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Abstract—A distributed estimation algorithm for sensor net-
works is proposed. A noisy time-varying signal is jointly tracked
by a network of sensor nodes, in which each node computes
its estimate as a weighted sum of its own and its neighbors’
measurements and estimates. The weights are adaptively updated
to minimize the variance of the estimation error. Both estima-
tion and the parameter optimization is distributed; no central
coordination of the nodes is required. An upper bound of the
error variance in each node is derived. This bound decreases with
the number of neighboring nodes. The estimation properties of
the algorithm are illustrated via computer simulations, which are
intended to compare our estimator performance with distributed
schemes that were proposed previously in the literature. The re-
sults of the paper allow to trading-off communication constraints,
computing efforts and estimation quality for a class of distributed
filtering problems.

Index Terms—Distributed Estimation; Sensor Networks; Con-
vex Optimization; Parallel and Distributed Computation; In-
network Processing; Cooperative Communication.

I. INTRODUCTION

A SENSOR network (SN) is a network of autonomous
devices that can sense their environment, make com-

putations and communicate with neighboring devices. SNs,
and in particular wireless sensor networks, have a grow-
ing domain of application in areas such as environmental
monitoring, industrial automation, intelligent buildings, search
and surveillance, and automotive applications [3]–[5]. The
characteristics of SNs motivate the development of new classes
of distributed estimation and control algorithms, which explore
these systems’ limited power, computing and communication
capabilities. It is important that the algorithms have tuning
parameters that can be adjusted according to the demands set
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by the applications. In this paper, we investigate a distributed
estimation algorithm for tracking an unknown time-varying
physical variable.
The new estimator for SNs presented in this paper belongs

to a class of recently developed filtering algorithms that exploit
in-network computing [6]. The scalability of these algorithms
is based on that node operates using only local information.
Suitable cooperation between neighboring nodes improves the
estimation quality considerably. Using sensor readings from
more than one sensor, for example, can overcome intrinsic
performance limitations due to uncertainty and noise present
in individual devices.
In-network computing thus differs from the traditional ar-

chitecture where sensors simply provide raw data to a fusion
center. By letting the network do the computations, it is
possible to reach a scalable, fault tolerant and flexible design.
The drawback is that such a system is more difficult to analyze,
as it is an asynchronous distributed computing system [7]
with inputs and dynamics coupled to a physical environment.
Despite current research activity and major progress, the
theoretical understanding is far from satisfactory of these
systems, exposed to link and node failures, packet drops,
restricted power consumption etc.

A. Main Contribution

The main contribution of this paper is a novel distributed
minimum variance estimator. A time-varying signal is jointly
tracked by a SN, in which each node computes an estimate as
a weighted sum of its own and its neighbors’ measurements
and estimates. The filter weights are time varying and updated
locally. The filter has a cascade structure with an inner loop
producing the state estimate and an outer loop producing an
estimate of the error covariance. The state estimate is obtained
as the solution of an optimization problem with quadratic cost
function and quadratic constraints. We show that the problem
has a distributed implementation with conditions that can be
locally checked. It is argued that the estimator is practically
stable if the signal to track is slowly varying, so the estimate of
each node converges to a neighborhood of the signal to track.
The estimate in each node has consequently a small variance
and a small bias. A bound on the estimation error variance,
which is linear in the measurement noise variance and decays
with the number of neighboring nodes, is presented. The
algorithm is thus characterized by a trade-off between the
amount of communication and the resulting estimation quality.
Compared to similar distributed algorithms presented in the
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literature, the one introduced in this paper features better
estimates, but at the cost of a slightly increased computational
complexity. These aspects are illustrated in the implementation
discussion and computer simulations exposition in the latter
part of the paper.

B. Related Work

Distributed signal processing is a very active research area
due to the recent developments in networking, computer and
sensor technologies.
The estimator presented in this paper has two particular

characteristics: it does not rely on a model of the signal to
track, and its filter coefficients are time varying. It is related
to recent contributions on low-pass filtering by diffusion
mechanisms, e.g., [1]–[13]. Many of these papers focus on
diffusion mechanisms to have each node of the network obtain
the average of the initial samples of the network nodes. Major
progress has been made in understanding the convergence
behavior of these consensus or state-agreement approaches.
In [11], a scheme for sensor fusion based on a consensus filter
is proposed. Here, each node computes a local weighted least-
squares estimate that is shown to converge to the maximum-
likelihood solution for the overall network. An extension of
this approach is presented in [14], where the authors study
a distributed average computation of a time-varying signal,
when the signal is affected by a zero-mean noise. A convex
optimization problem is posed to compute the edge weights,
which each node uses to minimize the least mean square devi-
ation of the estimates. The same linear filter is also considered
in [15], where the weights are computed off-line to speed up
the computation of the averages. Further characterization of
consensus filters for distributed sensor fusion is given in [13].
Another approach to distributed estimation is based on

nonlinear filters using self-synchronization and coupling func-
tions, e.g., [16]–[19]. In this case, the estimate of each node
is provided by the state of a nonlinear dynamical system. This
system is coupled to some of the other nodes by a static
coupling function. Some conditions on the coupling function
that lead to asymptotic state synchronization are investigated
in [19].
Distributed filtering using model-based approaches is stud-

ied in various wireless network contexts, e.g., [20]–[24]. Dis-
tributed Kalman filters and more recently a combination of the
diffusion mechanism, discussed previously, with distributed
Kalman filtering, e.g., [12], [25] have been proposed. A
plausible approach is to communicate the estimates of the
local Kalman filters, and then average these values using a
diffusion strategy.
The originality of our approach is based on:
• Our estimator tracks a time-varying signal, while [9]–[11]
are limited to averaging initial samples.

• Our approach does not require a model of the system that
generates the signal to track, in contrast to model-based
approaches, e.g., [12], [24].

• We do not impose a pre-assigned coupling law among
the nodes as in [19].

• Compared to [11]–[13], we do not rely on the Lapla-
cian matrix associated to the communication graph, but
consider a more general model of the filter structure.

• Our filter parameters are computed through distributed
algorithms, whereas for example [14] and [15] rely on
centralized algorithms for designing the filters.

• With respect to our own early contributions [1], [2],
where we extended the algorithms in [11]–[13] by de-
signing the filter weights such that the variance of the
estimation errors is minimized, here we improve the filter
design considerably and we characterize the performance
limit of the filter.

C. Outline

Section II presents the distributed estimation problem con-
sidered throughout the paper. The distributed estimator design
is discussed in Section III. A distributed minimum variance
optimization problem is posed and by restricting the set of
admissible filter weights it is possible to obtain a solution
where the error convergence is guaranteed. A bound on the
estimation error variance is also computed. The latter part
of Section III discusses estimation of the error covariance.
Section IV presents the detail of the implementation of the
estimation algorithm. Numerical results illustrating the per-
formance of the proposed estimator and comparing it to some
related proposals are also given. Finally, Section V concludes
the paper.

D. Notation

We denote the set of non-negative integers as N0 =
{0, 1, 2, . . .}. With | · | we denote either absolute value or
cardinality, depending on the context. With ‖·‖ we denote the
�2-norm of a vector and the spectral norm of a matrix. Given
a matrix A ∈ Rn×n, we denote with λr(A), 1 ≤ r ≤ n, its r-
th eigenvalue, with λmin(A) = λ1(A) and λmax(A) = λn(A)
being the minimum and maximum eigenvalue, respectively,
where the order is taken with respect to the real part. We
refer to its largest singular value as γmax(A). The trace of A
is denoted trA. With I and 1 we denote the identity matrix
and the vector (1, . . . , 1)T , respectively. Given a stochastic
variable x we denote by Ex its expected value. For the sake of
notational simplicity, we disregard the time dependence when
it is clear from the context. We define N0 = N ∪ {0}.

II. PRELIMINARIES

A. Problem Formulation

Consider N > 1 sensor nodes placed at random and static
positions in space. We assume that each node measures a
common scalar signal d(t) affected by additive noise:

ui(t) = d(t) + vi(t) , i = 1, . . . , N ,

with t ∈ N0 and where vi(t) is zero-mean white noise. Let us
collect measurements and noise variables in vectors, u(t) =
(u1(t), . . . , uN(t))T and v(t) = (v1(t), . . . , vN (t))T , so that
we can rewrite the previous equation as

u(t) = d(t)1 + v(t) , t ∈ N0 .

The covariance matrix of v(t) is assumed to be diagonal
Σ = σ2I , so vi(t) and vj(t), for i �= j, are uncorrelated. The
additive noise, in each node, can be averaged out only if nodes
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communicate measurements or estimates. The communication
rate of the measurements and estimates should be just fast
enough to track the variations of d(t). Indeed, increasing the
sampling rate, in general, is not beneficial because measure-
ments might then be affected by auto-correlated noise.
It is convenient to model the communication network as an

undirected graph G = (V , E), where V = {1, . . . , N} is the
vertex set and E ⊆ V × V the edge set. We assume that if
(i, j) ∈ E then (j, i) ∈ E , so that the direction of the edges
can be dropped when representing the network. The graph G
is said to be connected if there is a sequence of edges in E that
can be traversed to go from any vertex to any other vertex.
In the sequel, we denote the set of neighbors of node i ∈ V

plus the node itself as

Ni = {j ∈ V : (j, i) ∈ E} ∪ {(i, i)} .
The estimation algorithm we propose is such that a node i
computes an estimate xi(t) of d(t) by taking a linear combi-
nation of neighboring estimates and measurements

xi(t) =
∑
j∈Ni

kij(t)xj(t− 1) +
∑
j∈Ni

hij(t)uj(t) . (1)

We assume that neighboring estimates and measurements
are always successfully received, i.e., there are no packet
losses. This assumption is obviously plausible for wired con-
nections, but it is still valid in wireless networks if certain
assumptions hold true. More specifically, the designed esti-
mator is suitable in wireless networks where the sampling
time between measurements is long compared to the coherence
time of the wireless channel (which is around some hundreds
of milliseconds) and an Automatic Repeat Request (ARQ)
protocol is used. Under such assumptions, if the wireless
channel does not allow a packet to be successfully received
at a given time instance, there is enough time to detect
and retransmit erroneous packets until they are successfully
received. These assumptions are representative of the IEEE
802.11b and IEEE 802.11g [26], which have been actually
used for distributed estimation and control algorithms of
unmanned aerial vehicles [27].
We assume that for each node i, the algorithm is initialized

with xj(0) = ui(0), j ∈ Ni. In vector notation, we have

x(t) = K(t)x(t− 1) +H(t)u(t) . (2)

K(t) and H(t) can be interpreted as the adjacency matrices
of two graphs with time-varying weights. These graphs are
compatible with the underlying communication network rep-
resented by G.
Given a SN modeled as a connected graph G, we have the

following design problem: find time-varying matrices K(t)
and H(t), compatible with G, such that the signal d(t) is
consistently estimated and the variance of the estimate is
minimized. Moreover, the solution should be distributed in
the sense that the computation of kij(t) and hij(t) should be
performed locally by node i.

B. Convergence of the Centralized Estimation Error

In this section we derive conditions on K(t) and H(t) that
guarantee the estimation error to converge. Define the estima-
tion error e(t) = x(t)−d(t)1 . Introduce δ(t) = d(t)−d(t−1),

so that the error dynamics can be described as

e(t) = K(t)e(t− 1) + d(t)(K(t) +H(t) − I)1
− δ(t)K(t)1 +H(t)v(t) . (3)

Taking the expected value with respect to the stochastic
variable v(t), we obtain

E e(t) = K(t)E e(t− 1) + d(t)(K(t) +H(t) − I)1
− δ(t)K(t)1 . (4)

Proposition II.1. Consider the system Equation (3). Assume
that

(K(t) +H(t))1 = 1 , (5)

and that there exists 0 ≤ γ0 < 1 such that

γmax(K(t)) ≤ γ0 (6)

for all t ∈ N0.

(i) If H(t)1 = 1 , for all t ∈ N0, then

lim
t→+∞ E e(t) = 0 .

(ii) If |δ(t)| < Δ, for all t ∈ N0, then

lim
t→+∞ ‖E e(t)‖ ≤

√
NΔγ0

1 − γ0
. (7)

Proof: If (K(t)+H(t))1 = 1 then the system equation
reduces to

E e(t) = K(t)E e(t− 1) + δ(t)(H(t) − I)1 . (8)

(i) If H(t)1 = 1 , then (8) becomes E e(t) = K(t)E e(t−
1). Let us consider the function V (t) = ‖E e(t)‖. It
follows that

V (t) ≤ ‖K(t)‖V (t− 1) ≤ γ0V (t− 1) ≤ γt0V (0) ,

which implies that limt→+∞ E e(t) = 0.
(ii) In this case, we have H(t)1 − 1 = −K(t)1 and thus

the system Equation (3) becomes

E e(t) = K(t)E e(t− 1) − δ(t)K(t)1 .

With V (t) = ‖E e(t)‖, we have
V (t) ≤ ‖K(t)‖V (t− 1) + ‖K(t)‖

√
NΔ

≤ γ0V (t− 1) + γ0

√
NΔ

≤ γt0V (0) + γ0
1 − γt0
1 − γ0

√
NΔ .

Taking the limit for t→ +∞ we obtained the result.

Proposition II.1(i) provides the condition H(t)1 = 1

under which the estimate is unbiased. It is possible to show
that in this case the variance is minimized if K(t) = 0 and

hij(t) = hji(t) =

⎧⎨
⎩

1
|Ni| if j ∈ Ni

0 otherwise .

Note that nodes do not use any memory and that the error
variance at each node is proportional to its neighborhood
size. However, if d(t) is slowly varying, then, under the
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assumptions of Proposition II.1(ii), it is possible to guarantee
that ‖E e(t)‖ tends to a neighborhood of the origin, but
the estimate might be biased. Note also that ‖E e(t)‖ is a
cumulative bias, i.e., it is a function of the sum of the N
biases of individual nodes.
The size of the cumulative bias can be kept small with

respect to the signal to track by defining a proper value of
γ0. In particular, Equation (7) can be related to the Signal-to-
Noise Ratio (SNR) of the average of the estimate as follows.
Let Pd denote the average power of d and let Pb denote the
desired power of the biases of the average of the estimates.
Then, we define the desired SNR as SNR = Pd/Pb. Since
there are N nodes, we consider the average SNR of each node
as Υ = SNR/N . Let us assume that we want the estimator to
guarantee that the right-hand side of Equation (7) be equal to
this desired

√
SNR, i.e., that

γ0 =
√

Υ√
Υ + Δ

.

The right-hand side is useful in the tuning of the estimator.
Hence, we denote it as f(Δ,Υ). By choosing an appropriate
Υ, we have a guaranteed convergence property of the estimator
given by the corresponding f(Δ,Υ). This function will allow
us to relate the size of the bias of estimates with the variations
of the signal to track, and the stability of the estimates, as we
see in the next sections.

III. DISTRIBUTED ESTIMATOR DESIGN

In this section we describe how each node computes adap-
tive weights to minimize its estimation error variance. Notice
that, in order to guarantee that the estimation error of the
overall sensor network, in average, converges to a neighbor
of the origin, each node needs to locally compute the row-
elements of K(t) and H(t) so that conditions in Proposi-
tion II.1 are fulfilled. The condition (K(t) + H(t))1 = 1

is easily handled in a distributed way, as it states that the
sum of the row-elements of K(t) and H(t) need to sum up
to one. The bound on the maximum singular value of K(t),
however, requires some transformations so that new conditions
on the row-elements of K(t) fulfill γmax(K(t)) ≤ f(Δ,Υ).
It turns out that it is possible to determine a local condition,∑

j∈Ni
k2
ij ≤ ψi, where ψi is a constant that can be computed

locally by the nodes. We then pose a optimization problem
for finding optimal weights that minimize the error variance
in each node, where the previous conditions are considered
as constraints. An important aspect of the distributed optimal
solution is that the weights depend on the error covariance
matrix, which is not available at each node. We end this section
by discussing a way of estimating it.

A. Distributed Variance Minimization

Let Mi = |Ni|, which denotes the number of neighbors of
node i, including the node itself. Collect the estimation errors
available at node i in the vector εi ∈ RMi . The elements of
εi are ordered according to node indices:

εi = (ei1 , . . . , eiMi
)T , i1 < · · · < iMi .

Similarly, we introduce vectors κTi (t), ηTi (t) ∈ RMi corre-
sponding to the non-zero elements of row i of the matrices
K(t) and H(t), respectively, and ordered according to node
indices.
The expected value of the estimation error at node i can be

written as

E ei(t) = κTi (t)E εi(t− 1) − κTi (t)δ(t)1 , (9)

where we used the fact that d(t) − d(t − 1) = δ(t) and
that (K(t) + H(t))1 = 1 . Note that the latter inequality
is equivalent to (κi(t) + ηi(t))T 1 = 1. We assume that
ei(0) = ui(0). Hence

E (ei(t) − E ei(t))2 = κTi (t)Γi(t− 1)κi(t) + σ2ηTi (t)ηi(t) ,

where Γi(t) = E (εi(t) − E εi(t))(εi(t) − E εi(t))T . To
minimize the variance of the estimation error in each node,
we need to determine κi(t) and ηi(t) so that the previous
expression is minimized at each time instant. We have the
following optimization problem:

P1 : min
κi(t),ηi(t)

κTi (t)Γi(t− 1)κi(t) + σ2ηTi (t)ηi(t) (10)

s.t. (κi(t) + ηi(t))T 1 = 1 , (11)

γmax(K(t)) ≤ f(Δ,Υ) . (12)

The inequality constraint (12) is still global, since γmax(K(t))
depends on all κi(t), i = 1, . . . , N . We show next that it can
be replaced by the local constraint

‖κi(t)‖ ≤ ψi , t ∈ N0 , (13)

where ψi > 0 is a constant that can be computed locally. The
new constraint, however, even though ensure the stability of
the estimation error, leads to a distributed solution which is
in general different from the centralized one.
For i = 1, . . . , N , define the set Θi = {j �= i : Nj ∩

Ni �= ∅}, which is the collection of nodes located at two hops
distance from node i plus neighbor nodes of i. We have the
following result.

Proposition III.1. Suppose there exist ψi > 0, i = 1, . . . , N ,
such that

ψi +
√
ψi
∑
j∈Θi

√
α

(i)
i,jα

(j)
i,j ψj ≤ f2(Δ,Υ) , (14)

where α(i)
i,j , α

(j)
i,j ∈ (0, 1) are such that

∑
c∈Nj∩Ni

k2
ic ≤ α

(i)
i,j

Mi∑
r=1

κ2
iir

∑
c∈Nj∩Ni

k2
jc ≤ α

(j)
i,j

Mj∑
r=1

κ2
jir .

If ‖κi(t)‖2 ≤ ψi, i = 1, . . . , N , then γmax(K(t)) ≤ f(Δ,Υ).

Proof: We use Geršgorin to bound the eigenvalues of
the matrix KKT , i.e., the singular values of K . The follow-
ing relations hold: [KKT ]ii =

∑Mi

c=1 k
2
ic and [KKT ]ij =∑N

c=1 kickjc. By the Geršgorin Theorem we know that for
r = 1, . . . , N

λr(KKT ) ∈
N⋃
i=1

{
z ∈ R : |z − [KKT ]ii| ≤ Ri(KKT )

}
,
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with

Ri(KKT ) =
N∑
j=1

j �=i

∣∣[KKT ]ij
∣∣ = N∑

j=1

j �=i

∣∣∣∣∣
N∑
c=1

kickjc

∣∣∣∣∣ .
Now the inner sum in Ri(KKT ) is non-zero only for c ∈
Nj ∩Ni. Thus,

Ri(KKT ) =
∑
j∈Θi

∣∣∣∣∣∣
∑

c∈Nj∩Ni

kickjc

∣∣∣∣∣∣ .
Using the Cauchy-Schwarz inequality,∣∣∣∣∣∣

∑
c∈Nj∩Ni

kickjc

∣∣∣∣∣∣
2

≤
∑

c∈Nj∩Ni

k2
ic

∑
c∈Nj∩Ni

k2
jc.

Then,
N∑
j=1

j �=i

∣∣∣∣∣
N∑
c=1

kickjc

∣∣∣∣∣ ≤
∑
j∈Θi

√ ∑
c∈Nj∩Ni

k2
ic

∑
c∈Nj∩Ni

k2
jc

≤
∑
j∈Θi

√√√√α
(i)
i,j

Mi∑
r=1

κ2
iir
α

(j)
i,j

Mj∑
r=1

κ2
jjr

=

√√√√Mi∑
r=1

κ2
iir

·
∑
j∈Θi

√√√√α
(i)
i,jα

(j)
i,j

Mj∑
r=1

κ2
jjr

.

Hence,

λr(KKT ) ∈
N⋃
i=1

⎧⎨
⎩z ∈ C :

∣∣∣∣∣z −
Mi∑
r=1

κ2
iir

∣∣∣∣∣ ≤
√√√√Mi∑

r=1

κ2
iir

·

∑
j∈Θi

√√√√α
(i)
i,jα

(j)
i,j

Mj∑
r=1

κ2
jjr

⎫⎪⎬
⎪⎭

From the hypothesis that ‖κi‖ =
∑Mi

r=1 κ
2
iir ≤ ψi and (14),

then

Mi∑
r=1

κ2
ic +

√√√√Mi∑
r=1

κ2
iir

·
∑
j∈Θi

√√√√Mj∑
r=1

α
(i)
i,jα

(j)
i,j κ

2
jjr

≤ f2(Δ,Υ) .

Hence γmax(K) ≤ f(Δ,Υ).
Proposition III.1 provides a simple local condition on the

filter coefficients such that γmax(K) ≤ f(Δ,Υ). We can
expect that Proposition III.1 is in general conservative, be-
cause no a-priori knowledge of the network topology is used,
the proof relies on the Geršgorin theorem and the Cauchy-
Schwartz inequality. There are many other ways to bound
the eigenvalues of a matrix by its elements than the one
used in the proof above, e.g., [28, pages 378–389]. However,
we do not know of any other bounds requiring only local
information. Further, the Perron-Frobenius theory cannot be
directly applied to bound the eigenvalues, because we make
no assumption on the sign of the elements of K(t).
The parameters α(i)

i,j and α
(j)
i,j in Proposition III.1 can all be

set to one. However, this yields very conservative bounds on
the maximum eigenvalue of KKT . In Section IV, we show
how to chose these parameters to avoid bounds that are too
conservative.

B. Optimal Weights for Variance Minimization

Using previous results, we consider the following local
optimization problem:

P2 : min
κi(t),ηi(t)

κi(t)TΓi(t− 1)κi(t) + σ2ηi(t)T ηi(t) (15)

s.t. (κi(t) + ηi(t))T 1 = 1
‖κi‖2 ≤ ψi , (16)

We remark here that Problem P2 has a different solution with
respect to Problem P1, because the constraint (12) has been
replaced with (16). Problem P2 is convex. In fact, the cost
function is convex, as Γ(t − 1) is positive definite, since it
represents the covariance matrix of Gaussian random variable,
and the two constraints are also convex. The problem admits
a strict interior point solution, corresponding to κi(t) = 0 and
ηi(t)1 = 1. Thus, Slater’s condition is satisfied and strong
duality holds [29, pag. 226]. The problem, however, does not
have a closed form solution: we need to rely on numerical
algorithms to derive the optimal κi(t) and ηi(t). The following
proposition provides a specific characterization of the solution.

Proposition III.2. For a given positive definite matrix Γi(t−
1), the solution to problem P2 is given by

κi(t) =
σ2(Γi(t− 1) + ξiI)−1 1

σ2 1 T (Γi(t− 1) + ξiI)−1 1 +Mi
, (17)

ηi(t) =
1

σ2 1 T (Γi(t− 1) + ξiI)−1 1 +Mi
, (18)

with ξi ∈
[
0,max(0, σ2/

√
Miψi − λmin(Γi(t− 1)))

]
.

Proof: Since the problem is convex and Slater’s condition
holds, the KKT conditions are both necessary and sufficient
for optimality. The primal and dual optimal points, (κ∗i , η

∗
i )

and (λ∗i , ν
∗
i ) respectively, need to satisfy

(κ∗i )
Tκ∗i − ψi ≤ 0 , (κ∗i + η∗i )

T 1 − 1 = 0 ,

ξ∗i ≥ 0 , ξ∗i ((κ
∗
i )
Tκ∗i − ψi) = 0 ,

2(Γi + λ∗i I)κ
∗
i + ν∗i 1 = 0 , 2σ2η∗i + ν∗i 1 = 0 ,

where the last two KKT conditions follow from
∇κiL(κi, ηi, ξ, ν) and ∇ηiL(κi, ηi, ξ, ν) with the Lagrangian

L(κi, ηi, ξ, ν) = κTi Γiκi + σ2ηTi ηi + ξi
(
κTi κi − ψi

)
+ νi

(
(κi + ηi)T 1 − 1

)
.

Combining these two KKT conditions with the second KKT
condition we obtain the optimal values. From the fourth KKT
condition we have that either ξ∗ = 0 or (κ∗i )

Tκ∗i = ψi, where
the second equality gives

σ4 1 T (Γi + ξ∗i I)
−2 1

(σ2 1 T (Γi + ξ∗i I)−1 1 +Mi)
2 = ψi .

We are not able to provide a solution ξ∗ in closed form. Instead
we give a bound for the variable. From the previous equation,
we can enforce a ξ ≥ 0 such that

(κ∗i )
Tκ∗i ≤

σ4‖(Γi + ξI)−1‖2

Mi
≤ σ4

Miλ2
min(Γi + ξI)

≤ ψi ,

from where we obtain

ξ ≥ σ2

√
Miψi

− λmin(Γi) ,
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and for all these values of ξ the first KKT condition is always
satisfied. This implies that the optimal value of ξ must be in
the interval [0,max(0, σ2/

√
Miψi−λmin(Γi(t−1))], and the

theorem is proven.
Proposition III.2 gives an interval within which the optimal

ξi can be found. The first constraint in problem P2 is similar
to the water-filling problem for power allocation in wireless
networks [29]. Analogously to that problem, simple search
algorithms such as a bisection algorithm, can be considered
to solve for ξi numerically. Note that each node i needs to
know the covariance matrix Γi(t−1) to compute the weights.
It is important to notice that the problem P2 does not have
the same solution as the problem P1, as the constraints (12)
and (16) are not equivalent, although if (16) holds then (12)
holds as well.

C. Bounds on the Error Variance

The optimal weights from Proposition III.2 gives the fol-
lowing estimation error variance.

Proposition III.3. Let κi(t) and ηi(t) be an optimal solution
given by (17) and (18). Then

E (ei(0) − E ei(0))2 = σ2 ,

E (ei(t) − E ei(t))2 ≤ σ2

Mi
,

t ∈ N0 \ {0}.
Proof: For t = 0, ei(0) = ui(0) = d(0) + vi(0), so

E (ei(0) − E ei(0))2 = σ2. For t > 0, the error variance of
the i-th node with the optimal values of κi(t) and ηi(t) is

E (ei(t) − E ei(t))2 =
σ2

Mi + σ2 1 T (Γi(t− 1) + ξiI)−1 1

− σ4ξi 1
T (Γi(t− 1) + ξiI)−2 1

(Mi + σ2 1 T (Γi(t− 1) + ξiI)−1 1 )2

≤ σ2

Mi + σ2 1 T (Γi(t− 1) + ξiI)−1 1
.

Since Γi(t − 1) is positive definite and ξi ≥ 0, it holds that
1 T (Γi(t− 1) + ξiI)−1 1 > 0. Hence E (ei(t)− E ei(t))2 ≤
σ2

Mi
, t ∈ N0 \ {0} . This concludes the proof.
A consequence of Proposition III.3 is that the estimation

error in each node is always upper bounded by the variance
of the estimator that computes the averages of the Mi mea-
surements ui(t). The bound is obviously rather conservative,
since we do not use any knowledge about the covariance
matrix Γi(t). Proposition III.2 helps us to improve the bound
in Proposition III.3 as follows.

Corollary III.4. The optimal value of κi(t) and ηi(t) are such
that the error variance at node i satisfies

E (ei(t) − E ei(t))2

≤ σ2

Mi +
(∑

j∈Ni
M−1
j + (Miψi)−1/2

)−1 ,

t ∈ N0 \ {0}.

Proof: Using the result in Proposition III.3 we have that

tr Γi(t−1) =
∑
j∈Ni

E (eij (t−1)− E eij (t−1))2 ≤
∑
j∈Ni

σ2

Mj
.

Thus

λmax(Γi(t− 1) + ξiI) ≤
∑
j∈Ni

σ2

Mj
+

+ max
(

0,
σ2

√
Miψi

− λmin(Γi(t− 1))
)

≤
∑
j∈Ni

σ2

Mj
+

σ2

√
Miψi

,

where we used the bound on ξ determined in Proposition III.2.
Since

1 T (Γi(t− 1) + ξiI)−1 1 ≥ 1
λmax(Γi(t− 1) + ξiI)Mi

we have that

E (ei(t) − E ei(t))2 ≤ σ2

Mi + σ2 1 T (Γi(t− 1) + ξiI)−1 1

≤ σ2

Mi +
(∑

j∈Ni
M−1
j + (Miψi)−1/2

)−1 .

D. Distributed Computation of Constraints

The choice of the constants ψi, i = 1, . . . , N , in the
local constraint of problem P2 is critical for the perfor-
mance of the distributed estimator. Next we discuss how to
compute good values of ψi. The intuition is that ψi has
to be upper bounded to guarantee the estimation error to
converge, but ψi should not be too small in order to put
large enough weights on the estimates. Indeed, from the
proof of Proposition III.2 we see that if ψi is large then the
Lagrangian multiplier ξi is small, since it must lie in the in
intervalmax

[
0, σ2/

√
Miψi − λmin(Γi(t− 1))

]
. From Propo-

sition III.3 (and Corollary III.4) it is clear that the estimation
error variance at the node i decreases as ξi decreases. Thus
the larger the value of ψi the lower the error variance.
The set of nonlinear equations in Proposition III.1 provides

a tool to determine suitable values of ψi that guarantee
stability. Since we are interested in determining the largest
solution of the nonlinear equations, we consider the following
optimization problem:

max
ψ1,...,ψN

N∑
i=1

ψi (19)

s.t. ψi +
√
ψi ·

∑
j∈Θi

√
α

(i)
i,jα

(j)
i,j ψj ≤ f2(Δ,Υ) (20)

ψi ≥ 0 ,

with i = 1, . . . , N . It is possible to show that previous problem
has a unique solution, which is the solution to the following
equations:

ψi +
√
ψi
∑
j∈Θi

√
α

(i)
i,jα

(j)
i,j ψj = f2(Δ,Υ) i = 1, . . . , N .

(21)
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Clearly the solution of such system of nonlinear equations
is interesting in our setup if it can be solved in a decen-
tralized fashion. The fact that in (21) only information from
neighboring nodes is required, and not of the entire network,
allows us to develop a decentralized algorithm to compute the
solution. Following [7, Pag.181–191], we consider the iterative
algorithm

ψ(t+ 1) = T (ψ(t)) = (T1(ψ(t)), . . . , TN (ψ(t))) (22)

with initial condition ψ(0) > 0 and with T : RN
+ → RN+ such

that

Ti(ψ(t)) =
1
4

⎡
⎢⎢⎣
√√√√√
⎛
⎝∑
j∈Θi

√
α

(i)
i,jα

(j)
i,j ψj(t)

⎞
⎠

2

+ 4f2(Δ,Υ)

−
∑
j∈Θi

√
α

(i)
i,jα

(j)
i,j ψj(t)

⎤
⎦

2

, (23)

where Ti(ψ) is obtained by solving (21) with respect to ψi. It
is not difficult to show that Ti(ψ) is a contractive function. The
component solution method in [7] ensures that the fixed point
solution at which the iteration converges is the solution of the
nonlinear Equations (21). The computation of the iteration (22)
can be done distributively. Note that node i does not need
to know the thresholds ψj , j �= i, of all the other nodes
in the network, but those which concur in the definition of
Ti(ψ), i.e., ψj that are associated to the nodes of the set Θi.
Thresholds corresponding to nodes at two hops from node i
can be communicate to such node through its neighbors, with
little communication overhead. Notice that, the computation of
the thresholds and the associated communication takes place
before the nodes start to track the signal d(t). Notice also that
the convergence rate of the component solution method for
block contraction converges geometrically to the fixed point.

E. Estimation of Error Covariance

Estimating the error covariance matrix is in general hard for
the problem considered in this paper, because the estimator is
a time-varying system and the stochastic process x, and thus
e, is not stationary. However, if we consider the signals in the
quasi-stationary sense, estimation based on samples guarantees
to give good results. We have the following definition.

Definition III.5 ([30, pag. 34]). A signal s(t) : R → R is
said to be quasi-stationary if there exists a positive constant
C and a functionRs : R → R, such that s fulfills the following
conditions

(i) E s(t) = ms(t), |ms(t)| ≤ C for all t
(ii) E s(t)s(r) = Rs(t, r), |Rs(t, r)| ≤ C for all t and

lim
N→+∞

1
N

N∑
t=1

Rs(t, t− τ) = Rs(τ)

for all τ .

It is easy to see that the time-varying linear system (2)
is uniformly bounded-input bounded-output stable [31, pag.
509]. If a quasi-stationary signal is the input of such system,

then its output is also quasi-stationary [32]. In our case, the
measurement signal u(t) is (component-wise) stationary and
ergodic and thus also quasi-stationary. This implies that also
x(t) is quasi-stationary, since it is the output of a uniformly
exponentially stable time-varying linear system. Thus, we
estimate the error covariance using the sample covariance.
Specifically, we have that the mean E εi = mεi(t) and
covariance Γi(t) can be estimated from samples as

m̂εi(t) =
1
t

t∑
τ=0

ε̂i(τ) (24)

Γ̂i(τ) =
1
τ

t∑
τ=0

(ε̂i(τ) − m̂εi(τ))(ε̂i(τ) − m̂εi(τ))
T , (25)

where ε̂i(t) is the an estimate of the error. Thus the problem
reduces to design an estimator of εi(t). Node i has estimates
xij (t) and measurements uij (t), ij ∈ Ni, available. Let x(i)(t)
and u(i)(t) denote the collection of all these variables. We can
model this data set as

x(i)(t) = d(t)1 + β(t) + w(t) , u(i)(t) = d(t)1 + v(t) ,

where β(t) ∈ RMi models the bias of the estimates and
w(t) is zero-mean Gaussian noise modelling the variance of
the estimator. Summarizing: node i has available 2Mi data
values in which half of the data are corrupted by a small
biased term β(t) and a low variance noise w(t) and the other
half is corrupted by zero-mean Gaussian noise v(t) with high
variance. It is clear that using only u(i)(t) to generate an
estimate d̂(t) of d(t), which could then be used to estimate
ε̂i(t) = x(i)(t) − d̂(t)1 , would have the advantage of being
unbiased. However, its covariance is rather large since Mi is
typically small. Thus, using only measurements to estimate
d(t) yield to an over-estimate of the error, which results
in poor performance. On the other hand, using only x(i)(t)
we obtain an under-estimate of the error. This makes the
weights ηi(t) rapidly vanish and the signal measurements
are discarded, thus tracking becomes impossible. From these
arguments, in order to use both xi(t) and ui(t) we pose a
linear least square problem as follows:

min
d̂,β̂

∥∥∥∥
(
xi

ui

)
−A

(
d̂

β̂

)∥∥∥∥
2

s.t.
∥∥B (d̂ β̂

)∥∥2 ≤ ρ

with A ∈ R2Mi×Mi+1 and B ∈ RMi×Mi+1

A =
(
1 I
1 0

)
, B =

(
0 I

)
,

and ρ being the maxim value of the squared norm of the bias.
However, the previous problem is very difficult to solve in
a closed form, as it is a Quadratically Constrained Quadratic
Problem and it typically requires heavy numerical algorithms
to find the solution, such the transformation into a SDP
problem [29, pag. 653]. Notice also that, in general, the value
of ρ is not known in advance, being it a maximum value of the
cumulative bias of Mi nodes. We thus consider the following
regularized problem
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u(t)

xi(t− 1)

xi(t)Γ̂i(t− 1)

Γ̂i(t− 1)

Γ̂i(t)

z−1

z−1

ε̂(t)

ψi Γ̂i(0)Γ̂i(0)xi(0)

xj∈Ni

ν

x+
i = κT (t)x+ηT (t)u

with weights (17)
and (18)

Eq. (28) Eq. (24)
and (25)

Estimator block designed in subsection III-A–III-B Estimator block designed in section III-E

Fig. 1. Block diagram of the proposed estimator. It consists of two subsystems in a cascade coupling. The subsystem to the left is an adaptive filter that
produces the estimate of d(t) with small variance and bias. The subsystem to the right estimates the error covariance matrix.

min
d̂,β̂

∥∥∥∥
(
xi

ui

)
−A

(
d̂

β̂

)∥∥∥∥
2

+ ν

∥∥∥∥B
(
d̂

β̂

)∥∥∥∥
2

(26)

where ν > 0 is a parameter whose choice is typically rather
difficult.
The solution of (26) is

(d̂, β̂)T = (xi, ui)TA
(
ATA+ νBTB

)−1
.

The inverse of the matrix in the previous equation can be
computed in closed form using the following result:

Proposition III.6. If ν > 0 then(
ATA+ νBTB

)−1
=

=
1

Mi(1 + 2ν)

⎛
⎝1 + ν −1 T

−1
Mi(1 + 2ν)I + 11 T

1 + ν

⎞
⎠ (27)

Proof: By Schur’s complement we obtain(
ATA+ νBTB

)−1
=⎛

⎜⎜⎜⎜⎝

(
2Mi −

Mi

1 + ν

)−1

1 T (11 T − 2Mi(1 + ν)I)−1

(11 T − 2Mi(1 + ν)I)−1 1

(
(1 + ν)I − 11 T

2Mi

)−1

⎞
⎟⎟⎟⎟⎠

From [33] it follows that(
(1 + ν)I − 11 T

2Mi

)−1

=
I

1 + ν
+

1 1 T

Mi(1 + 2ν)(1 + ν)
.

It is easy from here to show that the resulting matrix is (27).

Since we are interested in estimating εi(t) = x(t)− d(t)1
we observe that such an estimate is given by β̂. From the
solution of (26), we have

β̂ =
xi

1 + ν
− ν 1 Txi + (1 + ν)1 Tui

Mi(1 + 2ν)(1 + ν)
1 (28)

For the choice of the parameter ν we propose to use the Gen-
eralized Cross-Validation (GCV) method [34]. This consists
in choosing ν as

ν = argmin
‖(ATA+ νBTB)−1AT (xi, ui)T ‖

tr (ATA+ νBTB)−1
.

Typically the GCV approach is computationally expensive
since the trace of the matrix (ATA+ νBTB)−1 is difficult to
compute, but in our case we have a closed form representation
of the matrix, and thus the computation is not difficult.
However, it might be computationally difficult to carry out
the minimization. Observing that

ν = argmin
‖(ATA+ νBTB)−1AT (xi, ui)T ‖

tr (ATA+ νBTB)−1

≤ argmin
‖(ATA+ νBTB)−1AT ‖

tr (ATA+ νBTB)−1
‖(xi, ui)T ‖ . (29)

a sub-optimal value of ν can be computed solving the right
hand side of (29). Notice that the first term in the right hand
side of (29) is a function of ν that can be computed off-line
and stored in a look-up table at the node. Then, for different
data, the problem becomes that of searching in the table.
Using (28) with the parameter ν computed from (29)

we can then estimate the error mean and covariance matrix
applying (24) and (25), respectively.

IV. IMPLEMENTATION AND NUMERICAL RESULTS

This section presents the estimator structure and the algo-
rithmic implementation followed by some numerical results.

A. Estimator Structure and Implementation

Figure 1 summarizes the structure of the estimator imple-
mented in each node. The estimator has a cascade structure
with two sub-systems: the one to the left is an adaptive filter
that produces the estimate of d; the one to the right computes
an estimate of the error covariance matrix Γi. In the following,
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Fig. 2. Test signals used in the numerical simulations. Note that d2, . . . , d5

are obtained from d1(t) changing the frequency.

(a) (b)

Fig. 3. Topology of the networks with N = 25 nodes (on the left) and
N = 35 (on the right) used in the simulations. For the network with N = 35,
three nodes are highlighted, corresponding to the identifier 12, 18, and 23.
They have the following number of neighbors: |N12| = 2, |N18| = 8, and
|N23| = 15. The node with maximum degree in all the network is node 23.

we discuss in some detail a pseudo-code implementation of
the blocks in the figure.
The estimator is presented as Algorithm 1. Initially, the

distributed computation of the threshold is performed (lines
1–8): node i updates its threshold ψi until a given precision
� is reached. In the computations of ψi, we chose α

(i)
i,j =

|Nj ∩ Ni|/(Mi − 1) and α(j)
i,j = |Nj ∩ Ni|/(Mj − 1). This

works well in practice because kiir , ir = 1, . . . ,Mi, are of
similar magnitude. Indeed, the stability of the average of the
estimation error established in Section II-B, and the bounds
on the error variance in Section III-C, ensure that estimates
among nodes have similar performance.
Numerical results show that that the while-loop (lines 4–8)

converges after about 10–20 iterations.
The estimators for the local mean estimation error and the

local covariance matrix are then initialized (lines 9–10). The
main loop of the estimator is lines 13–24. Lines 14–19 are
related to the left subsystem of Figure 1. The optimal weights
are computed using Equations (17) and (18) (lines 17–18).
Notice that the optimal Lagrangian multiplier ξi is computed
using the function bisection which takes as argument
the interval max(0, σ2

√
Miψi − λmin(Γi(t − 1))) where the

optimal value lays. Notice that, if the nodes have limited
computational power, so that the minimum eigenvalue of the
matrix Γi(t−1) cannot be exactly computed, an upper-bound

Algorithm 1 Estimation algorithm for node i
1. t := 0
2. ψi(t− 1) = 0
3. ψi(t) = 1/Mi

4. while |ψi(t) − ψi(t− 1)| ≥ � = 10−10 do
5. ψi(t+ 1) = Ti(ψ(t))
6. collect thresholds from nodes in Θi

7. t := t+ 1
8. end while
9. t := 0
10. m̂εi(t) := 0
11. Γ̂i(t) := σ2I
12. xi(t) := ui(t)
13. while forever do
14. Mi := |Ni|
15. t := t+ 1
16. ξi = bisection

`
max[0, σ2/

√
Miψi − λmin(Γi(t− 1))]

´

17. κi(t) :=
σ2(Γ̂i(t− 1) + ξiI)

−1 1

Mi + σ2 1 T (Γ̂i(t− 1) + ξiI)−1 1

18. ηi(t) :=
1

Mi + σ2 1 T (Γ̂i(t− 1) + ξiI)−1 1

19. xi(t) :=
P

j∈Ni
κij (t)xj(t− 1) +

P
j∈Ni

ηij (t)uj(t)

20. β̂ :=
xi

1 + ν
− ν 1 Txi + (1 + ν)1 Tui

Mi(1 + 2ν)(1 + ν)
1

21. ε̂i := β̂

22. m̂εi(t) :=
t− 1

t
m̂εi(t− 1) +

1

t
ε̂i(t)

23. Γ̂i(t) :=
t− 1

t
Γ̂i(t − 1) +

1

t
(ε̂i(t) − m̂εi(t))(ε̂i(t) −

m̂εi(t))
T

24. end while

based on Geršgorin can be used instead. The estimate of
d(t) is computed in line 19. Lines 20–23 are related to the
right subsystem of Figure 1. These lines implement the error
covariance estimation by solving the constrained least-squares
minimization problem described in subsection III-E. Sample
mean and covariance of the estimation error are updated in
lines 22–23. These formulas correspond to recursive imple-
mentation of (24) and (25).
Let us comment on the inversions of the estimated error

covariance matrix Γ̂i in lines 17–18. In general, the dimension
of Γ̂i is not a problem because we consider cases when
the number of neighbors is small. Precautions have still to
be taken, because even though the error covariance matrix
Γi is always positive definite, its estimate Γ̂i may not be
positive definite before sufficient statistics are collected. In our
implementation, we use heuristics to ensure that Γ̂i is positive
definite.

B. Numerical Results

Numerical simulations have been carried out in order to
validate performance of the proposed distributed estimator. We
compare the our estimator with some similar estimators related
to the literature. We consider the following five estimators:

E1: K = H = (I−L)/2 where L is the Laplacian matrix
associated to the graph G.

E2: K = 0 andH = [hij ] with hij = 1/Mi if node i and
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Fig. 4. Plots showing N = 35 realizations of the measurements and estimates at each node for each estimator and for the signal d2(t).
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Fig. 5. Values of the maximum singular value γmax(K(t)) for the set of simulations summarized in Table I. On the left the case of N = 25 and on the
right N = 35. As it can be seen γmax(K(t)) < 1 in all cases. Low values of γmax(K(t)) correspond to higher values of Δ (namely fast signals).

j are connected, and hij = 0 otherwise. Thus, the
updated estimate is the average of the measurements.

E3: K = [kij ], where kii = 1/2Mi, kij = 1/Mi if
node i and j are connected, kij = 0 otherwise,
whereas H = [hij ] with Hii = 1/2Mi, and hij = 0
elsewhere. This is the average of the old estimates
and node’s single measurement.

E4: K = H with kij = 1/2Mi if node i and j
are connected, and i = j. The updated estimate
is the average of the old estimates and all local
measurements.

Ep: The estimator proposed in this paper.

The estimators E1, . . . , E4 are based on various heuristics.
They are related to proposals in the literature, e.g., E1 uses
filter coefficients given by the Laplacian matrix, cf., [11]–[13].

It is important to note, however, that in general the weights
based on Laplacian do not ensure the minimization of the
variance of the estimation error.

Figure 2 shows a set of test signals d1, . . . , d5 that we have
used to benchmark the estimators. Note that the signals differ
only in their frequency content.

We suppose that we know a bound for Δ based on these
signals. We have set Δ to be 10% larger than its actual value
for each signal. We have chosen the desired average SNR to
Υ = 10, see Section II.

We consider two networks G25 and G35 with N = 25 and
N = 35 nodes, respectively, see Figure 3. These networks are
obtained by distributing the nodes randomly over a squared
area of size N/3. The graph is then obtained by letting two
nodes communicate if their relative distance is less than

√
N .
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Fig. 6. Zoom of some of the curves in Figure 2. In particular, we plot the measurements and estimates of the nodes 12, 18 and 23 having the minimum
degree, degree equal to the average degree of the network, and maximum, respectively (see Figure 3). In thick solid curve is shown the signal d(t). The
dashed curves show the measurement and estimate at node 12, in dash-dotted those at node 18 and the solid curves show those at node 23. The horizontal
lines in the the top-left figure are the interval within which the estimates variate. We chose to have different scales to make more clear the estimation process.

We discuss in detail the distributed estimator over the
network network G35. Measurements and estimates for all
nodes are shown in Figure 4 for d2. Clearly, the measurements
are quite noisy, and in particular σ2 = 1.5. All estimators,
E1, . . . , E4 and Ep, are able to track the signal, but the quality
of the estimates are varying quite a bit. It is evident that E1

and E2 give the worst estimates, while Ep performs best. The
relative performance between E1, . . . , E4 is rather obvious
given how their estimate is constructed, e.g., E2 simply take
the average of the measurements while E4 averages over
both measurements and estimates. By choosing the weights
appropriately, we see that the proposed estimator Ep gives
substantially lower estimation variance. Figure 6 shows a
zoom of Figure 4 for the time interval [350, 450]. The figure
compares the measurements and estimates of the three nodes
highlighted in Figure 3. These nodes represent the node with
minimum connectivity (dashed curve), average connectivity
(dash-dotted curve) and maximum connectivity (solid curve).
The thick line correspond to d2. Note that the node with low
connectivity is not following d2 very well. We also see that
the estimate produced by E3 has a quite substantial bias. In
general, we have observed through extensive simulations that
E3 work well for low-frequency signals to track, whereas
E4 works better for signal with higher frequency. Numerical
studies of various networks confirm the type of behaviors
we see in Figures 4 and 6. We summarize a set of these
simulations next.

In order to study performance of the estimators, we consider
the mean square error of the estimates of each node. Each
estimator has an initial transition phase, so to remove that we
compute the mean square error after 70 steps. We average the
mean square error over all nodes of the network. The average

we obtain, we denote MSE. We define an improvement factor
of our estimator compared to the estimators E1, . . . , E4 as

μi =
MSE(Ei) −MSE(Ep)

MSE(Ei)
, i = 1, . . . , 4.

Table I reports MSE and μi for G25 and G35, and for all
test signals d1, . . . , d5. Table I shows that Ep outperforms
all other estimators in all cases. Specifically, Ep exhibits
performance improvement from a minimum of 15%, in the
case of network G35 nodes and d1, up to 85% in the same
network and d4. The Laplacian-based estimator E1 has poor
performance. Note that E1 typically puts more weights to the
local estimate and measurement of a node than to the estimates
and measurements received from its neighbors. Because the
network is homogenous, this yields poor performance. When
the frequency of the test signal is high, the performance
improvement is not substantial for Ep. The reason is found
in the fact that our estimator tries to keep low the bias, but
paying the price of an higher variance of the estimation error.
Finally, in Figure 5 we plotted the maximum singular value

of the matrix K(t) of Ep as a function of time for the
simulations in Table I. This plot verifies the validity of our
design approach.

V. CONCLUSIONS

In this paper, we have presented a fully distributed minimum
variance estimator for sensor networks. The purpose of such
estimator is accurate tracking of a time varying signal using
noisy measurements. A mathematical framework is proposed
to design a filter, which runs locally in each node. It only
requires a cooperation among neighboring nodes. In order
to obtain a minimum variance estimator, we started from a
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TABLE I
PERFORMANCE (MSE AND IMPROVEMENT FACTOR) OF THE PROPOSED ESTIMATOR VERSUS SOME CHOSEN HEURISTICS. THE TABLE HAS BEEN DIVIDED

INTO FIVE SUB-TABLES, ONE FOR EACH TEST SIGNAL d1(t)-d5(t), AND FOR DIFFERENT CASES OF THE NETWORK SIZE.

d1(t), Δ = 0.118
Type of Estimator N = 25 N = 35

MSE μi MSE μi

E1: Laplacian Based 0.445 32.7 % 0.456 41.1 %
E2: Average of u 0.659 54.5 % 0.567 52.6 %
E3: Average of x and ui 0.665 54.9 % 0.872 69.2 %
E4: Average of x and u 0.372 19.6 % 0.316 15.1 %
Ep: Proposed Estimator 0.299 0.270

d2(t) Δ = 0.059
Type of Estimator N = 25 N = 35

MSE μi MSE μi

E1: Laplacian Based 0.445 48.8 % 0.454 52.9 %
E2: Average of u 0.658 65.4 % 0.565 62.2 %
E3: Average of x and ui 0.389 41.6 % 0.539 60.3 %
E4: Average of x and u 0.366 37.7 % 0.313 31.6 %
Ep: Proposed Estimator 0.228 0.214

d3(t), Δ = 0.040
Type of Estimator N = 25 N = 35

MSE μi MSE μi

E1: Laplacian Based 0.442 49.0 % 0.457 59.4 %
E2: Average of u 0.662 65.8 % 0.572 67.6 %
E3: Average of x and ui 0.330 31.5 % 0.391 52.5 %
E4: Average of x and u 0.367 38.4 % 0.315 41.2 %
Ep: Proposed Estimator 0.224 0.186

d4(t), Δ = 0.033
Type of Estimator N = 25 N = 35

MSE μi MSE μi

E1: Laplacian Based 0.444 61.8 % 0.447 66.4 %
E2: Average of u 0.663 74.3 % 0.564 73.4 %
E3: Average of x and ui 0.240 28.8 % 0.256 41.3 %
E4: Average of x and u 0.370 53.8 % 0.308 51.2 %
Ep: Proposed Estimator 0.170 0.150

d5(t), Δ = 0.000
Type of Estimator N = 25 N = 35

MSE μi MSE μi

E1: Laplacian Based 0.436 73.9 % 0.446 81 %
E2: Average of u 0.656 83.8 % 0.560 85 %
E3: Average of x and ui 0.195 41.6 % 0.150 44 %
E4: Average of x and u 0.358 68.2 % 0.305 72 %
Ep: Proposed Estimator 0.114 0.080

centralized optimization problem, and then we converted it
into a decentralized problem transforming global constraints
into distributed ones. The filter structure is composed by a
cascade of two blocks: the first block computes the estimator
coefficients at each time instance, and the second block esti-
mates the error covariance matrix needed, by the first block, at
next step. The estimator coefficients are designed such that the
local behavior of a node ensures the overall estimation process
to be stable. We showed that the distributed estimator is stable,
with mean and variance of the estimation error bounded.
Numerical results proved that our filter outperforms existing
solutions proposed in literature, as well as other heuristic
solutions. Future work includes stability analysis of the filter
with respect to packet losses, and experimental validation.
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