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Abstract— The formation of groups of closely-spaced heavy-
duty vehicles, known as platoons, reduces the overall aerody-
namic drag and therefore leads to reduced fuel consumption
and reduced greenhouse gas emissions. This paper focuses on
the optimal control of merging maneuvers for the formation of
a growing platoon. Hereto, the merging problem is formulated
as a hybrid optimal control problem and an algorithm for
the computation of optimal merging times and corresponding
optimal vehicle trajectories is developed by exploiting an
extension of Pontryagin’s maximum principle. Moreover, a
model predictive control approach on the basis of this algorithm
is presented that makes the merging maneuvers robust to
modelling uncertainties and external disturbances. The results
are illustrated by evaluating a scenario involving three vehicles,
which indicates fuel savings of up to 13% with respect to the
vehicles driving alone.

I. INTRODUCTION

The road freight transportation sector is facing large
challenges due to increasing fuel prices and the need to
reduce harmful greenhouse gas emissions. An approach to
(partially) address these challenges is heavy-duty vehicle
platooning, where groups (known as platoons) of vehicles
with small inter-vehicular distances are formed to reduce the
overall aerodynamic resistance. This cooperative approach
towards freight transportation has been enabled by advances
in wireless communication technology and it has been shown
experimentally that the formation of platoons can yield a
reduction in fuel consumption of up to 10 % (see [1] and [3]).
Moreover, the operation of heavy-duty vehicles in a platoon
has the potential for a better utilization of the existing road
infrastructure due to the small inter-vehicular distances.

Most existing research on the topic of heavy-duty vehicle
platooning has focused on topics related to the optimal
control of vehicles in a platoon, which is motivated by the
observation that automation is required to safely maintain
the small inter-vehicular distances required to achieve a
significant reduction in aerodynamic drag. Examples of such
control strategies are given by [5], [8], [12], whereas other
works focus on topics ranging from the influence of the
inter-vehicular spacing policy [14] or road topography [15]
to stability properties [9]. These works, however, have in
common that they assume that the vehicles are already
in a platoon. The coordination and formation of platoons
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has received considerable less attention in literature, with
exceptions given by [6] and [16]. In [6], conditions are
given under which it is beneficial for a heavy-duty vehicle
to catch up with an existing platoon, whereas a large-scale
optimization approach for the formation of platoons on a
road network is presented in [16]. Thus, these works focus
on deciding whether to form a platoon or not, but the actual
formation of the platoons through the execution of merging
maneuvers on the road is not considered.

The current paper addresses this topic by targeting the
computation of fuel-optimal merging maneuvers, hereby
assuming that the decision to form a platoon has already been
made. In particular, a representative scenario is examined in
which subsequent merging maneuvers are considered to form
a growing platoon, but the results developed in this paper can
be easily extended to cover more elaborate merging scenarios
(e.g., by merging and formation of sub-platoons). The main
contributions are as follows.

First, the merging problem is formally defined and cast as
an optimal control problem aimed at the minimization of the
total fuel consumption.

Second, an approach for the computation of the fuel-
optimal trajectories is developed by exploiting theory on
hybrid optimal control [13], [11]. Namely, as the dynamics
of the platoon changes with the addition of vehicles, standard
optimal control techniques can not be applied. Instead, the
problem is decomposed into sections in which the com-
position of the platoon is unchanged, which corresponds
to road sections without intersections from which vehicles
can merge. For these sections, optimal velocity profiles are
characterized by using the Pontryagin maximum principle,
hereby assuming that the merging times are known. Next,
the optimal merging times are characterized and an algorithm
is presented to obtain the optmal merging times as well as
the corresponding fuel-optimal trajectories for each vehicle.
Heterogeneous platoons are allowed and the constraints
imposed on vehicles in a platoon are explicitly addressed
by considering the dynamics of the platoon as a whole.

Third, a model predictive control approach for control of
merging maneuvers is developed based on the hybrid optimal
control algorithm discussed above. By using this framework,
the execution of the merging maneuvers becomes robust
to modelling uncertainties as well as external disturbances.
Moreover, it enables a decentralized implementation.

For a scenario involving three vehicles, it is shown that this
approach leads to a reduction in fuel consumption of up to
13 % with respect to each vehicle driving alone. Moreover, it
is noted that the techniques developed in this paper can also
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Fig. 1. Illustration of the road network for the merging problem for N+1
vehicles. The merging maneuvers are initiated from the open circles and
starting times tsq , whereas the rightmost circle denotes the final destination
with common final time tf . Platoons Pq can be formed on overlapping
parts of the vehicles’ routes by merging with an existing platoon at the
gray circles at merging times τq .

form the basis of an algorithm that decides on whether to
form a platoon or not, as the fuel cost associated to merging
maneuvers is explicitly computed.

The remainder of this paper is structured as follows. In
Section II, the vehicle model is introduced and a detailed
statement of the merging problem for platoon formation is
given. A hybrid optimal control approach for the fuel-optimal
execution of merging maneuvers is discussed in Section III,
whereas Section IV presents an implementation of this opti-
mization algorithm in the scope of model predictive control.
Simulation results showing the feasibility and robustness of
this approach are given in Section V. Finally, conclusions
are stated in Section VI.

II. VEHICLE MODEL AND PROBLEM STATEMENT

Consider N + 1 heavy-duty vehicles modeled as

ṡi = vi,
miv̇i = −crgmi − 1

2ρcd,iAiv
2
i + ui,

(1)

with si and vi representing the position and velocity of
vehicle i, respectively, which are collected in the state xi =
[ si vi ]T for i ∈ {0, 1, . . . , N}. The mass of vehicle i
is given as mi, whereas the first term on the right-hand
side of the second equation represents the rolling resistance
with rolling resistance coefficient cr and g the gravitational
acceleration. The second term models the air drag, which
is dependent on the air density ρ, air drag coefficient cd,i
and the frontal area Ai of vehicle i. The air drag coefficient
is dependent on the interaction with other vehicles and
decreases when vehicle i closely follows a preceding vehicle.
This is represented as

cd,i =

{
c0d,i , vehicle i is alone or platoon leader,
ηic

0
d,i , vehicle i is a platoon follower, (2)

where 0 < ηi < 1 represents the air drag reduction due to
platooning and c0d,i the nominal drag coefficient. Finally, ui
represents the combined traction force due to the engine and
the braking force.

In this paper, N + 1 vehicles are considered that form
a growing platoon through subsequent merging maneuvers,
as schematically depicted in Figure 1. Each vehicle has a
separate starting point xsi = [ ssi v

s
i ]T with starting time tsi ,

but it is assumed that all vehicles have the same destination
xf (with final time tf ) and that all routes overlap. Specifi-
cally, the merging maneuvers have to be executed in such a

way that the total fuel cost of all vehicles is minimized, as
expressed in the cost function

J =

N∑
i=0

∫ tf

tsi

|ui(t)|2 dt, (3)

where it is recalled that the formation of platoons reduces
the fuel consumption through a reduced aerodynamic drag,
see (2). However, the formation of platoons imposes (when
the length of the vehicles and their inter-vehicular distance
is neglected) the following constraint:

xi(t) = xj(t), ∀ i, j ∈ Pq, ∀ t ∈ [τq, τq+1], (4)

for all q ∈ {1, 2, . . . , N} and with τN+1 = tf . In (4), Pq =
{0, 1, . . . , q} is a set that collects the indices of the vehicles
in the platoon after q vehicles have merged, and τq represent
the merging times as indicated in Figure 1. These merging
times correspond to the locations of the road intersections
denoted as smq . It is stressed that the minimization of the fuel
cost (3) requires both the computation of the optimal merging
times τq as well as the optimal vehicle trajectories xi(·). A
hybrid optimal control approach towards the computation of
the optimal trajectories is given in the next section.

It is remarked that the formation of platoons might not
be the most fuel-efficient approach towards traversing a
number of vehicles to a common destination, as the cost of
coordination required to form a platoon might be higher than
the benefits offered by platooning. However, in this paper,
it is assumed that the decision on forming a platoon has
already been made. Nonetheless, by computing the optimal
fuel cost for forming a platoon, the techniques developed in
this paper might provide an approach towards making such
a decision. Also, it is noted that, even though the specific
case of Figure 1 is considered for ease of discussion, more
complex merging schemes (e.g., through the formation and
merging of sub-platoons) can be handled similarly.

III. OPTIMAL CONTROL OF MERGING MANEUVERS

The cost function (3) provides a characterization of the
total fuel cost by summing the cost of each vehicle. However,
the dynamics of a given vehicle changes after it has merged
with the platoon due to (2), so that it is more convenient to
express the cost function (3) equivalently as a sum over time
intervals in which the dynamics (as well as the platooning
constraints (4)) remain unchanged. This leads to

J =

N∑
q=0

∑
i∈Pq

∫ τq+1

τq

|ui(t)|2 dt

+

N−1∑
q=0

∫ τq+1

tsq+1

|uq+1(t)|2 dt, (5)

where τ0 = ts0 and τN+1 = tf . Here, the terms on the first
line represent the cost of driving the platoon Pq between
intersection q and q + 1 (with corresponding merging times
τq and τq+1), whereas the second line gives the fuel cost of
the individual vehicle approaching intersection q + 1.



The form (5) of the cost function J will be used to
obtain the fuel-optimal vehicle trajectories and corresponding
merging times. In order to find this optimal solution, two
subsequent steps are discussed. First, assuming that the
merging times τq are given, the optimal vehicle and platoon
trajectories are given. Second, the optimal merging times
are determined and an algorithm for computing the optimal
solution is discussed.

A. Optimization of trajectories

Under the assumption that the merging times τq are
given, it is readily observed that the merging problem can
be decomposed in subproblems of the optimal traversal of
each edge (i.e., road segment) in Figure 1. Considering
the traversal of the platoon Pq = {0, 1, . . . , q} between
intersections q and q + 1 leads to the cost function

J̄q =
∑
i∈Pq

∫ τq+1

τq

|ui(t)|2 dt, (6)

where it is recalled that the constraint (4) is required to hold.
In order to ensure the satisfaction of this constraint, a platoon
state x̄q = [ s̄q v̄q ]T is defined such that all vehicles in the
platoon Pq satisfy

x̄q = x1 = x2 = . . . = xq. (7)

Similarly, after defining a platoon input ūq and total platoon
mass m̄q as

ūq =
∑
i∈Pq

ui, m̄q =
∑
i∈Pq

mi, (8)

it follows from summing (1) for all i ∈ Pq , hereby using the
constraint (4) as expressed through (7), that the dynamics of
the platoon can be written as

˙̄sq = v̄q,
m̄q ˙̄vq = −crgm̄q − 1

2ρCd,q v̄
2
q + ūq,

(9)

with Cd,q a parameter characterizing the total air drag as

Cd,q = c0d,0A0 +

q∑
i=1

ηic
0
d,iAi. (10)

Moreover, by comparing the platoon dynamics (9) to the
vehicle dynamics (1), it follows that the input ui(·) of each
vehicle in the platoon (i.e., satisfying (7)) can be obtained
as ui = αq,iūq + βq,iv̄

2
q , with

αq,i =
mi

m̄q
, βq,i = 1

2ρ

(
cd,iAi −

mi

m̄q
Cd,q

)
(11)

for all i ∈ Pq and where cd,i = c0d,i for i = 0 and cd,i = ηic
0
d,i

otherwise. By exploiting this, the cost function (6) can be
written as

J̄q =
∑
i∈Pq

∫ τq+1

τq

∣∣αq,iūq(t) + βq,iv̄
2
q (t)

∣∣2 dt, (12)

which is only dependent on the platoon state and input.
More importantly, the introduction of the platoon state in
(7) ensures the automatic satisfaction of the constraints (4),

such that the optimal traversal of a road segment can be cast
as the unconstrained optimal control problem

minūq(·) J̄q

subject to: ˙̄xq = f̄q(x̄q, ūq),
x̄q(τq) = xmq , x̄q(τq+1) = xmq+1,

(13)

where the vector field f̄q is given by (9) as

f̄q(x̄q, ūq) =

[
v̄q

−crg − 1
2m̄q

ρCd,q v̄
2
q + 1

m̄q
ūq

]
. (14)

In (13), xmq = [ smq vmq ]T defines the position of the
intersection and the desired merging velocity.

The optimization problem (13) can be solved by exploiting
the theory of optimal control (see, e.g., [7]) by introducing
the Hamiltonian

H̄q(λ̄q, x̄q, ūq) = λ̄T
q f̄q(x̄q, ūq) + lq(x̄q, ūq), (15)

where lq(x̄q, ūq) =
∑
i∈Pq
|αq,iūq + βq,iv̄

2
q |2. By Pon-

tryagin’s maximum principle (see [10]), the optimal state
trajectory x̄∗q(·) and optimal input function ū∗q(·) satisfy

˙̄x∗q =
∂H̄q

∂λ̄q
(λ̄∗q , x̄

∗
q , ū
∗
q) = f̄q(x̄

∗
q , ū
∗
q), (16)

˙̄λ∗q = −∂H̄q

∂x̄q
(λ̄∗q , x̄

∗
q , ū
∗
q), (17)

for some function λ̄∗q(·) and satisfying the constraints
x̄∗q(τq) = xmq , x̄q(τq+1) = xmq+1. The optimal input reads

ū∗q(t) = arg min
u
H̄q(λ̄

∗
q(t), x̄

∗
q(t), u) (18)

for all t ∈ [τq, τq+1] whereas the Hamiltonian is constant
over the same time interval, i.e.,

H̄q(λ̄
∗
q(t), x̄

∗
q(t), ū

∗
q(t)) = const. (19)

The statement of the Pontryagin maximum principle allows
for solving the optimal control problem (13) through the
solution of the boundary value problem (16)–(18), where the
latter can be obtained by the use of numerical methods such
as the (multiple) shooting method, see, e.g., [2].

Even though the problem (13) is stated for a platoon,
similar results can be obtained for vehicles that merge to the
platoon. Namely, a vehicle i = q + 1 that merges with the
platoon Pq at τq+1 can be regarded as a one-vehicle platoon.
This leads to the optimal control problem

minũq(·) Jq

subject to: ˙̃xq = fq(x̃q, ũq),
x̃q(t

s
q+1) = xsq+1, x̃q(τq+1) = xmq+1,

(20)

with x̃q = xq+1 and ũq = uq+1 and where the vector field
fq represents the dynamics (1) for vehicle i = q + 1. The
cost function Jq is in this case given as

Jq =

∫ τq+1

tsq+1

|ũq(t)|2 dt. (21)

As the optimization problem (20) can be regarded as a
special case of (13), it is not discussed in more detail. The
corresponding Hamiltonian and adjoint state will be denoted
by Hq and λ̃q , respectively.



B. Optimization of merging times

In the computation of the optimal vehicle and platoon
trajectories in the previous section, it is assumed that the
merging times τq are fixed and known. However, the merging
times are in fact a variable that can be exploited in the
optimization to further reduce fuel consumption. In order
to do so, the theory of hybrid optimal control is used, which
provides an extension of the Pontryagin maximum principle
to systems that switch between modes in which the dynamics
might be different. The platoon merging problem of Figure 1
falls in this class as the dynamics change after an additional
vehicle is merged to the platoon.

Let q be the mode in which platoon Pq is preparing the
merging with vehicle q + 1. At the actual merging point at
time τq+1, a larger platoon Pq+1 is formed, representing a
new mode q+1. Here, it is recalled that the optimal trajectory
of the platoon Pq in mode q is given by the optimal control
problem (13) with state x̄q and Hamiltonian H̄q , whereas the
trajectory of the vehicle is given through (20), with state x̃q
and Hamiltonian Hq . Now, according to the hybrid maximum
principle (see [13], [11]), the optimal solution satisfies the
following continuity condition on the Hamiltonian at the
switching instant τq+1:

H̄q+1

(
λ̄∗q+1(τq+1), x̄∗q+1(τq+1), ū∗q+1(τq+1)

)
= H̄q

(
λ̄∗q(τq+1), x̄∗q(τq+1), ū∗q(τq+1)

)
+Hq

(
λ∗q(τq+1), x̃∗q(τq+1), ũ∗q(τq+1)

)
. (22)

C. Algorithm

The equality (22) provides a necessary condition for
optimality of the switching instants and can be used as a basis
for an algorithm to solve the optimal merging problem. The
following algorithm is based on theoretical developments in
[11], where convergence is proven.

1) Set k = 0 and initialize the merging times as τ (k)
q ,

where τ (k)
0 = ts0 and τ (k)

N+1 = tf .
2) Compute the optimal trajectories for the platoons by

solving (13) for q ∈ {0, 1, . . . , N} and the optimal
trajectories for the merging vehicles by solving (20)
for q ∈ {0, 1, . . . , N − 1}, hereby using the merging
times τ (k)

q .
3) For each merging maneuver, when the mode switches

from q to q + 1, compute an update for the merging
time τq+1 by solving

τ
(k+1)
q+1 = τ

(k)
q+1

− ε
(
H̄q(τ

(k)
q+1) +Hq(τ

(k)
q+1)− H̄q+1(τ

(k)
q+1)

)
, (23)

for each q ∈ {0, . . . , N} and some step size ε > 0.
Here, the arguments in the Hamiltonians (as in (22))
should be replaced by the time instant at which the
Hamiltonians should be evaluated.

4) Increment k to k + 1 and repeat from 2) until conver-
gence.

s̄q(t
l)

sq+1(tl)

s̄q(t
l)

sq+1(tl)

Fig. 2. The merging point at which platoon Pq (with position s̄q) and
vehicle q + 1 (with position sq+1) is taken into account in the model
predictive control problem at time tl if the road intersection is in the
prediction horizon (depicted by an arc) of both. Consequently, the merging
point is not taken into account in the case presented in the left figure, but
it is included in the problem formulation in the right figure.

IV. MODEL PREDICTIVE CONTROL IMPLEMENTATION

The hybrid optimal control approach of Section III allows
for the computation of velocity trajectories for each vehicle
in order to fuel-optimally form a platoon and traverse the
desired road network. However, vehicles might not exactly
track these optimal trajectories due to external disturbances
(e.g., the influence of the road gradient and traffic) or due
to modelling errors. The latter is particularly relevant as
it is difficult in practice to estimate the vehicle mass and
coefficients for road friction and aerodynamic drag.

In order to make the optimal control approach in Sec-
tion III robust to such disturbances, a model predictive
control framework is used. Model predictive control [4] relies
on introducing a feedback mechanism by recalculating the
optimal solution after each time step δt, herein considering
a so-called prediction horizon with length h (h ≥ δt).

The model predictive control algorithm can be informally
stated as follows, where the perspective of vehicle i is taken.

1) Set l = 0 and initialize tl = tsi .
2) Compute a desired final state xf,li according to a

desired average velocity vavg to satisfy sf,li = si(t
l) +

hvavg and formulate the merging problem to include
all intersections in this horizon. Use xj(σ) with σ =
max{tl, tsj}, j 6= i, as initial conditions for the merging
vehicles, i.e., taking their actual states if they are
already on the road. Then, solve the resulting problem
using the algorithm in Section III-C to obtain the
optimal input u∗,li on the interval [tl, tl + h].

3) Implement the optimal input u∗,li for the interval
[tl, tl + δt].

4) Set tl+1 = tl+δt, increment l to l+1 and repeat from
2) until the final destination xf is reached.

Apart from making the execution of the merging maneu-
vers robust to external disturbances and model uncertainties,
the use of model predictive control also decentralizes the
required computations over the vehicles. Here, it is noted
that each vehicle i ∈ {0, 1, . . . , N} runs the algorithm
discussed above. In this case, merging points are included in
the optimization problem at time tl if the road intersection
is within the prediction horizon of both merging vehicles.
This is schematically depicted in Figure 2. It is noted that a
common final state needs to be agreed when both vehicles
optimize their trajectories to form a platoon. This can be
achieved by designating one of the vehicles as a platoon
leader or through the use of consensus techniques.



TABLE I
Vehicle parameters for vehicles i according to the model (1) and their

initial conditions xsi = [ssi vsi ]T.

i mi [kg] Ai [m2] c0d,i [-] tsi [s] ssi [m] vsi [m/s]
0 15000 10 0.5 0 -4500 25
1 14000 10 0.5 10 -4300 22
2 15000 11 0.5 63 -3000 21
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Fig. 3. Optimal velocity profiles v∗i (·) for the merging problem in Figure 1
for N = 2 and the numerical values in Table I, as obtained by the algorithm
in Section III-C.

V. NUMERICAL EVALUATION

The merging problem for three vehicles as in Figure 1
(with N = 2) is considered in this section, where the
vehicle parameters and their initial conditions are given in
Table I. Additional parameters are cr = 0.01, g = 9.81 m/s2,
and ρ = 1.22 kg/m3. The coefficients ηi in (2) describing
the reduction in aerodynamic drag due to platooning are
chosen a ηi = 0.5 for all i. The desired merging points
xmq = [ smq vmq ]T are at the road intersections smq and have
a desired merging velocity vmq given as

xm1 =

[
3600
23

]
, xm2 =

[
2400
23

]
, xf =

[
0
23

]
(24)

where xf is the desired final state at tf = 195 s. If all
vehicles optimize their velocity profiles independently (i.e.,
driving alone, without platooning), the optimal fuel cost is
given as Jref = 4.87 · 109 (kg m)2/s3, which will be used as
a reference throughout this section.

The application of the hybrid optimal control approach of
Section III leads to the optimal merging times

τ1 = 40.0 s, τ2 = 90.8 s, (25)

and the optimal velocity profiles as depicted in Figure 3. It is
clear from this figure that the vehicles indeed form a growing
platoon satisfying the merging and final constraints (24). The
corresponding optimal inputs are shown in Figure 4, which
indicates the adaptation of the traction force to enable the
formation of platoons. Moreover, in mode 2, where vehicles
0 and 1 form a platoon, it is clear that the required traction
force for vehicle 1 is reduced due to a reduced aerodynamic
drag. This is precisely the effect that is exploited in vehicle
platooning and the root cause of the reduction in cost, which
is computed as J∗/Jref = 0.866 with J∗ the optimal cost (5).
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t [s]

u
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·)

[1
03
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2
] u∗0

u∗1
u∗2

Fig. 4. Optimal input u∗i (·) corresponding to the optimal velocity
trajectories in Figure 3.
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Fig. 5. Velocity trajectories for the model predictive control approach
with optimization horizon h = 35 s. The same scenario as in Figure 3
is considered, where the trajectories of the latter are depicted in gray for
comparison.

Thus, platooning amounts to a reduction in fuel consumption
of roughly 13% in this scenario.

Next, the model predictive control approach of Section IV
is applied to the same scenario, where an optimization
horizon of h = 35 s leads to the results in Figure 5. Due
to the relatively short horizon length, the results differ from
that in Figure 3, but the model predictive controller achieves
the desired merging maneuvers and the merging times τ1 =
39.3 s and τ2 = 91.3 s are close to the optimal ones in (25).
The corresponding cost JMPC satisfies JMPC/Jref = 0.893 and
is only slightly higher than the optimal cost J∗/Jref. The
dependence of the (relative) cost JMPC/J

∗ on the horizon
length h is investigated in Figure 6, which shows that the

10 20 30 40 50 60
1

2

3

4

5

h [s]

J
M

P
C
/J
∗

[-
]

Fig. 6. Normalized fuel cost JMPC/J for the model predictive control
approach as a function of the horizon length h.
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Fig. 7. Velocity trajectories for optimization horizon h = 35 s and errors
in the estimated vehicle masses. The grey dashed lines are the trajectories
without uncertainties as in Figure 5.
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Fig. 8. Velocity trajectories for optimization horizon h = 35 s and unknown
disturbances acting in t ∈ [63, 80] on the third vehicle. The grey dashed
lines are the trajectories without disturbances.

optimal cost is approached for increasing horizon length. In
fact, even relatively short horizon lengths (above 30 s) yield
good results for this scenario, where it is recalled that the
total length of the scenario is 195 s.

The influence of modelling uncertainties is assessed in Fig-
ure 7, which considers the same scenario as before. However,
in Figure 7, the vehicle masses used in the optimization
step in the model predictive control algorithm are taken
as the estimated values m̂0 = 12860 kg, m̂1 = 12000 kg,
and m̂2 = 16000 kg, whereas the masses in Table I are
used in the simulation. The resulting trajectories deviate
only marginally from the ones obtained with perfect model
information, indicating the robustness of the model predictive
control approach with respect to modelling uncertainties.

In order to analyze the effect of unmeasured external
disturbances, a piecewise continuous disturbance

w2(t) =

{
−1 , t ∈ [63, 80],

0 , otherwise, (26)

is added as a braking force on the vehicle with index 2. The
results are given in Figure 8, in which it can be observed
that the coordination between vehicles leads to a decreased
velocity for the platoon of vehicles 0 and 1 in order to merge
with vehicle 2. As a result, the merging time at the second
intersection is changed slightly. Nonetheless, the merging
maneuver is executed successfully, showing the robustness
with respect to external disturbances.

VI. CONCLUSIONS

A hybrid optimal control approach was developed in this
paper for the fuel-optimal control of merging maneuvers for
the formation of heavy-duty vehicle platoons. This approach
was extended towards a model predictive control formula-
tion, ensuring that the merging maneuvers are robust with
respect to disturbances.

The application of these techniques to a scenario in-
volving three heavy-duty vehicles showed a reduction in
fuel consumption of up to 13 %. Moreover, by explicitly
computing the fuel cost of the formation of platoons, the
results of this paper can also be used to evaluate decisions
on whether to form a platoon or not. Ongoing work includes
the experimental validation of the proposed approach.
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