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Abstract—We introduce an atomic congestion game with two
types of agents, namely, cars and trucks, to model the traffic flow
on a road over various time intervals of the day. Cars maximize
their utility by finding a tradeoff between the time they choose
to use the road, the average velocity of the flow at that time, and
the dynamic congestion tax that they pay for using the road. In
addition to these terms, the trucks have an incentive for using the
road at the same time as their peers because they have platooning
capabilities, which allow them to save fuel. The dynamics and
equilibria of this game-theoretic model for the interaction between
car traffic and truck platooning incentives are investigated. We
use traffic data from Stockholm, Sweden, to validate parts of
the modeling assumptions and extract reasonable parameters for
the simulations. We use joint strategy fictitious play and average
strategy fictitious play to learn a pure strategy Nash equilibrium
of this game. We perform a comprehensive simulation study to
understand the influence of various factors, such as the drivers’
value of time and the percentage of the trucks that are equipped
with platooning devices, on the properties of the Nash equilibrium.

Index Terms—Atomic congestion game, heavy-duty vehicle pla-
tooning, learning algorithm, pure strategy Nash equilibrium.

I. INTRODUCTION

A. Motivation

URBAN traffic congestion creates many problems, such as
increased transportation delays and fuel consumption, air

pollution, and dampened economic growth in heavily congested
areas [1]–[3]. A recent study [3] has shown that transportation
has contributed to approximately 15% of the total man-made
carbon dioxide since the preindustrial era and suggests that it
will be responsible for roughly 16% of the carbon emission over
the next century. To circumvent part of these issues, the local
governments in some urban areas introduced congestion taxes
to manage the traffic congestion over existing infrastructures.
For instance, Stockholm implemented a congestion taxing sys-
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tem in August 2007 after a seven-month trial period in 2006. A
survey of the influence of the congestion taxes over the trial pe-
riod can be found in [4], which shows significant improvements
in travel times and favorable economic and environmental ef-
fects. Behavioral aspects and other influences of the Stockholm
congestion taxing system are discussed in [5]–[8].

In parallel to reducing the congestion, we can employ other
means to improve fuel efficiency and decrease carbon emissions
[1]. One way to improve the fuel efficiency of vehicles is pla-
tooning, as vehicles experience a reduced air drag force when
they travel in platoons [9]–[13]. Trucks or heavy-duty vehicles
can significantly improve their fuel efficiency by platooning
with their peers. In [9], the authors reported a 4.7%–7.7%
reduction in fuel consumption (depending on the distance be-
tween the vehicles among other factors) when two identical
trucks move close to each other at 70 km/h. In a futuristic
scenario, in which several trucks are equipped with platooning
devices, they are able to save fuel by cooperating with each
other. However, implementing truck platooning in a large-scale
setup is not easy since a global decision maker might become
complex (i.e., computationally cumbersome to implement) and
the vehicles can belong to competing entities. In addition, it
is interesting to study if a desirable behavior can emerge from
simple local strategies. In this paper, we consider such a case,
in which the traffic flow can be modeled as a congestion game
and the desired behavior corresponds to an equilibrium of this
game.

B. Related Studies

Modeling the traffic flow using congestion games or routing
games is a well-known problem [14]–[22]. Rosenthal [17]
presented a noncooperative game in which a finite number
of players compete to use a finite set of resources with an
application to modeling transport networks. He showed that
these games admit at least one pure strategy Nash equilibrium
(an action profile in which no agent has an incentive to uni-
laterally deviate from her action). To do so, he proved that
atomic congestion games are indeed potential games (i.e., there
exists a potential function, such that its variation when only one
agent changes her action is equal to the variation of the utility
of the corresponding agent) and, hence, one can find a Nash
equilibrium by minimizing the potential function. For a survey
of results on congestion and potential games, see [23]. Most
of these studies modeled the route selection using an atomic
congestion game. Recently, the authors of [24] have utilized
a congestion game for modeling instead the time interval in
which drivers decide to use a road.
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This setup may be extended to weighted congestion games
in which every agent is associated with a (splittable or un-
splittable) demand (not equal and more than a single unit) that
should be routed over the network. In [25], Rosenthal showed
that a Nash equilibrium does not necessarily exist in these
games if the agents can split their demand by integer amounts.
The authors of [26]–[28] constructed counterexamples to show
that a Nash equilibrium does not necessarily exist also for
unsplittable demands as well. However, when cost functions
(i.e., latencies) of each road are affine functions, an equilibrium
certainly exists (and may be found in pseudopolynomial time)
[27]. In [26], it was also proved that an equilibrium may exist
for a special class of cost functions (that are only a function of
the residual capacity on each edge) on parallel networks. The
largest class of latency functions for which the game admits
an equilibrium was explored in [29]. It was also shown that a
weighted congestion game admits an exact potential function
(respectively, a weighted potential function) if and only if the
costs can be drawn from the set of affine functions (affine or
exponential functions) [30].

The studies discussed above mainly consider homogeneous
congestion games in which all the drivers on a road at any given
time interval perceive the same cost function (e.g., the drivers
only consider the latency in their decision making, and they all
have the same sensitivity to the latency as well). However, in
road traffic networks, this assumption might not be realistic.
For instance, as we will see in this paper, whenever the drivers
include the fuel consumption in their decision making, trucks
and cars potentially have different cost functions even if they
observe the same latency when using the road. To capture this
phenomenon, we extend the model in [24] to an atomic con-
gestion game with two types of agents, namely, cars and trucks.
Notice that the problem of heterogeneous congestion and rout-
ing games has been extensively studied in the past [31]–[33].
For instance, in [31], the author formulated a congestion game
in which each player has a specific cost function that depends
on the congestion. In that study, it was shown that every un-
weighted congestion game with player-specific cost functions
admits at least one equilibrium; however, this results may
not be generalized to weighted congestion games with player-
specific cost functions in general. In addition, generally, even
unweighted congestion games with player-specific cost func-
tions do not admit a potential function. For routing games, in
which a continuum of players route an infinitesimal amount of
flow, it was proved that a potential function exists if a symmetry
condition is satisfied for the cost functions (i.e., various classes
of agents bother or delight each other equally) [32], [34]. A
class of necessary and sufficient conditions for the existence of
potential functions was presented in [35]. Conditions for the
(essential) uniqueness of the equilibrium in multiclass routing
games were also presented in [36] and [37].

Motivated by the fact that the Nash equilibrium is generally
inefficient, the price of anarchy (i.e., the worst case ratio of the
social welfare function for a Nash equilibrium over the social
welfare function for a socially optimal solution) of atomic con-
gestion games with linear latency functions was studied in [38].
Several studies have proposed congestion taxes (also known as
tolls) to improve the social cost function when all the agents are

equally sensitive to the proposed taxes [39]–[42] and when they
have different sensitivities [43]–[46]. For instance, in [46], tolls
were introduced to minimize the total travel time and the total
travel cost (as a biobjective optimization problem). This setup
was generalized in [44] to also admit entities that own several
agents (and wish to optimize the combined utility of those
agents). The idea of maximizing the reserve capacity of the net-
work was approached in [43]. A scenario in which the network
is managed by several decision makers (with conflicting objec-
tives) across various regions was discussed in [45]. The authors
of [24], [39], and [40] presented congestion taxes so that the un-
derlying congestion game admits the social welfare as a poten-
tial function. This is certainly of interest because it guarantees
that the socially optimal decision is also a Nash equilibrium.
However, in those studies, the authors needed to introduce a
congestion tax for all the agents (and not only a subset of them).

C. Contributions

In this paper, we model the traffic flow at nonoverlapping
intervals of the day using an atomic1 congestion game with
two types of agents. The agents of the first type are cars and
trucks that do not have platooning equipment. For the sake of
brevity, we call all these agents cars. They optimize their utility,
which is a sum of the penalty for deviating from their preferred
time for using the road, the average velocity of the traffic flow
along the road, and the congestion tax that they pay for using
the road at that time interval. The agents of the second type
are trucks equipped with platooning devices. For the sake of
brevity, we call these agents trucks. In addition to the previously
mentioned terms, they have an incentive for using the road with
other trucks (due to an increased chance for platooning and,
hence, reducing their fuel consumption).

We model the average velocity of the flow at each time
interval as an affine function of the number of the vehicles that
are using the road at that time interval. We use real traffic data
from the northbound E4 highway from Lilla Essingen to the
end of Fredhällstunneln in Stockholm to validate this modeling
assumption.

We determine a necessary condition for the existence of
a potential function for the introduced atomic congestion
game with two types of agents and use this condition to prove
that, in general, the congestion game is not a potential game.
Therefore, we devise appropriate congestion taxes (specifically,
a congestion taxing policy for cars and a platooning subsidy
for trucks) to guarantee the existence of a potential function.
Based on this result, we prove that the atomic congestion
game admits at least one pure strategy Nash equilibrium under
the proposed congestion tax–subsidy policy. Equipped with
these results, we use joint strategy fictitious play and average
strategy fictitious play to learn a Nash equilibrium. Intuitively,
we interpret the learning algorithm as the way drivers decide
on a daily basis to choose the time interval on which they are
using the road by optimizing their utility given the history of
their actions. Iterating over days, the drivers’ decisions (i.e.,

1We use the term atomic to emphasize the fact that we are not dealing with
a continuum of players or fractional flows when modeling the traffic flow as a
congestion game [47], [48].
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the profile of the learning algorithm) converge almost surely
to a pure strategy Nash equilibrium. Note that the potential
games are certainly not the only classes of games for which
variants of the fictitious play (e.g., joint strategy fictitious play)
may converge to an equilibrium. To mention a few examples,
in games with identical interests,2 the fictitious play converges
in beliefs to a mixed strategy Nash equilibrium [49]. This
fact was generalized to ordinal potential games in [50]. For
(generalized) ordinal potential games, one may also deduce
the convergence of the joint strategy fictitious play to a pure
strategy Nash equilibrium with probability one [39]. These
families of games are certainly more general than (exact)
potential games. In this paper, as a starting point, we present
necessary conditions for the existence of (exact) potential
functions and imposing congestion taxes for guaranteeing
the existence of such functions. Although conservative, this
approach perhaps can be justified in the introduced problem
due to the existence of intuitive taxing and subsidy policies (see
Section III-B). A viable direction for future work is to inves-
tigate necessary and sufficient conditions so that a congestion
game belongs to the category of ordinal or weighted potential
games. In addition, as also mentioned earlier, congestion taxes
were presented in [24], [39], and [40] so that the congestion
game admits the social welfare as a potential function. How-
ever, in contrast to the results of this paper, the authors of [39]
and [40] introduced a congestion tax for all the agents (and not
only a subset of them) to improve the efficiency and considered
homogeneous congestion games (with only one type of agents).
Although different in nature, we use parts of the proof tech-
niques in [24], [39], and [40] to show that the introduced atomic
congestion game with two types of agents admits a potential
function under appropriate taxing and subsidy policies.

Finally, using the parameters extracted from the real con-
gestion data, we construct a simulation setup to study the
performance of the learning algorithms and the properties of
the Nash equilibrium. For instance, we study the robustness to
perturbations of the learning algorithm, e.g., accidents along the
road, sudden weather changes, or temporary road constructions.
We also consider the case that the drivers value their time
differently, where the values are motivated by survey data from
Stockholm area [51].

Note that preliminary versions of this paper has previously
appeared in [52] and [53], where we, respectively, considered
the problem of studying platooning incentives using a conges-
tion game from a practical perspective (to motivate the mod-
elling assumptions and to extract appropriate simulation param-
eters using real traffic data) and from a theoretical perspective
(to show the existence of a pure strategy Nash equilibrium and
to prove the convergence of the learning algorithms).

D. Paper Organization

The rest of this paper is organized as follows. In Section II,
we formulate the considered congestion game. We find a

2A game has identical interests if it is best response equivalent in mixed
strategies to a game with identical payoff functions [49]. Examples of these
games are weighted potential games.

necessary condition of the existence of a potential function
in Section III. In Sections IV and V, we introduce the joint
strategy fictitious play and the average strategy fictitious play,
respectively, to learn a Nash equilibrium of the congestion
game. Finally, we present the simulations in Section VI and
conclude this paper in Section VII.

E. Notation

Let R, Z, and N denote the sets of real, integer, and natural
numbers, respectively. Furthermore, let N0 = N ∪ {0}. We de-
fine [[N ]] = {1, . . . , N} for any N ∈ N. In this paper, all other
sets are denoted by calligraphic letters such as R. We use |R| to
denote the cardinality of R. Finally, we define the characteristic
function 1x=y (1x≥y) to be equal to one whenever x = y (x ≥
y) holds true and to be equal to zero otherwise.

II. GAME-THEORETIC MODEL

We model the traffic flow at certain time intervals of the day
on a given road using an atomic congestion game. The agents
in this congestion game are the vehicles (or rather, the drivers
of these vehicles), and their actions are the time intervals that
they choose to use the road at each day. Let us divide the time
of the day into R ∈ N nonoverlapping intervals and denote
each interval by ri for i ∈ [[R]]. The set of all these intervals
(i.e., agents’ actions) is denoted by R = {r1, r2, . . . , rR}. We
consider the case where the underlying congestion game is
composed of two types of agents. As specified in the introduc-
tion, we name the agents of the first type cars and the agents of
the second type trucks throughout this paper. We assume that
N cars and M trucks are playing in this congestion game and
denote the actions of the cars and the trucks by z = {zi}Ni=1

and x = {xi}Mi=1, respectively. Let us describe the utilities of
the cars and the trucks in the following subsections.

A. Car Utility

Car i ∈ [[N ]] maximizes its utility given by

Ui(zi, z−i, x) = ξci (zi, T
c
i ) + vzi(z, x) + pci (z, x) (1)

where the mapping ξci : R×R → R describes the penalty
for deviating from the preferred time interval for using the
road denoted by T c

i ∈ R (e.g., due to being late for work or
delivering goods), vzi(z, x) is the average velocity of the traffic
flow at time interval zi, and pci (z, x) is a potential congestion
tax for using the road on a specific time interval.

Following [24], [54], and [55], we assume that vr(z, x)
(i.e., the average velocity at time interval r ∈ R) is linearly
dependent on the road congestion

nr(z, x) =

N∑
�=1

1{z�=r} +
M∑
�=1

1{x�=r} (2)

which is the total number of vehicles (both cars and trucks) that
are using the road at r ∈ R. Let us use real traffic data from
sensors on the northbound E4 highway in Stockholm from Lilla
Essingen to the end of Fredhällstunneln (see Fig. 1) to validate
this assumption. The measurements are extracted during Oc-
tober 1–15, 2012. Fig. 2 illustrates the average velocity of the
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Fig. 1. Dashed black curve shows the segment of the northbound E4 highway
between Lilla Essingen and Fredhällstunneln in Stockholm which is used to
validate the model and extract reasonable parameters.

Fig. 2. Average velocity of the traffic flow as a function of the number of
vehicles that are entering the segment of the northbound E4 highway between
Lilla Essingen and Fredhällstunneln for 15-min time intervals.

flow as a function of the number of vehicles. As we can see, for
up to 1000 vehicles, a linear relationship

vr(z, x) = anr(z, x) + b (3)

with a = −0.0110 and b = 84.9696 describes the data well.
However, for higher numbers of the vehicles, it fails to capture
the behavior of around 20% of the data (shown by the red dots
in Fig. 2). Note that some of these outlier measurements can
be caused by traffic accidents, sudden weather changes during
the day, or temporary road constructions. A viable direction for
future work is to introduce more complex velocity models in
which the average velocity of the traffic flow may depend on the
number of vehicles in the neighboring time intervals in addition
to the current one. We may also need to separate the effect of
cars and trucks as one may expect heavier and larger vehicles
to contribute more to the traffic congestion. However, in this
paper, we use the simple model presented in (3) and instead
focus on platooning incentives.

The choice of the penalty mappings ξci , i ∈ [[N ]], does not
change the theoretical results presented in this paper, but it can
capture various models of the drivers. For instance, following
[24], we can use ξci (zi, T

c
i ) = αc

i |zi − T c
i |, with scalar αc

i < 0,
to describe the case where the driver of car i is penalized by
deviating from the preferred time interval. With this function,
the driver gets penalized symmetrically no matter if she uses
the road sooner or later than T c

i . By increasing |αc
i |, she

becomes less flexible. Another penalty function is ξci (zi, T
c
i ) =

αc
i max(zi − T c

i , 0), which penalizes the driver of car i only for
being late. For the simulations in this paper, we assume that all
vehicles use the first penalty mapping.

B. Truck Utility

Truck j ∈ [[M ]] maximizes its utility given by

Vj(xj , x−j , z) = ξtj
(
xj , T

t
j

)
+ vxj

(z, x) + pti(z, x)

+ βvxj
(z, x)g

(
mxj

(x)
)

(4)

where, similar to the utilities of the cars, ξtj(xj , T
t
j ) is the

penalty for deviating from the preferred time T t
j for using the

road, vxj
(z, x) is the average velocity of the traffic flow, and

pti(z, x) is a potential congestion tax for using the road at time
interval xj . Trucks have an extra term βvxj

(z, x)g(mxj
(x)) in

their utility because of their benefit in using the road at the same
time as the other trucks. Here, g : [[M ]] → R is a nondecreasing
function, and mr(x) =

∑M
�=1 1{x�=r} is the number of trucks

that are using the road at time interval r ∈ R. The increased
utility can be justified by the fact that, whenever there are
many trucks on the road at the same time interval, they can
potentially collaborate to form platoons and thereby increase
the fuel efficiency. It should be noted that this extra utility
is a function of the average velocity of the flow since trucks
cannot save a significant amount of fuel through platooning
whenever traveling at low velocities [9], [56]. The function g :
[[M ]] → R describes the dependence of the platooning incentive
on the number of trucks that are using the road at that time
interval. Again, the choice of this function does not change the
mathematical results presented in this paper, but it can help us to
capture the relationship between the fuel saving and the number
of the trucks on the road. For instance, g(mxj

(x)) = mxj
(x)

shows that the vehicles can even benefit from a low number of
trucks, but g(mxj

(x)) = mxj
(x)1mxj

(x)≥τ describes the case
where the trucks do not benefit until they reach a critical number
τ ∈ N. For the simulations, we use the first mapping.

Notice that, in the utilities Ui in (1) and Vj in (4), we
introduced congestion taxes for cars and trucks. Later, they are
used to ensure that the described game is a potential game. Such
a game admits at least one pure strategy Nash equilibrium, and
we can use joint strategy fictitious play and average strategy
fictitious play to learn that equilibrium. A viable direction for
future research could be to design taxing policies to enforce a
socially optimal behavior, such as an optimal carbon emission
profile, using mechanism design theory [57].

C. Congestion Game

Now, we are ready to define a congestion game with two
types of players using normal-form representation of strategic
games [58], [59].
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Definition 1 (Car–Truck Congestion Game): A car–truck
congestion game is defined as a tuple G=((R)N+M

i=1 ; ((Ui)
N
i=1,

(Vj)
M
j=1)), that is, a combination of N +M players with action

space (R)N+M
i=1 and utilities ((Ui)

N
i=1, (Vj)

M
j=1)).

A pure strategy Nash equilibrium for a car–truck congestion
game is a pair (z, x) ∈ RN ×RM such that

Ui(zi, z−i, x) ≥Ui (z
′
i, z−i, x) ∀z′i ∈ R, i ∈ [[N ]]

Vj(xj , x−j , z) ≥Vj

(
x′
j , x−j , z

)
∀x′

j ∈ R, j ∈ [[M ]].

To prove the existence of a pure strategy Nash equilibrium or
to use various learning algorithms for finding an equilibrium,
we focus on a subclass of games, namely, potential games [50].
A car–truck congestion game is a potential game with potential
function Φ : RN ×RM → R if

Φ(x, zi, z−i)− Φ(x, z′i, z−i)

= Ui(zi, z−i, x)− Ui (z
′
i, z−i, x) ∀i ∈ [[N ]]

Φ(xj , x−j , z)− Φ
(
x′
j , x−j , z

)
= Vj(xj , x−j , z)− Vj

(
x′
j , x−j , z

)
∀j ∈ [[M ]].

With these definitions on hand, we are ready to present the
results of this paper.

III. EXISTENCE OF POTENTIAL FUNCTION

Atomic congestion games with one type of agents (corre-
sponding to the case where M = 0 or N = 0) are known to
admit a potential function even without congestion taxes [24],
[42], [50]. Here, we show that this property does not hold for
car–truck congestion games unless we devise an appropriate
taxing scheme.

A. Necessary Condition for the Existence of a
Potential Function

Let Φ : RN ×RM → R be a given mapping. Define

Δxj→x′
j
Φ(x, z) =Φ(x, z)− Φ(x′, z)

Δzi→z′
i
Φ(x, z) =Φ(x, z)− Φ(x, z′)

where x′ = (x′
j , x−j) and z′ = (z′i, z−i). Using simple algebra,

we can show that the operators commute, i.e.,

Δzi→z′
i
Δxj→x′

j
Φ(x, z) = Δxj→x′

j
Δzi→z′

i
Φ(x, z).

Now, we are ready to prove the following useful result.
Proposition 1: A car–truck congestion game admits a poten-

tial function only if

Δxj→x′
j
Δzi→z′

i
Vj(z, x) = Δzi→z′

i
Δxj→x′

j
Ui(z, x)

for all i ∈ [[N ]] and j ∈ [[M ]].
Proof: Let Φ(x, z) be a potential function for the conges-

tion game. Define x′ = (x′
j , x−j) and z′ = (z′i, z−i). Then, it

must satisfy

Δxj→x′
j
Vj(x, z) = Δxj→x′

j
Φ(x, z) (5)

for all z ∈ RN , x ∈ RM , and x′
j ∈ R. Again, noting that

Φ(x, z) is a potential function, we get

Φ(x, z) =Φ(x, z′) + Δzi→z′
i
Ui(z, x) (6a)

Φ(x′, z) =Φ(x′, z′) + Δzi→z′
i
Ui(z, x

′) (6b)

for all z ∈ RN , x ∈ RM , z′i ∈ R, and x′
j ∈ R. Substituting (6)

into (5) results in

Δxj→x′
j
Vj(x, z)

= Φ(x, z)− Φ(x′, z)

= Δxj→x′
j
Φ(x, z′) + Δzi→z′

i
Ui(z, x)−Δzi→z′

i
Ui(z, x

′)

= Δxj→x′
j
Φ(x, z′) + Δzi→z′

i
Δxj→x′

j
Ui(z, x)

= Δxj→x′
j
Vj(x, z

′) + Δzi→z′
i
Δxj→x′

j
Ui(z, x)

where the last equality follows from the definition of the poten-
tial function. Therefore, we get the identity in the statement of
the theorem. �

This shows that it might not be possible to find a potential
function for the congestion game with two types of players.

Corollary 2: Let pci (z, x) = 0 for i ∈ [[N ]] and ptj(z, x) = 0
for j ∈ [[M ]]. A car–truck congestion game admits a potential
function only if β = 0 or g is equal to zero everywhere.

Proof: First, by simple algebraic manipulations, we prove
the identity in

Δxj→x′
j
Δzi→z′

i
Vj(z, x)

= Δxj→x′
j
Δzi→z′

i

(
ξtj

(
xj , T

t
j

)
+ vxj

(z, x)

+ βvxj
(z, x)g

(
mxj

(x)
))

= Δxj→x′
j
Δzi→z′

i

(
vxj

(z, x) + βvxj
(z, x)g

(
mxj

(x)
))

= Δxj→x′
j

(
vxj

(z, x)−vxj
(z′, x)+βvxj

(z, x)g
(
mxj

(x)
)

−βvxj
(z′, x)g

(
mxj

(x)
))

= Δxj→x′
j

(
a
[
1xj=zi − 1xj=z′

i

] [
1 − βg

(
mxj

(x)
)])

= a
[
1xj=zi − 1xj=z′

i

] [
1 − βg

(
mxj

(x)
)]

− a
[
1x′

j
=zi − 1x′

j
=z′

i

] [
1 − βg

(
mx′

j
(x′)

)]
= a

[
1xj=zi + 1x′

j
=z′

i
− 1xj=z′

i
− 1x′

j
=zi

]
− aβ

[
1xj=zi − 1xj=z′

i

]
g
(
mxj

(x)
)

+ aβ[1x′
j
=zi − 1x′

j
=z′

i
]g
(
mx′

j
(x′)

)
= a

[
1xj=zi + 1x′

j
=z′

i
− 1xj=z′

i
− 1x′

j
=zi

]
+ aβ

[
1xj=z′

i
1x′

j
=zi − 1xj=zi1x′

j
=z′

i

]
×
[
1 − 1zj=z′

i

] [
g
(
mxj

(x)
)
+ g

(
mx′

j
(x′)

)]
. (7)

Similarly, we can show that

Δzi→z′
i
Δxj→x′

j
Ui(z, x)

= a
[
1xj=zi + 1x′

j
=z′

i
− 1xj=z′

i
− 1x′

j
=zi

]
.

Therefore, following Proposition 1, the introduced congestion
game admits a potential function only if

β
[
1xj=z′

i
1x′

j
=zi − 1xj=zi1x′

j
=z′

i

] [
1 − 1zj=z′

i

]
×
[
g
(
mxj

(x)
)
+ g

(
mx′

j
(x′)

)]
= 0
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for all x, z and x′
j , z′i. This is indeed only possible if β = 0 or

if g is equal to zero everywhere. �
Potential games have many desirable attributes. For instance,

these games always admit at least one pure strategy Nash
equilibrium. In addition, many learning algorithms, such as
joint strategy fictitious play, are known to extract a pure strategy
Nash equilibrium for potential games. Given these important
properties, a natural question that comes to mind is that whether
it is possible to guarantee the existence of a potential function
by imposing appropriate congestion taxes. We answer this
question in the next subsection.

B. Imposing Taxes to Guarantee the Existence of a
Potential Function

Here, we propose a taxing policy and a subsidy policy that
guarantee the existence of a potential function for the car–truck
congestion game.

Theorem 3: Let each car i ∈ [[N ]] pay the congestion tax

pci (z, x) = aβ

mzi
(x)∑

�=1

g(�) (8)

for using the road at time interval zi ∈ R. Then, the car–truck
congestion game is a potential game with the potential function

Φ(x, z)=
N∑
i=1

ξci (zi, T
c
i )+

M∑
j=1

ξtj
(
xj , T

t
j

)
+

R∑
r=1

nr(x,z)∑
k=1

(ak+b)

+

R∑
r=1

β (anr(x, z) + b)

mr(x)∑
�=1

g(�)− aβ

R∑
r=1

mr(x)∑
�=1

�−1∑
k=1

g(k).

Furthermore, this game admits at least one pure strategy Nash
equilibrium.

Proof: The proof of this lemma follows the same line of
reasoning as in the proof of [24, Proposition 4.1]. First, we need
to define the following notations:

Φ1(x, z) =
N∑
i=1

ξci (zi, T
c
i ) +

M∑
j=1

ξtj
(
xj , T

t
j

)

Φ2(x, z) =

R∑
r=1

nr(x,z)∑
k=1

(ak + b)

Φ3(x, z) =

R∑
r=1

β (anr(x, z) + b)

mr(x)∑
�=1

g(�)

Φ4(x, z) = − aβ

R∑
r=1

mr(x)∑
�=1

�−1∑
k=1

g(k).

Let us start by analyzing the trucks. If xj = x′
j , the result triv-

ially holds. Consequently, we consider the case where xj �= x′
j ,

which results in

Φ(xj , x−j , z)− Φ
(
x′
j , x−j , z

)
=

4∑
k=1

Φk(xj , x−j , z)− Φk

(
x′
j , x−j , z

)
.

We continue the proof by considering each term of this summa-
tion separately. For the first term, clearly, we have

Φ1(xj , x−j , z)− Φ1

(
x′
j , x−j , z

)
= ξtj

(
xj , T

t
j

)
− ξtj

(
x′
j , T

t
j

)
.

Let us define x′ = (x′
j , x−j). For the second term, we have

Φ2(xj , x−j , z)− Φ2

(
x′
j , x−j , z

)
=

R∑
r=1

nr(x,z)∑
k=1

(ak + b)−
R∑

r=1

nr(x
′,z)∑

k=1

(ak + b)

=

nxj
(x,z)∑

k=1

(ak + b) +

nx′
j
(x,z)∑

k=1

(ak + b)

−
nxj

(x′,z)∑
k=1

(ak + b)−
nx′

j
(x′,z)∑

k=1

(ak + b)

where the second equality holds because of the fact that
nr(x, z) = nr(x

′, z) for all r �= xj , x
′
j . Note that

nxj
(x′, z) = nxj

(x, z)− 1 nx′
j
(x, z) = nx′

j
(x′, z)− 1 (9)

and as a result

Φ2(xj , x−j , z)− Φ2

(
x′
j , x−j , z

)
=

(
anxj

(z, x) + b
)
−
(
anx′

j
(z, x′) + b

)
.

For the third term, we get the identity in

Φ3(xj , x−j , z)− Φ3

(
x′
j , x−j , z

)
=

R∑
r=1

β (anr(x, z) + b)

mr(x)∑
�=1

g(�)

−
R∑

r=1

β (anr(x
′, z) + b)

mr(x
′)∑

�=1

g(�)

= β
(
anxj

(x, z) + b
)mxj

(x)∑
�=1

g(�)

+ β
(
anx′

j
(x, z) + b

)mx′
j
(x)∑

�=1

g(�)

− β
(
anxj

(x′, z) + b
)mxj

(x′)∑
�=1

g(�)

− β
(
anx′

j
(x′, z) + b

)mx′
j
(x′)∑

�=1

g(�)

= β
(
anxj

(x, z) + b
)
g
(
mxj

(x)
)

− β
(
anx′

j
(x′, z) + b

)
g
(
mx′

j
(x′)

)

+ aβ

mxj
(x)−1∑

�=1

g(�)− aβ

mx′
j
(x′)−1∑
�=1

g(�) (10)

where the last equality follows from using (9) and the fact that
mxj

(x′) = mxj
(x)− 1 and mx′

j
(x) = mx′

j
(x′)− 1. Finally,
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using the same argument as in the case of the second and third
terms, we get

Φ4(xj , x−j , z)− Φ4(x
′
j , x−j , z)

= −aβ

mxj
(x)−1∑

�=1

g(�) + aβ

mx′
j
(x′)−1∑
�=1

g(�).

Combining all these differences, we get

Φ(xj , x−j , z)− Φ
(
x′
j , x−j , z

)
= β

(
anxj

(x, z) + b
)
g
(
mxj

(x)
)

− β
(
anx′

j
(x′, z) + b

)
g
(
mx′

j
(x′)

)
+ ξtj

(
xj , T

t
j

)
− ξtj

(
x′
j , T

t
j

)
+
(
anxj

(z, x) + b
)
−
(
anx′

j
(z, x′) + b

)
= Vj(xj , x−j , z)− Vj

(
x′
j , x−j , z

)
.

Now, let us prove this fact for the cars as well. If zi = z′i,
the result trivially holds. Thus, we investigate the case where
zi �= z′i. Similarly, we consider each term of the summation
separately. For the first term, we have

Φ1(x, zi, z−i)− Φ1 (x, z
′
i, z−i) = ξci (zi, T

c
i )− ξci (z

′
i, T

c
i ) .

We define the notation z′ = (z′i, z−i). Following a similar rea-
soning as in the case of the trucks, for the second and third
terms, we get

Φ2(x, zi, z−i)− Φ2 (x, z
′
i, z−i)

= (anzi(z, x) + b)−
(
anz′

i
(z′, x) + b

)
Φ3(x, zi, z−i)− Φ3 (x, z

′
i, z−i)

= aβ

mzi
(x)∑

�=1

g(�)− aβ

mz′
i
(x)∑

�=1

g(�).

For the fourth term, we get Φ4(x, zi, z−i)− Φ4(x, z
′
i, z−i) = 0

since this term is only a function of x, which is not changed.
Again, combining all these differences, we get

Φ(x, zi, z−i)− Φ(x, z′i, z−i)

= (anzi(z, x) + b)−
(
anz′

i
(z′, x) + b

)
+ ξci (zi, T

c
i )

− ξci (z
′
i, T

c
i ) + aβ

mzi
(x)∑

�=1

g(�)− aβ

mz′
i
(x)∑

�=1

g(�)

= Ui(zi, z−i, x)− Ui (z
′
i, z−i, x) .

Finally, note that every potential game admits at least one pure
strategy Nash equilibrium [50]. �

Remark 1: Note that the tax pci (z, x) quadratically grows
with the number of the trucks that are using the road at that
time interval if the mapping g : [[M ]] → R is an affine function.
Therefore, the congestion tax policy pci (z, x) in Theorem 3
forces the cars to avoid the time intervals that the trucks use
to travel together.

Instead of taxing the cars, we can also introduce a platooning
subsidy for the trucks to get a potential game.

Theorem 4: Let each truck j ∈ [[M ]] receive the subsidy

ptj(x, z) = β
(
v0 −

(
anxj

(z, x) + b
))

mxj
(x) (11)

for a given v0 ∈ R. Then, the car–truck congestion game is a
potential game with the potential function

Ψ(x, z) =

N∑
i=1

ξci (zi, T
c
i ) +

M∑
j=1

ξtj
(
xj , T

t
j

)

+

R∑
r=1

nr(x,z)∑
k=1

(ak + b) + βv0

R∑
r=1

mr(x)∑
�=1

g(�).

Furthermore, this game admits at least one pure strategy Nash
equilibrium.

Proof: Let us start with trucks. Note that, with the intro-
duced policy, the utility of truck j is equal to

Vj(xj , x−j , z) = ξtj
(
xj , T

t
j

)
+ vxj

(z, x) + βv0g
(
mxj

(x)
)
.

Let us define x′ = (x′
j , x−j). If xj = x′

j , the result trivially
holds. Therefore, without loss of generality, we consider the
case where xj �= x′

j . In what follows, we examine each term
in the cost function separately. First, we define Ψ1(x, z) =∑N

i=1 ξ
c
i (zi, T

c
i ) +

∑M
j=1 ξ

t
j(xj , T

t
j ). Now, it is easy to see that

Ψ1(x, z)−Ψ1(x
′, z) = ξtj

(
xj , T

t
j

)
− ξtj

(
x′
j , T

t
j

)
.

Second, we define Ψ2(x, z) =
∑R

r=1

∑nr(x,z)
k=1 (ak + b). For

this term, we can show that

Ψ2(x, z)−Ψ2(x
′, z)

=
R∑

r=1

nr(x,z)∑
k=1

(ak + b)−
R∑

r=1

nr(x
′,z)∑

k=1

(ak + b)

=

nxj
(x,z)∑

k=1

(ak + b) +

nx′
j
(x,z)∑

k=1

(ak + b)

−
nxj

(x′,z)∑
k=1

(ak + b)−
nx′

j
(x′,z)∑

k=1

(ak + b)

where the second equality holds because of the fact that nr(x,
z) = nr(x

′, z) for all r �= xj , x
′
j . Noticing that nxj

(x′, z) =
nxj

(x, z)−1 and nx′
j
(x, z)=nx′

j
(x′, z)−1, we know that

Ψ2(x, z)−Ψ2(x
′, z) =

(
anxj

(z, x) + b
)
−
(
anx′

j
(z, x′) + b

)
.

Finally, we define Ψ3(x, z) =
∑R

r=1

∑mr(x)
�=1 g(�). In this case,

we can show that

Ψ3(x, z)−Ψ3(x
′, z)

=
R∑

r=1

mr(x)∑
�=1

g(�)−
R∑

r=1

mr(x
′)∑

�=1

g(�)

=

mxj
(x)∑

�=1

g(�) +

mx′
j
(x)∑

�=1

g(�)−
mxj

(x′)∑
�=1

g(�)−
mx′

j
(x′)∑

�=1

g(�)

= g
(
mxj

(x)
)
− g

(
mx′

j
(x′)

)
.
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Therefore, we get

Ψ(x, z)−Ψ(x′, z)

= Ψ1(x, z)−Ψ1(x
′, z) + Ψ2(x, z)

−Ψ2(x
′, z) + βv0 (Ψ3(x, z)−Ψ3(x

′, z))

= ξtj
(
xj , T

t
j

)
− ξtj

(
x′
j , T

t
j

)
+ vxj

(x, z)− vx′
j
(x′, z)

+ βv0

(
g
(
mxj

(x)
)
− g

(
mx′

j
(x′)

))
= Vj(xj , x−j , z)− Vj

(
x′
j , x−j , z

)
.

The proof for cars follows the same line of reasoning. �
Remark 2: Note that, if v0 is greater than the average ve-

locity of the flow, the trucks get paid to use the road at the
same time as their peers. This way, the government incentivizes
the trucks to form platoons. This subsidy is technically the
difference between the amount of the fuel that the trucks would
have saved if they formed a platoon at velocity v0 instead of
the actual average velocity of the traffic flow anr(z, x) + b.
Therefore, the trucks would benefit from traveling together even
at low velocities (which is a scenario where the trucks do not
increase their fuel efficiency significantly through platooning).
However, if v0 is smaller than the average velocity of the
flow, we reduce the extra utility that the trucks would receive
from traveling together (and, technically, ptj(x, z) becomes a
tax rather than a subsidy). Therefore, it becomes less likely
for the trucks to stick together. To emphasize the fact that
we are willing to pay the trucks rather than taxing them
(and hence, dealing with the first scenario), we call ptj(x, z)
a subsidy.

IV. JOINT STRATEGY FICTITIOUS PLAY

We start by briefly introducing the learning algorithm and
then analyzing its convergence.

A. Learning Algorithm

Assume that the agents follow the joint strategy fictitious
play algorithm [39]. To do so, the agents calculate an average
utility given the history of the actions. At time step t ∈ N0, car
i ∈ [[N ]] computes Ûi(r; t) using the recursive equation

Ûi(r; t) = (1 − λt)Ûi(r; t− 1) + λtUi (r, z−i(t), x(t)) (12)

with the initial condition Ûi(r;−1) = ξci (r, T
c
i ) for all r ∈ R.

In (12), λt ∈ (0, 1] is a forgetting factor, which captures the
extent that the agents forget the actions from the past. If λt = 1,
the agents are myopic (i.e., only consider the actions from the
previous time step), whereas if λt = 1/t, the agents value the
whole history at the same level. Following the same approach,
truck j ∈ [[M ]] calculates V̂j(r; t) using the recursive equation

V̂j(r; t) = (1 − λt)V̂j(r; t− 1) + λtVj (r, x−j(t), z(t))

with V̂j(r;−1) = ξtj(r, T
t
j ) for all r ∈ R. Algorithm 1 shows

the joint strategy fictitious play for the car–truck congestion
game.

Algorithm 1 Joint strategy fictitious play for learning a Nash
equilibrium.

Input: p ∈ (0, 1)
Output: (x∗, z∗)
1: for t = 0, 1, . . . do
2: for i = 1, . . . , N do
3: Calculate z′i ∈ argmaxr∈R Ûi(r; t− 1)
4: if Ui(z

′
i, z−i(t−1), x(t−1))≤Ui(zi(t−1), z−i(t−1),

x(t− 1)) then
5: zi(t) ← zi(t− 1)
6: else
7: With probability 1−p, zi(t)←zi(t−1), otherwise

zi(t) ← z′i
8: end if
9: end for
10: for j = 1, . . . ,M do
11: Calculate x′

j ∈ argmaxr∈R V̂j(r; t− 1)
12: if Vj(z(t−1), x′j , x−j(t−1))≤Vj(z(t−1), xj(t−1),

x−j(t− 1)) then
13: xj(t) ← xj(t− 1)
14: else
15: With probability 1 − p, xj(t) ← xj(t− 1),

otherwise xj(t) ← x′
j

16: end if
17: end for
18: end for

B. Convergence Analysis

Noting that, with appropriate taxes, the introduced conges-
tion game is a potential game, we can use the result of [39] to
conclude the convergence of the learning algorithm.

Theorem 5: Let the action profile of the agents be generated
by the joint strategy fictitious play in Algorithm 1. Assume
that λt = λ ∈ (0, 1) or λt = 1/t for all t ∈ N. Then, this ac-
tion profile almost surely converges to a pure strategy Nash
equilibrium of the car–truck congestion game, if either the cars
pay the congestion tax pci (z, x) in (8) or the trucks receive the
platooning subsidy ptj(x, z) in (11).

Proof: The proof is a consequence of combining [39,
Th. 2.1 and 3.1] with Theorems 3 and 4. �

In the next section, we adapt the average strategy fictitious
play introduced in [24] as an alternative. This learning algo-
rithm requires instead a central node to broadcast the conges-
tion prediction (i.e., an average of all the players actions) for all
time intervals per day.

V. AVERAGE STRATEGY FICTITIOUS PLAY

First, we introduce the average strategy fictitious play and
study its convergence by extending parts of the proofs in [24].
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A. Learning Algorithm

Before introducing the learning algorithm, we have to make
the following standing assumptions.

Assumption 1: The congestion tax policies satisfy the
following:

• pci (z, x), i∈ [[N ]], is only a function of nzi(x, z),mzi(x);
• ptj(x, z), j∈ [[M ]], is only a function of nxj

(x, z),mxj
(x).

This assumption means that the congestion tax can only be
a function of the traffic flow rather than the individual actions
of the agents. The congestion taxing policy that we introduced
in the previous section satisfies this assumption. To emphasize
this fact, from now on, we write pci (nzi(x, z),mzi(x)) and
ptj(nxj

(x, z),mxj
(x)) with some abuse of notation.

Now, we can introduce the average strategy fictitious play.
To initialize the algorithm, we let the agents pick an arbitrary
action from the set R at the first time step. We assume that there
exists a central node3 that can observe the traffic flow at each
time interval. This central node uses the following recursive
update laws to calculate the average number of the cars and
trucks in each time interval as follows:

n̄c
r(t) = (1 − λ)n̄c

r(t− 1) + λ

N∑
�=1

1{z�(t)=r}

n̄t
r(t) = (1 − λ)n̄t

r(t− 1) + λ
M∑
�=1

1{x�(t)=r}

with n̄c
r(0) =

∑N
�=1 1{z�(0)=r} and n̄t

r(0) =
∑M

�=1 1{x�(0)=r}
for all r ∈ R. The superscripts c and t show that the previ-
ously mentioned property is related to the cars or the trucks,
respectively. In these recursive update laws, we should choose
the forgetting factor λ ∈ (0, 1) to capture the extent with which
we value the congestion information from the past. We can
think of the numbers n̄c

r(t) and n̄t
r(t) as the forecasts that

the central node (e.g., the department of transportation and the
radio station) announces on a day-to-day basis about the traffic
flow for each time interval of the day. These values have a
memory to remember the congestion in earlier days and get
updated based on the actual observation of the traffic flow every
midnight.

Additionally, car i ∈ [[N ]] and truck j ∈ [[M ]] keep track of
the average number of times that they have chosen r ∈ R
following the recursive update laws

w̄c
r,i(t) = (1 − λ)w̄c

r,i(t− 1) + λ1{zi(t)=r}

w̄t
r,j(t) = (1 − λ)w̄t

r,j(t− 1) + λ1{xj(t)=r}

with w̄c
r,i(0) = 1{zi(0)=r} and w̄t

r,j(0) = 1{xj(0)=r} for all r ∈
R. Finally, for all i ∈ [[N ]] and j ∈ [[M ]], we define the new

3This central node is assumed to be a not-for-profit organization. Therefore,
it is not trying to optimize its income or loss (i.e., the summation of the
received taxes or the distributed subsidies), and hence, it would not strategically
deviate from the intended algorithm. Certainly, introducing a mechanism with
profitable organizations as a central node can be a viable avenue for future
research (to attract the private sector for implementing this part).

“average” cost functions

Ṽj(r; t) =
[
a
(
n̄c
r(t) + n̄t

r(t)− w̄t
r,j(t) + 1

)
+ b

]
+ β

[
a
(
n̄c
r(t) + n̄t

r(t)− w̄t
r,j(t) + 1

)
+ b

]
× g

(
n̄t
r(t)− w̄t

r,j(t) + 1
)
+ ξtj

(
r, T t

j

)
+ ptj

(
n̄c
r(t) + n̄t

r(t)− w̄t
r,j(t)

+1, n̄t
r(t)− w̄t

r,j(t) + 1
)
, (13a)

Ũi(r; t) = ξci (r, T
c
i ) +

[
a
(
n̄c
r(t) + n̄t

r(t)− w̄c
r,i(t) + 1

)
+ b

]
+ pci

(
n̄c
r(t) + n̄t

r(t)− w̄c
r,i(t) + 1, n̄t

r(t)
)
. (13b)

Now, if we follow Algorithm 2, we expect to converge to a Nash
equilibrium.

Algorithm 2 Average strategy fictitious play for learning a
Nash equilibrium.

Input p ∈ (0, 1)
Output (x∗, z∗)
1: for t = 1, 2, . . . do
2: for i = 1, . . . , N do
3: Calculate z′i ∈ argmaxr∈R Ũi(r; t− 1)
4: if Ui(z

′
i, z−i(t−1), x(t−1))≤Ui(zi(t−1), z−i(t−1),

x(t− 1)) then
5: zi(t) ← zi(t− 1)
6: else
7: With probability 1−p, zi(t) ← zi(t−1), otherwise

zi(t) ← z′i
8: end if
9: end for
10: for j = 1, . . . ,M do
11: Calculate x′

j ∈ argmaxr∈R Ṽj(r; t− 1)
12: if Vj(z(t−1), x′j ,x−j(t−1))≤Vj(z(t−1), xj(t−1),

x−j(t− 1)) then
13: xj(t) ← xj(t− 1)
14: else
15: With probability 1 − p, xj(t) ← xj(t− 1),

otherwise xj(t) ← x′
j

16: end if
17: end for
18: end for

B. Convergence Analysis

First, we need to prove an intermediate lemma, which shows
that if Algorithm 2 reaches a Nash equilibrium, it stays there
forever.

Lemma 6: Let each truck j ∈ [[M ]] receive the subsidy

ptj(x, z) = β(v0 −
(
anxj

(z, x) + b)
)
mxj

(x)

for a given v0 ∈ R. If x(t) and z(t), generated by Algorithm 2,
is a pure strategy Nash equilibrium and zi(t)∈argmaxr∈R Ũi(r;
t− 1) for all i ∈ [[N ]] and xj(t) ∈ argmaxr∈R Ṽj(r; t− 1) for
all j ∈ [[M ]], then x(t′) = x(t) and z(t′) = z(t) for all t′ ≥ t.

Proof: The proof of this lemma follows the same line of
reasoning as in the proof of [24, Proposition 4.2]. Here, we
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only prove the results for the trucks as the proof for the cars
is technically the same. First, note that, for all r ∈ R, we get

n̄c
r(t) + n̄t

r(t)− w̄t
r(t)

= (1 − λ)n̄c
r(t− 1) + λ

N∑
�=1

1{z�(t)=r} + (1 − λ)n̄t
r(t− 1)

+ λ
M∑
�=1

1{x�(t)=r} − (1 − λ)w̄t
r,j(t− 1)− λ1{xj(t)=r}

= (1 − λ)
(
n̄c
r(t− 1) + n̄t

r(t− 1)− w̄t
r(t− 1)

)
+ λ

(
nr (x(t), z(t))− 1{xj(t)=r}

)
, (14a)

n̄t
r(t)− w̄t

r,j(t) = (1 − λ)n̄t
r(t− 1) + λ

M∑
�=1

1{x�(t)=r}

− (1 − λ)w̄t
r,j(t− 1)− λ1{xj(t)=r}

= (1 − λ)
(
n̄t
r(t− 1)− w̄t

r,j(t− 1)
)

+ λ
(
mr (x(t))− 1{xj(t)=r}

)
. (14b)

Now, using these update laws and the proposed subsidy policy
in (11), we get

Ṽj(r; t)

= ξtj
(
r, T t

j

)
+ a

(
n̄c
r(t) + n̄t

r(t)− w̄t
r(t) + 1

)
+ b

+ βv0
(
n̄t
r(t)− w̄t

r,j(t) + 1
)

= ξtj
(
r, T t

j

)
+ a(1−λ)

(
n̄c
r(t−1)+ n̄t

r(t−1)−w̄t
r(t−1)

)
+ a

(
λ
(
nr (x(t), z(t))− 1{xj(t)=r}

)
+ 1

)
+ b

+ βv0(1 − λ)
(
n̄t
r(t− 1)− w̄t

r,j(t− 1)
)

+ βv0
(
λ
(
mr (x(t))− 1{xj(t)=r}

)
+ 1

)
= (1 − λ)Ṽj(r; t− 1) + λVj (r, x−j(t), z(t)) .

Therefore, we can prove that

Ṽj(xj(t); t) = (1 − λ)Ṽj(xj(t); t− 1)

+ λVj (xj(t), x−j(t), z(t))

≥ (1 − λ)Ṽj(r; t− 1) + λVj (r, x−j(t), z(t))

= Ṽj(r; t)

for any r ∈ R, where the inequality is a direct consequence
of the fact that the pair x(t) and z(t) is a pure strategy Nash
equilibrium and xj(t) ∈ argmaxr∈R Ṽj(r; t− 1) for all j ∈
[[M ]]. Thus, xj(t) ∈ argmaxr∈R Ṽj(r; t), and as a result, we
get xj(t+ 1) = xj(t) (following Algorithm 2). Now, using
a simple mathematical induction, we can show xj(t+ k) =
xj(t) for all k ∈ N. �

Theorem 7: Let the action profile of the agents be generated
by the average strategy fictitious play in Algorithm 2. Then, this
action profile almost surely converges to a pure strategy Nash
equilibrium of the car–truck congestion game, if the trucks
receive the platooning subsidy ptj(x, z) in (11).

Proof: The proof follows from using Theorem 4 and
Lemma 6 in the proof of [24, Th. 4.1]. �

Fig. 3. nr(x(t), z(t)), r ∈ R, versus the iteration number for β = 10−3

when using the joint strategy fictitious play in Algorithm 1 with p = 0.4 and
λt = 3 × 10−2 for all t ∈ N0.

VI. NUMERICAL EXAMPLE

Let us assume that N = 10000 cars and M = 100 trucks are
using the segment of the highway illustrated in Fig. 1 from
7:00 A.M. to 9:00 A.M. on a daily basis. We divide the time
horizon into eight equal nonoverlapping intervals. Hence, we
fix the action set as R = {1, . . . , 8}, where each number rep-
resents an interval of 15 min. Let T c

i , i ∈ [[N ]], be randomly
chosen from the set R using the discrete distribution

P {T c
i = n} =

{ 1/6, n = 2, 4
1/4, n = 3
1/12, otherwise.

Let us also use a similar probability distribution to extract
T t
j , j ∈ [[M ]]. Hence, we consider the case where the drivers

statistically prefer to use the road at r = 3, which corresponds
to 7:30 A.M. to 7:45 A.M. Let αc

i , i ∈ [[N ]], and αt
j , j ∈ [[M ]],

be randomly generated following a uniform distribution within
the interval [−7.5, −2.5]. Finally, let a = −0.0110 and b =
84.9696, as discussed in Section II.

A. Learning Algorithm Performance

Here, we start by simulating the joint strategy fictitious play in
Algorithm 1. Let us fix β=10−3, p=0.4, and λt=3×10−2 for
all t∈N0. Fig. 3 illustrates the number of the vehicles (both cars
and trucks) that are using a specific time interval to commute
nr(x(t), z(t)), r∈R, as a function of the iteration number.
As shown in this figure, the learning algorithm converges to a
pure strategy Nash equilibrium in this example relatively fast.4

Fig. 4 shows the evolution of the traffic distribution. Fig. 5 shows
the number of trucks mr(x(t)), r∈R, that are using the road
on various time intervals. For instance, at the learned Nash equi-
librium, 30 trucks use the time interval 7:45 A.M. to 8:00 A.M.
while at the same time, most of them avoid using the time inter-
val 7:15 A.M. to 7:30 A.M. because it is highly congested (and
they would not save much fuel if they commute at this time).

4Recall that there are |R|M+N possible action combinations in a car–truck
congestion game. Therefore, in this example, we have 810100�109100 possi-
ble action combinations. To put this number into perspective, recall that there
are around 1080 atoms in the visible universe.
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Fig. 4. Number of the vehicles in each time interval for β = 10−3 when using
the joint strategy fictitious play in Algorithm 1 with p = 0.4 and λt = 3 ×
10−2 for all t ∈ N0.

Fig. 5. mr(x(t)), r ∈ R, versus the iteration number for β = 10−3 when
using the joint strategy fictitious play in Algorithm 1 with p = 0.4 and λt =
3 × 10−2 for all t ∈ N0.

B. Nash Equilibrium Efficiency

Fig. 6 shows the number of the vehicles in each time interval
and the corresponding average velocity in that time interval.
The blue color denotes the case where the drivers do not
consider the congestion in their decision making, i.e., they
commute whenever it pleases them, zi = T c

i for all i ∈ [[N ]] and
xj = T t

j for all j ∈ [[M ]]. The red color denotes the case where
the drivers implement the pure strategy Nash equilibrium that
they have learned using Algorithm 1. As shown in this figure,
the proposed congestion game reduces the average commuting
time (increases the average velocity). Following [60], we can
define the social cost

S(x, z) = min
r∈R

vr(z, x)

= min
r∈R

anr(x, z) + b

= a

(
max
r∈R

nr(x, z)

)
+ b

Fig. 6. Number of the vehicles and the average velocity of the traffic flow in
each time interval for the (blue) case where the drivers neglect the congestion in
their decision making and for the (red) learned pure strategy Nash equilibrium.

where the last equality holds because of the fact that a < 0.
This social cost is the worst case average velocity of the traffic
flow.5 Another definition of social cost could be the total fuel
consumption or the overall carbon emission. In a utopia, the
government should be able to implement a global solution of
the optimization problem

(x•, z•) ∈ argmax
(z,x)∈RN×RM

S(x, z)

to achieve the lowest congestion at all time intervals. However,
this solution cannot be implemented in a society with strategic
(selfish) agents since they have no incentive for following a so-
cially optimal decision (x•, z•). Note that, since a<0, we have

(x•, z•) ∈ argmax
(z,x)∈RN×RM

min
r∈R

anr(x, z) + b

∈ argmin
(z,x)∈RN×RM

max
r∈R

nr(x, z)

and as a result, we get

S(x•, z•) = a

⌈
N +M

|R|

⌉
+ b

= 71.0766 km/h.

Therefore, we have

S(x•, z•)

S(x∗, z∗)
= 1.1048

which shows that the acquired pure strategy Nash equilibrium
(x∗, z∗) is not efficient with respect to the introduced welfare
function.6 However, it is somewhat better than the case where
the drivers do not consider the congestion in their decision
making (i.e., they travel whenever it pleases them) as

S(x•, z•)

S
({

T t
j

}M

j=1
, {T c

i }
N
i=1

) = 1.2330.

5This cost function is an example of a Rawlsian social cost function (i.e., the
worst case cost function of the players). Another possible choice of social cost
function is a utilitarian social cost function (i.e., summation of the individual
cost functions of all the players). See [61, p. 413] for more information with
regard to the difference between these two categories of social cost functions.

6It is worth mentioning that, if we choose the potential function Φ in
Theorem 3 as the social welfare function, the learned Nash equilibrium is
indeed efficient since Algorithm 1 results in a local maximizer of this potential
function. However, such a choice does not have any practical implications.
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Fig. 7. nr(x(t), z(t)), r ∈ R, versus the iteration number when an unex-
pected behavior (e.g., an accident) disrupts the traffic flow on the 50th day of
learning.

C. Robustness of the Learning Algorithm

Let us now consider the case where, on the 50th day of
learning (i.e., iteration t = 50), an unexpected behavior (e.g.,
a traffic accident) significantly decreases the average velocity
of the traffic flow during 7:15 A.M. and 8:00 A.M. (i.e., for
r = 2, 3, 4). To reflect this matter in the simulations, we assume
that on the 50th iteration, the average velocity for r = 2, 3, 4 is
given by (anr(x(t), z(t)) + b)/10. Fig. 7 illustrates the number
of vehicles that are using a specific time interval to commute
nr(x(t), z(t)), r ∈ R, as a function of the iteration numbers.
Note that there is a sudden drop in the number of the vehicles
that are using the time intervals corresponding to r = 2, 3, 4 for
a while (around 20 iterations) after the accident. However, the
learning process recovers the Nash equilibrium after another 50
iterations.

D. Effect of the Fuel-Saving Coefficient

Here, we aim at illustrating the effect of the fuel-saving
coefficient β on the behavior of the trucks. We perform all the
simulations using the joint strategy fictitious play introduced in
Algorithm 1 with p = 0.4 and λt = 3 × 10−2 for all t ∈ N0.
Fig. 8 illustrates the number of trucks for the learned Nash
equilibrium at different time intervals for various choices of
the coefficient β. As we expect, when β = 0, the trucks are
reluctant to platoon (but instead stick to the time that favors
them the most). However, as we increase the coefficient β, a
higher number of trucks drive at the same time interval. Note
that, for β = 4 × 10−3, all hundred trucks use the road during
exactly one time interval (i.e., 8:00 A.M. to 8:15 A.M.).

E. Drivers Having Different Time Values

In 2001, the consulting firm Inregia in Sweden, by the request
of the Swedish Institute for Transport and Communications
Analysis, performed a survey to estimate the value of time
for the road users in Stockholm [34], [51]. This study showed
that various groups of people value their time differently. Ac-
cording to the study, drivers valued time as 0.98, 3.30, and
0.19 SEK/min for work and school commuting trips, business

Fig. 8. Number of the trucks in each time interval for various choices of the
coefficient β.

Fig. 9. mr(x(t)), r ∈ R, versus the iteration number for the case where the
drivers value their time differently.

trips, and other trips, respectively [34], [51]. Let us include this
effect in the introduced congestion game setup. Assume that, in
the utility of car i ∈ [[N ]], we set the term

pci (z, x) = δ−1
i

⎛
⎝aβ

mzi
(x)∑

�=1

g(�)

⎞
⎠

where δi > 0 is the value of time for the driver of car i. For
work and school commuting trips, we scale the value of time
to δi = 1.00. Therefore, we get δi = 3.37 and δi = 0.19 for
business trips and other trips, respectively. Now, allow us to
randomly distribute the cars into three groups of work and
school trips, business trips, and other trips with probabilities
of 0.754, 0.036, 0.210, respectively, as suggested in [34]. Fig. 9
shows the number of trucks in each time interval as a function
of the iteration number in this case. Comparing with Fig. 5,
we can clearly see that, in this example, the difference in the
value of time has not changed the behavior of trucks (certainly
in the Nash equilibrium, but the transient response is different).
Fig. 10 shows the number of the cars in each time interval for
the case where the drivers value their time differently subtracted
by number of the cars in each time interval for the case where
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Fig. 10. Number of the cars in each time interval for the case where the
drivers value their time differently subtracted by number of the cars in each
time interval for the case where the drivers value the time equally.

the drivers value their time equally. Clearly, the cars that value
their time the most, or, equivalently, the ones that are willing
to pay higher congestion taxes (i.e., δi = 1.00, 3.37), can move
to the time interval where 30 trucks are traveling. However, the
cars that do not value their time much (i.e., δi = 0.19) switch to
a less expensive alternative.

F. Trucks With and Without Platooning Equipment

Few trucks are currently fitted with platooning equipment.
Here, we try to understand the influence of this matter on the
properties of the learned Nash equilibrium. To illustrate the
effect of trucks without platooning equipment, let us consider
two types of trucks, where the first type can indeed participate
in platoons and the second type does not have the necessary
equipment for doing so. We count the second type of trucks
as ordinary cars since they do not benefit from traveling at
the same time interval as the other trucks. Hence, N shows
the number of ordinary cars together with the trucks without
platooning equipment, and M denotes the number of trucks
that can potentially participate in forming the platoons. We
fix N +M = 10000. Fig. 11 illustrates the number of the
trucks that have platooning equipment in each time interval
for various ratios of M/(M +N). Evidently, the number of
the trucks (with platooning equipment) in most of the time
intervals linearly grows with M/(M +N) (as we expect, since
there are more trucks). However, some of the intervals, such as
7:30 A.M. to 7:45 A.M., become less favorable (as they are
highly congested), and the trucks in these intervals completely
move to their neighboring intervals as M/(M +N) increases.

G. Announcing Congestion Taxes in Advance

A drawback of the presented formulation is that the con-
gestion taxes are dynamic and must be instantly calculated
(and enforced) based on the number of the vehicles in each
time interval. Although dynamic congestion taxing has been
implemented on several occasions (e.g., San Diego I-15 High-
Occupancy Toll Lanes, in which the tolls vary dynamically with
the level of congestion [62]), they proved to be controversial

Fig. 11. Number of the vehicles in each time interval for the learned pure
strategy Nash equilibrium for various choices of M/(M +N).

Fig. 12. nr(x(t), z(t)), r ∈ R, versus the iteration number when the con-
gestion tax is updated with a delay of D = 30 days.

(or cumbersome to understand for the drivers at the least).
Therefore, one might consider the case in which the tolls for
day t+D are announced at the end of day t for all t ∈ N0

(so that the drivers have time to digest this information and
act accordingly). To simulate such a scenario, we note that the
congestion tax pci (t) that car i ∈ [[N ]] must pay for using the
road at time interval zi(t) ∈ R on iteration t ∈ N0 is equal to

pci (t) =

{
aβ

∑mzi(t)
(x(t−D))

�=1 g(�), t > D
0, otherwise.

Fig. 12 illustrates the number of the vehicles for each time in-
terval nr(x(t), z(t)), r ∈ R, versus the iteration number when
the congestion tax is updated with a delay of D = 30 days.
Evidently, there are more oscillations in comparison with Fig. 3;
however, the algorithm rapidly converges to a pure strategy
Nash equilibrium.

H. Average Strategy Fictitious Play

Here, we use the average strategy fictitious play with β =
10−3, λ = 3 × 10−2, and p = 0.4. We also implement the
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Fig. 13. nr(x(t), z(t)), r ∈ R, versus the iteration number for β = 10−3

and v0 = 85 when using the average strategy fictitious play in Algorithm 2.

platooning subsidy in Theorem 4 with v0 = 85. Fig. 13 illus-
trates nr(x(t), z(t)), r ∈ R, versus the iteration number. The
proposed algorithm clearly converges to a Nash equilibrium
relatively fast.

VII. CONCLUSION AND FUTURE WORK

We have introduced a model for traffic flow on a specific road
at various time intervals per day using an atomic congestion
game with two types of agents (namely, cars and trucks). Cars
only optimize their tradeoff between using the road at the
time they prefer, the average velocity of the traffic flow, and
the congestion tax they are paying. However, trucks benefit
from using the road at the same time as the other trucks. We
motivated this extra utility using an increased possibility of
platooning with the other trucks and, as a result, saving fuel.
We used congestion data from Stockholm to validate the linear
relationship between the average velocity of commuting and
the number of the vehicles that are using the road at that
time. We devised appropriate tax or subsidy policies to create a
potential game. Then, we used the joint strategy fictitious play
and the average strategy fictitious play to learn a pure strategy
Nash equilibrium of this game. We conducted a comprehensive
simulation study to analyze the effect of different factors on the
properties of the learned Nash equilibrium. As future work, we
can consider using mechanism design tools to enforce a socially
optimal solution, such as an optimal carbon emission profile,
through appropriate congestion tax policy. Finally, in this paper,
we did not consider the routing aspects of the problem. It would
be of great interest in future research to combine the departure
time selection and the route selection problems in the context
of understanding the platooning incentives.
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