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Abstract— In this paper we consider state estimation carried
over a sensor network. A fusion center forms a local multi-
hop tree of sensors and fuses the data into a state estimate.
A set of sensor trees with desired properties is constructed,
and those sensor trees are scheduled in such a way that the
network lifetime is maximized. The sensor tree construction and
scheduling algorithms are shown to have low polynomial time
complexity which lead to efficient implementation in practice.
The scheduling algorithm is also shown to return the optimal
solution. Examples are provided to demonstrate the algorithms.

I. I NTRODUCTION

A. Background

Wireless sensor networks have attracted much attention in
the past few years and this area of research brings together
researchers from computer science, communication, control,
etc [1]. A typical wireless sensor network consists of a
large number of sensor nodes and some base stations [2].
Sensor nodes are usually battery powered and have lim-
ited processing capabilities. They interact with the physical
world and collect information of interest, e.g, temperature,
humidity, pressure, air density, etc. Depending on the Media
Access Control (MAC) and routing protocols, as well as the
available resources (network bandwidth, node energy, etc),
the collected data are transmitted to their final destination,
usually a fusion center, at appropriate times.

Sensor networks haven been identified as one of the most
important technologies in the 21st century [3], and they have
a wide range of applications, including environment and
habitat monitoring, health care, home and office automation
and traffic control [4]. Although tremendous progress has
been made in the past few years in making sensor network
an enabling technology, many challenging problems remain
to be solved, e.g, network topology control and routing,
collaborative signal collection and information processing,
and synchronization [5].

In particular any practical design must fully consider the
constraints posed by the limited processing capability and
energy supply of each individual sensor. We investigated such
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constraints in [6] by looking at LQG control over a wireless
sensor network. We presented a sensor tree reconfiguration
algorithm to meet a specified level of control performance in
such a way that the total energy usage of the active sensor
nodes in the tree is minimized.

However when a sensor node is not a leaf node, it not
only needs to send a measurement data packet, but also
needs to receive and forward data packets from its child
nodes. As receiving a packet also costs considerable amount
of energy [4], in general those sensor nodes that are closer
to the fusion center consume more energy than those that
are far away. Consequently, the former sensor nodes die
quickly than the latter ones. Define the network lifetime
to be the first time that any one of the sensors dies due
to running out of battery. In [6], although the total sensor
energy consumption is minimized, maximization of network
lifetime is not guaranteed.

The main contribution of this paper are the construction of
a set ofgoodsensor trees which have different energy costs
of individual sensors and scheduling of these sensor trees in
such a way that the network lifetime is maximized.

B. Related Work

The rapid developments of wireless and sensor technolo-
gies enable drastic change of the architecture and embedded
intelligence in these systems. The theory and design tools for
these systems with spatially and temporally varying control
demands are not well developed, but there are a lot of current
research.

Kalman filtering under certain information constraints,
such as decentralized implementation, has been extensively
studied [7]. Implementations for which the computations
are distributed among network nodes is considered in [8]–
[10]. Kalman filtering over lossy networks is considered in
[11], [12]. The interaction between Kalman filtering and
how data is routed on a network seems to be less studied.
Routing of data packets in networks are typically done
based on the distance to the receiver node [13]. Some
recent work addresses how to couple data routing with
the sensing task using information theoretic measures [14].
An heuristic algorithm for event detection and actuator
coordination is proposed in [15]. For control over wireless
sensor networks, the experienced delays and packet losses
are important parameters. Randomized routing protocols that
gives probabilistic guarantees on delay and loss are proposed
in [16], [17].

A compensation scheme in the controller for the variations
on the transport layer that such routing protocols give riseis



Fig. 1. State Estimation Using a Wireless Sensor Network

presented in [18]. A robust control approach to control over
multi-hop networks is discussed in [19].

The rest of the paper is organized as follows. In Section II,
the sensor tree construction and scheduling problems are
formulated, and some previous results on optimal estimation
over sensor trees and tree energy minimization problems
are reviewed. In Section III, we propose an algorithm to
construct a set of sensor trees. In Section IV, we solve
the problem of sensor tree scheduling via linear program-
ming. Examples are given in Section V to demonstrate
the algorithms developed. Concluding remarks are given in
Section VI.

II. PROBLEM SET-UP AND PREVIOUS WORK

A. Plant and Sensor Models

Consider the problem of state estimation over a wireless
sensor network (Fig. 1). The process dynamics is described
by

xk = Axk−1 + wk−1, (1)

wherexk ∈ IRnx is the state of the process andwk ∈ IRnx

is the process noise which is white Gaussian, zero-mean and
with covariance matrixQ ∈ IRnx×nx , Q ≥ 0.

A wireless sensor network is used to measure the state.
When Si takes a measurement of the state in Eqn (1), it
returns

yi
k = Hixk + vi

k, (2)

where yi
k ∈ IRmi is the measurement,vi

k ∈ IRmi is the
measurement noise which is white Gaussian, zero-mean and
with covariance matrixΠi ∈ IRmi×mi , Πi > 0.

Each sensor can potentially communicate via a single-hop
connection with a subset of all the sensors by adjusting its
transmission power. Let us introduce a sensorS0, which we
denote as the fusion center and consider a treeT with rootS0

(see Fig. 2). We suppose that there is a non-zero single-hop
communication delay, which is smaller than the sampling
time of the process. All sensors are synchronized in time,
so the data packet transmitted fromSi to S0 is delayed one
sample when compared with the parent node ofSi.
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Fig. 2. An Example of a Sensor Tree

B. Sensor Energy Cost Model

We assume that the sensor nodes are battery powered. Sen-
sors spend energy in many ways,i.e., packet transmission and
reception, idle listening, computing, etc [4]. By appropriately
designing the MAC protocol such as TDMA protocol, packet
transmission and reception dominate the total energy usage.
Defineei

tx as the energy cost forSi sending a measurement
packet to its parent node andei

rx as the energy cost forSi

receiving a measurement packet from one of its children.
The transmission powerei

tx typically grows rapidly with the
distance to the receiver1, and ei

rx is about the same for
each sensor. Without loss of generality, we writeei

rx = erx.
Given a treeT representing the sensor communications with
S0, the total energy cost is then given by

e(T ) =
∑

Si∈T

ei
tx + |T |erx (3)

where|T | denotes the number of nodes in treeT .

C. Previous Work

In [6], the following two problems are solved.
Problem 2.1:Given a treeT representing sensor com-

munications withS0, what is the optimal state estimate
x̂k(T ) and its associated steady state error covarianceP∞(T )
computed atS0?
The following result is obtained.

Theorem 2.2: [6] Consider a sensor treeT with depthh.

1) x̂k andPk can be computed fromh Kalman filters as

(x̂k−h+1, Pk−h+1)

= KF(x̂k−h, Pk−h, Y k−h+1
k , Ch, Rh)

...

(x̂k−1, Pk−1)

= KF(x̂k−2, Pk−2, Y
k−1
k , C2, R2)

(x̂k, Pk)

= KF(x̂k−1, Pk−1, Y
k
k , C1, R1)

1An estimate ofei

tx
can be be computed based on the considered wireless

technology. A common model is that if the distance betweenSi and Par(Si)
is di, thenei

tx
= βi + αi(di)ni , whereβi represents the static part of the

energy consumption andαi(di)ni the dynamic part. The path loss exponent
ni is typically between 2 and 6.



2) If the limits exist,P∞ satisfies2

P∞ = g̃C1
◦ gC2

◦ · · · ◦ gCh−1
(P ) (4)

whereP is the unique solution togCh
(P ) = P .

Problem 2.3:How should the treeT be established such
that e(T ) is minimized yetP∞(T ) ≤ Pdesired?

A Tree Reconfiguration Algorithmis proposed in [6] such
that a final treeT ′ is returned via a finite iterative recon-
figuration of the given initial treeT0. T ′ has the property
that P∞(T ′) ≤ Pdesired and T ′ approximates the minimum
energy tree.

D. Problems of Interest

The drawback of theTree Reconfiguration Algorithmis
that it does not consider the energy consumption of each
individual sensor, and those sensors that are closer to the
fusion center usually consume more energy than those that
are far away. Consequently, the former sensor nodes die
quickly than the latter ones, which make the overall network
lifetime small. We are therefore interested in solving the
following problems.

Problem 2.4:How can we generate a set ofgood trees
with different energy consumption for each individual sensor
node?

Problem 2.5:Given a set of good trees

T = {Tj : j = 1, · · · , M}

how can we schedule these trees in such a way that the
network lifetime is maximized?

In Section III, we propose aTree Construction Algorithm
that solves Problem 2.4 and in Section IV, we solve Prob-
lem 2.5 via linear programming.

III. T REE CONSTRUCTION

The proposedTree Construction Algorithmconsists of
two main subroutings which are theRandom Initialization
Algorithm and theTopology Improvement Algorithm. The
overall algorithm is presented in Fig. 3.

A. Random Initialization Algorithm

Define the following quantities.

• Sj−hop , {Si : Si is j-hop away fromS0}.
• Sc , {Si : Si is not included inT yet}.

The intuitive idea of theRandom Initialization Algorithm
is that Sj−hop, j = 1, · · · , h are randomly determined in
sequence until allSi’s are included in the tree.

After the execution of theRandom Initialization Al-
gorithm, an initial tree of depthh is constructed with
|Sj−hop| = nj , j = 1, · · · , h, and

∑h

j=1 nj = N .
If n1 = N , then the algorithm returns the star tree, i.e, all

sensor nodes connect toS0 directly. The complexity of the
algorithm is easy seen to beO(N).

2Due to the space limitation, we omit the lengthy definitions of Ci, etc
which can be found in [6]. Readers may find the theorem stated here more
complete than the original one.

Fig. 3. Tree Construction Algorithm

Algorithm 1 RANDOM INITIALIZATION ALGORITHM

h := 0
T := {S0, ∅}
∀j Sj−hop := ∅
Sc = {S1, · · · , SN}
while (Sc 6= ∅) do

h := h + 1
Pick nh from (1, |Sc|) uniformly at random.
l := 1
while (l ≤ nh) do

Pick any Sp ∈ Sc and anySq ∈ S(h−1)−hop

uniformly at random.
ConnectSp to Sq.
Sc := Sc \ {Sp}
T := T ∪ {Sp, (Sp, Sq)}
S(h)−hop := S(h)−hop ∪ {Sp}
l := l + 1

end while
end while

B. Topology Improvement Algorithm

Since the previous algorithm randomly constructs the
initial tree, some sensor communication paths may be es-
tablished inefficiently, i.e, some sensors use more energy
yet have more hops to communicate withS0. The Topology
Improvement Algorithmaims to remove this inefficiency.

WhenSi is connected toSp, we defineτip as the number
of hops betweenSi and S0, and eip as the transmission
energy cost ofSi. Similarly we defineτi0 and ei0 for Si

in the initial tree constructed by theRandom Initialization
Algorithm.

We consider modifying the path ofSi (Si ∈ Sj−hop, j ≥
2) in the initial tree only if there existsSp ∈ Sj−hop, j ≤



τi0 − 1 such that eithereip < ei0 or eip = ei0 andτip < τi0,
in which cases, we reconnectSi to Sp. The first condition
corresponds to reducing the energy consumption ofSi yet
not making the hops betweenSi and S0 larger; the second
condition corresponds to making the hops betweenSi and
S0 smaller yet not increasing its energy consumption. Define
Fi as the indicator function forSi. Fi = 1 means thatSi

has already been examined for possible improvement and not
otherwise. The full algorithm is presented below.

Algorithm 2 TOPOLOGY IMPROVEMENT ALGORITHM

∀i Fi := 0
∀Si ∈ Sj−hop, j ≤ 1, Fi := 1
while ∃Fi = 0 do

Fi := 1
for all Sp ∈ S(j)−hop, j ≤ τi0 − 1 do

compute(τip, eip).
end for
remove all(τip, eip) such thateip > ei0

let Sq be the one in the remaining sensors that has
the leastτip.
if eiq < ei0 or (eiq = ei0 andτiq < τi0) then

reconnectSi to Sq

updateS(j)−hop, j ≤ τi0

end if
end while

Notice thatFi is set to be 1 for allSi ∈ Sj−hop, j ≤ 1,
as for those sensor nodes that are 1 hop away fromS0, no
improvements can be made that further reduce the energy
consumption (and maintain the same hop numbers) or reduce
the hop numbers.

The worst case complexity of the algorithm is easily seen
to beO(N2). Therefore the overall complexity of theTree
Construction Algorithmin the worst case isO(MN2).

IV. OPTIMAL TREE SCHEDULING

In Section III, we construct a set of initial trees, which,
as an input to theTree Reconfiguration Algorithmin [6],
produces a set of treesT such that for anyTj ∈ T , j =
1, · · · , M ,

P∞(Tj) ≤ Pdesired.

Let us defineeij as the total energy cost ofSi in Tj, i.e.,

eij = e
ij
tx + eij

rx

wheree
ij
tx and eij

rx are the energy costs forSi transmitting
and receiving a data packet inTj respectively. Further define
Πi as the initial energy level ofSi. As Problem 2.5 stated,
we would like to scheduleTj in such a way that the network
lifetime is maximized. Without loss of generality, we assume
that Tj is used fortj times in sequence and this is repeated
afterwards. Thus

Πi
∑M

j=1 tjeij

gives the maximum cycle that eachSi can operate before its
battery is fully consumed. As a result, the network lifetime
L can be computed as

L = min
i

∑M

j=1 tjΠi

∑M

j=1 tjeij

(5)

We can therefore write Problem 2.5 as
Problem 4.1:

max
(t1,··· ,tM )

min
i

∑M

j=1 tjΠi

∑M

j=1 tjeij

subject to

tj ≥ tmin, j = 1, · · · , M

wheretj ≥ tmin is added to make sure the estimation will
enter steady state after some transient times.

To solve Problem 4.1, we can write it equivalently as

max
(t1,··· ,tM )

L

subject to

L

M
∑

j=1

tjeij ≤
M
∑

j=1

tjΠi, i = 1, · · · , N

tj ≥ tmin, j = 1, · · · , M

Notice that the first constraint involves bothL andtj , so we
cannot solve the problem via linear programming directly.
Let us define

emin
i = min

j
{eij},

and

L̄ = min
i

Πi

emin
i

,

then we obtain

L = min
i

∑M

j=1 tjΠi

∑M

j=1 tjeij

≤ min
i

∑M

j=1 tjΠi

∑M

j=1 tje
min
i

= min
i

Πi

emin
i

= L̄

Given L, let us defineP(L) as the feasibility problem to

max
(t1,··· ,tM )

1

subject to

L

M
∑

j=1

tjeij ≤
M
∑

j=1

tjΠi, i = 1, · · · , N

tj ≥ tmin, j = 1, · · · , M



Now P(L) can be solved via linear programming as follows.

min
(t1,··· ,tM ,u)

u

subject to

L

M
∑

j=1

tjeij ≤
M
∑

j=1

tjΠi + u, i = 1, · · · , N

tj ≥ tmin − u, j = 1, · · · , M

If the minimizers(t∗1, · · · , t∗M , u∗) satisfiesu∗ ≤ 0, then the
vector (t∗1, · · · , t∗M ) satisfies the feasibility problemP(L).
With the definition ofP(L), we can find the solution to
Problem 4.1 via the followingBinary Search Algorithm.

Algorithm 3 BINARY SEARCH ALGORITHM

t := 1
l := 1
u := x̄

L(0) := 1
L(t) := ⌈ l+u

2 ⌉
while L(t) 6= L(t − 1) do

if P(L(t)) is feasiblethen
l := L(t)
L(t) := ⌈ l+u

2 ⌉
else

u := L(t)
L(t) := ⌈ l+u

2 ⌉
end if
t := t + 1

end while

Theorem 4.2:The Binary Optimal Search Algorithmre-
turns the optimal solutionL∗ with worse case time com-
plexity O(log L̄) ∗ O

(

P(L)
)

, and the optimal scheduling
(t∗1, · · · , t∗M ) is obtained from solvingP(L∗).
Proof: The time complexity of the algorithm is trivial to
show, and we only need to show that ifP(L∗) is feasible,
then for anyL ≤ L∗, P(L) is also feasible. SinceP(L∗) is
feasible,

L∗

M
∑

j=1

t∗jeij ≤
M
∑

j=1

t∗jΠi + u∗, i = 1, · · · , N

t∗j ≥ tmin − u∗, j = 1, · · · , M

Thus the same(t∗1, · · · , t∗M , u∗) automatically satisfy

L

M
∑

j=1

t∗jeij ≤
M
∑

j=1

t∗jΠi + u∗, i = 1, · · · , N

t∗j ≥ tmin − u∗, j = 1, · · · , M

for any L < L∗. HenceP(L) is also feasible.

V. EXAMPLES

Due to the space limitation, we only provide examples
to demonstrate theTree Construction Algorithmand leave it
to future work to combine theTree Construction Algorithm
and theTree Reconfiguration Algorithmin [6], and apply

the scheduling algorithm presented in previous section to the
resulting sensor trees.

We consider the following example with 6 sensors com-
municating toS0. The initial sensor topology is shown in
Fig. 4.

Fig. 4. Initial Sensor Topology

Let dpq denote the relative physical distance between
sensorSp andSq. Assume the transmission energy cost for
Sq when the receiving node isSq is given asd2

pq, i.e, the
larger the distance, the higher the energy cost.

SupposeM = 3 and we run theTree Construction
Algorithm three times. The following initial trees (Fig. 5 - 7)
are returned.

Fig. 5. Tree Construction Algorithm: 1st Round

In the first round, during the execution of theRandom
Initialization Algorithm

• n1 = 3, n2 = 3
• S1−hop = {S1, S2, S4}
• S2−hop = {S3, S5, S6}

Then theTopology Improvement Algorithmis executed and
S3 is reconnected toS1 as its energy consumption is reduced.

Fig. 6. Tree Construction Algorithm: 2nd Round

In the second round, during the execution of theRandom
Initialization Algorithm



• n1 = 1, n2 = 2, n3 = 1, n4 = 1, n5 = 1
• S1−hop = {S3}
• S2−hop = {S1, S4}
• S3−hop = {S5}
• S4−hop = {S2}
• S5−hop = {S6}

Then theTopology Improvement Algorithmis executed,
but in this case, no improvement is made.

Fig. 7. Tree Construction Algorithm: 3rd Round

In the third round, during the execution of theRandom
Initialization Algorithm

• n1 = 2, n2 = 3, n3 = 1
• S1−hop = {S1, S3}
• S2−hop = {S4, S5, S6}
• S3−hop = {S2}

After the Topology Improvement Algorithmis executed,
S2, S5, S6 are reconnected toS0, S1, S0 respectively. How-
ever, in this case, we can do better by reconnectingS5 to S2

as the energy consumption ofS5 will be further reduced yet
the hop number betweenS5 andS0 remains the same. The
reason thatS5 is reconnected toS1 instead is thatS2 initially
has a larger hop number and henceS5 is modified first
according to the algorithm. Hence theTopology Improvement
Algorithm only improvesthe tree returned by theRandom
Initialization Algorithm and does not necessarily produced
the optimal tree. We leave it to future work to construct
better algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have considered the sensor tree con-
struction and scheduling problems for state estimation over
a wireless sensor network. A heuristic algorithm is proposed
that constructs an initial set of sensor trees. An optimal tree
scheduling algorithm having polynomial time complexity is
proposed that maximizes the network lifetime.

There are a few extensions of the current work that
we will pursue in the future which include combining the
Tree Construction Algorithmwith the Tree Reconfiguration
Algorithm in [6]; closing the loop based on the estimation
scheme; experimentally evaluate the algorithms developedin
the paper; consider packet drops issues in the communication
link which is often seen due to the nature of wireless
communications.
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