically and periodically

bounded by ηρ2i(Z). Let ml denote the index of the lth eigen-
value in Z′′, where l ∈ {1, . . . , z′′}. Thus, λml

� ρ(Z)ejφml ,
where φml

∈ [0, 2π). We have the following matrix:

Π �

⎡
⎢⎢⎢⎢⎣

λi
m1

λi
m2

· · · λi
mz′′

λi+1
m1

λi+1
m2

· · · λi+1
mz′′

...
... · · · ...

λi+z′′−1
m1

λi+z′′−1
m2

· · · λi+z′′−1
mz′′

⎤
⎥⎥⎥⎥⎦

= diag
{
ρi(Z)ejiφm1 , ρi+1(Z)ej(i+1)φm1 , . . . ,

ρi+z′′−1(Z)ej(i+z′′−1)φm1

}
Π′ (56)

where

Π′ �

⎡
⎢⎢⎢⎢⎣
1 eji(φm2

−φm1
) · · · eji(φm

z′′ −φm1
)

1 ej(i+1)(φm2
−φm1

) · · · ej(i+1)(φm
z′′ −φm1

)

...
... · · · ...

1 ej(i+z′′−1)(φm2
−φm1

) · · · ej(i+z′′−1)(φm
z′′ −φm1

)

⎤
⎥⎥⎥⎥⎦

= Π′′Φ

�

⎡
⎢⎢⎢⎢⎣
1 ej(φm2

−φm1
) · · · ej(φm

z′′ −φm1
)

1 ej2(φm2
−φm1

) · · · ej2(φm
z′′ −φm1

)

...
... · · · ...

1 ejz
′′(φm2

−φm1
) · · · ejz

′′(φm
z′′ −φm1

)

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣
1 0 · · · 0

0 ej(i−1)(φm2
−φm1

) · · · 0
...

... · · · ...

0 0 · · · ej(i−1)(φm
z′′ −φm1

)

⎤
⎥⎥⎥⎥⎦ (57)

and Π′′ is a Vandermonde matrix, which is invertible due
to the fact that λml

= λm′
l

for l = l′; see [42]. Let b �
[Λm1,(j,k),Λm2,(j,k), . . . ,Λmz′′ ,(j,k)]

� = 0. Since Π′′ is invert-
ible, using the inequality of matrix-vector product [43], [44], we
have

|Π′b| = |Π′′Φb| ≥ |(Π′′)−1|−1|Φb| = |(Π′′)−1|−1|b| > 0
(58)

where |(Π′′)−1|−1 = 0 is the minimum magnitude of the eigen-
values of Π′′. Since the largest magnitude of the elements of
Π′b is no smaller than |Π′b|/√z′′, we have

max
l′=0,...,z′′−1

∣∣∣∣∣
z′′∑
l=1

Λml,(j,k)e
j(i+l′)(φml−m1

)

∣∣∣∣∣
≥ 1√

z′′
|(Π′′)−1|−1|b| > 0 (59)

and hence

max
l′=0,...,z′′−1

∣∣∣∣∣
z′′∑
l=1

Λml,(j,k)λ
(i+l′)
ml

(i+ l′)uml,(j,k)

∣∣∣∣∣
≥ 1√

z′′
|(Π′′)−1|−1|b|ρi(Z)ium1,(j,k) . (60)

Therefore, |[Zi]j,k|2 is asymptotically and periodically lower
bounded by ηρ2i(Z) with period z′′, where η is a positive
constant. �

Proof of 2) in Lemma 3: From (45), if λm = 0, it is easy to
see that

[FmJi
mG�

m

√
Q]j,k = λi

m[ium−1, ium−2, . . . , i, 1]Λ′
m,(j,k)

(61)
where Λ′

m,(j,k) is a column vector determined by Fm, Gm,
and

√
Q and is independent with i. Thus, there exist j, k ∈ Z

such that Λ′
m,(j,k) = 0; otherwise, it violates Lemma 6. Then,

by following the same steps of the proof of 1) in Lemma 3,
we can prove that there exists η > 0 such that |[Zi

√
Q]j,k|2 is

asymptotically and periodically lower bounded by ηρ2i(Z). �

APPENDIX C

PROOFS OF LEMMAS 4 AND 5

D. Proof of Lemma 4

For part 1), since M is an irreducible nonnegative matrix and
dj > 0, ∀j ∈ M, the M -by-M matrix DM is also irreducible
and nonnegative, i.e., one can associate with the matrix a certain
directed graph G, which has exactly M vertexes, and there is
an edge from vertex j to vertex k precisely when [DM]j,k > 0,
and G is strongly connected. By using Lemma 3, there exists
j, k ∈ M such that [(DM)i]j,k is asymptotically and periodi-
cally lower bounded by ηρi(DM), where the period is no larger
than the number of eigenvalues ofDMwith the same maximum
magnitude. Then using the nonnegative and irreducible property
of DM, given k′ ∈ M, we can find l ∈ N+ such that k′ is
reachable from k in l steps, i.e., [(DM)l]k,k′ = η′ > 0. Thus, if
[(DM)i]j,k ≥ ηρi(DM), we have

[(DM)i+l]j,k′ ≥ [(DM)i]j,k(DM)l]k,k′

≥ ηη′

ρl(DM)
ρi+l(DM).

Since [(DM)i]j,k is asymptotically and periodically lower
bounded by ηρi(DM), [(DM)i]j,k′ is asymptotically and pe-
riodically lower bounded by ηη′

ρl(DM)
ρi(DM). This completes

the proof of part 1).
For part 2), we construct a diagonal matrix D′ �

diag{d′1, . . . , d′M}, where d′j = dj if dj > 0; otherwise, d′j = 1.
Thus, D′M is irreducible and nonnegative. Since DM has all
zero rows, the direct graph of DM, G, can be generated by the
strongly connected graph G′ induced by D′M and then remote
the edges from vertexes k ∈ J0. In other words, G is part of G′.
Then, it is easy to see that for any k ∈ J̄0, we can find k′ ∈ J0

such that there exists a path from k to k′ in G; otherwise, it vio-
lates the irreducible property of G′. Therefore, for any k ∈ J̄0,
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there exist k′ ∈ J0 and l ∈ N such that [(DM)l]k,k′ > 0. By
using this property, part 2) of Lemma 4 can be proved by
following the similar steps of part 1).

For part 3), since [(DM)i]j,k ≤ [Mi]j,k,∀j, k ∈ M and each
element of M is strictly less than 1, we have [(DM)i]j,k < 1,
∀j, k ∈ M. By using part 2), i.e., there exist j, k ∈ M and η > 0
such that [(DM)i]j,k is asymptotically and periodically lower
bounded by ηρi(DM), we have ρ(DM) < 1.

E. Proof of Lemma 5

For the case that J0 = ∅, since D = I and M is a stochastic
matrix, there exists k,′ k ∈ M such that [(I−D)M]k,′k = η′ >
0. Using 1) in Lemma 4, for any j, k′ ∈ M, [(DM)i]j,k′ is
asymptotic and periodically lower bounded by ηρi(DM). Thus,
there exists j, k,′ k ∈ M such that

[(DM)i(I−D)M]j,k ≥ [(DM)i]j,k′ [(I−D)M]k,′k

≥ η′ηρi(DM).

For the case that J0 = ∅, given any k′ ∈ J0, we can find k ∈
M such that [(I−D)M]k,′k = η′ > 0. Using 2) in Lemma 4,
there exists j ∈ J̄0, k

′ ∈ J0 such that [(DM)i]j,k′ is asymp-
totic and periodically lower bounded by ηρi(DM). Thus, there
exists j ∈ J̄0, k′ ∈ J0, and k ∈ M such that, also in this
case, [(DM)i(I−D)M]j,k ≥ [(DM)i]j,k′ [(I−D)M]k,′k ≥
η′ηρi(DM).

APPENDIX D

PROOF OF THEOREM 1

Using the property that c(i) is a monotonically increasing
function [22], from (23), we have

c(i) ≤ g(i) ≤ ic(i), ∀i ∈ N. (62)

Then, we consider two scenarios: 1) all channel states are post-
success states, i.e., B′ = B and M ′ = M ; and 2) some channel
states are not postsuccess states, i.e., B\B′ = ∅ and M ′ < M .

1) M = M ′. Using Proposition 1, Lemma 2, and the inequal-
ity (62), for any ε > 0, we can find κ > 0 such that E[C] in (29)
is upper bounded as

E [C] < κM2β̄

∞∑
i=1

i(ρ(A) + ε)2i(ρ(DM) + ε)i + γ (63)

where β̄ � max{β1, . . . , βM}, and γ is a constant. Thus, E[C]
is bounded if ρ2(A)ρ(DM) < 1. By using Proposition 2 and
Lemma 5 and after some algebraic manipulations, there exists
η > 0 such that E[C] in (29)

E [C] > ηβ
∞∑
i=1

ρ2i(A)ρi(DM) + γ′ (64)

where β � min{β1, . . . , βM} > 0, and γ′ is a constant. Thus,
ρ2(A)ρ(DM) < 1 if E[C] is bounded. Therefore, E[C] is
bounded if and only if ρ2(A)ρ(DM) < 1. Similarly, since
ρ(DM) < 1 given in part 3) in Lemma 4, it can be proved that
E[T ] is always bounded.

Therefore, E[C]/E[T ] is bounded if and only if
ρ2(A)ρ(DM) < 1 holds. This completes the proof of
Theorem 1 in scenario 1).

2) M > M ′. It is clear that the upper bound in scenario
2) is the same as that in (63). Different from scenario 1),
the lower bound cannot be obtained as in (64) directly since
β = min{β1, . . . , βM ′ , 0, . . . , 0︸ ︷︷ ︸

M−M ′

} = 0, making the lower bound

useless in scenario 2).
Taking Proposition 2 and (62) into (29), there exists η > 0

such that

E [C] > η

M∑
j=1

M∑
k=1

∞∑
i=1

ρ2i(A)

⎡
⎣diag{β1, . . . , βM ′ , 0, . . . , 0︸ ︷︷ ︸

M−M ′

}

×(DM)i−1(I−D)M
]
j,k

+ γ′′

(65)
where γ′′ is a constant. Due to the ergodicity of the
Markov channel, for any non-postsuccess state bj′ in B\B′ =
{bM ′+1, . . . , bM}, there exists a postsuccess state bi′ in B′

such that bi′ can transit to bj′ after a finite number of l′

failure transmissions, where l′ < M . In other words, for any
j ′ ∈ {M ′ + 1, . . . ,M}, there exists l′j′ < M such that the j′th
column of the matrix

diag{β1, . . . , βM ′ , 0, . . . , 0︸ ︷︷ ︸
M−M ′

}(DM)
l′
j′

is not of all zeros and has a positive entry of β′
j′ . Then, we have

M∑
j=1

M∑
k=1

∞∑
i=1

ρ2i(A)

⎡
⎣diag{β1, . . . , βM ′ , 0, . . . , 0︸ ︷︷ ︸

M−M ′

}

(DM)i−1(I−D)M
]
j,k

>
M∑
j=1

M∑
k=1

∞∑
i=l′

j′+1

ρ2i(A)

⎡
⎢⎣diag{0, . . . , 0︸ ︷︷ ︸

j′−1

, β′
j′ , 0, . . . , 0︸ ︷︷ ︸

M−j′

}

(DM)
i−l′

j′−1
(I−D)M

]
j,k

=
M∑
j=1

M∑
k=1

∞∑
i=1

ρ2i(A)

⎡
⎢⎣diag{0, . . . , 0︸ ︷︷ ︸

j′−1

, ρ
2˜l′

j′ (A)β′
j′ , 0, . . . , 0︸ ︷︷ ︸

M−j′

}

(DM)i−1(I−D)M
]
j,k

.

(66)
Applying (66) into (65) for (M −M ′) times, it can be ob-
tained as
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(M −M ′ + 1)E [C]

> η

M∑
j=1

M∑
k=1

∞∑
i=1

ρ2i(A)

×

⎡
⎢⎣diag{β1, . . . , βM ′ , ρ2˜l′

M ′+1(A)β′
M ′+1, . . . , ρ

2˜l′M (A)β′
M︸ ︷︷ ︸

M−M ′

}

(DM)i−1(I−D)M
]
j,k

+ (M −M ′ + 1)γ′′.
(67)

Letting

β�min{β1, . . . , βM ′ , ρ2˜l′
M ′+1(A)β′

M ′+1, . . . , ρ
2˜l′M (A)β′

M}>0

and following the same steps in scenario 1), the proof of Theo-
rem 1 in scenario 2) is completed.
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