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Abstract— In this work, we introduce a hierarchical archi-
tecture for management of multiple automated vehicles in a
parking lot provided the existence of human-driven vehicles.
The proposed architecture consists of three layers: behavior
prediction, vehicle coordination and maneuver control, with
the first two sitting in the infrastructure and the third one
equipped on individual vehicles. We assume all three layers
share a consistent view of the environment by considering it as
a grid world. The grid occupancy is modeled by the prediction
layer via collecting information from automated vehicles and
predicting human-driven vehicles. The coordination layer as-
signs parking spots and grants permissions for vehicles to move.
The vehicle control embraces the distributed model predictive
control (MPC) technique to resolve local conflicts occurred
due to the simplified vehicle models used in the design of the
prediction and coordination layers. Numerical evaluation shows
the effectiveness of the proposed control system.

I. INTRODUCTION

Parking a car is no simple task. According to [1], British
and German drivers wasted in average 41 and 44 hours
in searching for parking spots in 2017, at an estimated
cost of £23.3 billion and e40.4 billion, respectively. Since
nearly 75% of parking spots in Europe are located in off-
road parking lots [2], such as multilevel structures and
underground car parks, improved management system for the
parking lots would certainly contribute to overall efficiency
of the parking procedure.

The good news is that the advances of sensor technologies
have been exploited to facilitate the management system in
those scenarios. For example, a combination of magnetic
and ultrasonic sensors were used for detection of vehicles
in a parking structure inside the campus of the University of
Southern California [3]. In recent years, with improvement of
image processing power, camera-based methods have gained
great popularity [4]. Along with research publications, many
relevant patents have been issued, [5], [6] to name a few.
Most of aforementioned approaches have been applied to
guide the drivers to park with the acquired information. In
industry, a few companies have followed the path and taken
one step further. Hikvision, a supplier of video surveillance
products, has demonstrated their vision for improving the
efficiency by introducing moving robots as carriers to move
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vehicles in a parking lot with a guidance system where the
camera-based technique plays a key role [7].

On the other hand, the joint efforts from academia and
industry in pursuing automated vehicles may provide new
potential for parking lot management. Apart from gen-
eral techniques for urban driving, some research has been
specifically focusing on planning and control for parking
procedures with emphasis on maneuver accuracy, such as [8],
[9]. Meanwhile, many automobile manufacturers have started
to provide automated parking systems in their commercially
available products, such as the Remote Parking Assist from
Mercedes [10] and Remote Control Parking from BMW
[11], both enabling automated parking procedures even after
drivers have exited the cars. Besides, emerging technologies
related to distributed optimization have also been applied to
automated vehicles to exploit the information shared between
each other for better performance [12]. Combining all those
technologies, fully automated vehicle for driving, maneuver-
ing and interacting in the parking lot can be expected in the
near future.

Despite the great success in those two research fields, little,
if any, effort has been made to integrate the rich sensory
information from the management level with the automated
vehicles to explore the potential benefits brought to both
the management system and the individual vehicles [13].
Besides, the estimation of human-driven vehicles, which
traditionally has been designed for individual automated
vehicles in the context of road networks [14], can now be
performed by the management level with much more data
and much higher accuracy, due to more available sensors
and driver guidance systems.

In this paper, we provide a systematic approach to address
the challenges for management of parking lots in the dawn
of automated driving. The main contributions are:

1) A control architecture for handling mixed automated
and human-driven vehicles in smart parking lots, con-
sisting of: i) a prediction layer for predicting vehicle
positions and grid occupancy, ii) a coordination layer
for granting permission and initialization of coopera-
tion, and iii) a vehicle layer with distributed planning
and tracking functionality.

2) By means of numerical evaluation: i) the identifica-
tion of potential problems faced by the management
systems without human driver prediction, and ii) justi-
fication that the proposed control architecture would
resolve potential issues (e.g., deadlocks) caused by
human drivers.

An additional contribution is the design of the vehicle layer
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as a cooperative MPC that accounts for predicted paths of
any human driven vehicle.

The rest of this paper is organized as follows. Section II
presents the overview of the proposed controller. The details
of the functionality needed in each automated vehicle are
introduced in Section III, whereas the coordination and
prediction layers are introduced in Sections IV and V respec-
tively. The numerical evaluation for the proposed control,
in scenarios with and without human driver prediction, are
shown in Section VI. Section VII concludes the paper.

II. CONTROLLER OVERVIEW

The control system discussed in this paper is designed
to manage multiple automated vehicles in a parking lot
provided the presence of human-driven vehicles. The com-
ponents of the controller can be physically-located in the
infrastructure or in each automated vehicle and those that
reside in the infrastructure will be named authority herein.
As suggested in Section I, with the guidance system for the
drivers and sensors for position detection, it is reasonable
to assume: 1) automated and human-driven vehicles can be
distinguished by the authority; 2) all vehicles would move
only after permission granted and would park to the assigned
spots; 3) all vehicle positions can be detected by the authority
and planning and control information of automated vehicles
are broadcast by them; and 4) all automated vehicle share
a consistent view with the authority as regards to viewing
the enclosed environment as a grid world. For any vehicle in
the parking lot, we also categorize them as: active, meaning
moving; parked, as the name suggests, and on-hold, meaning
waiting for the permission from the authority at the entrance,
or at the parking spot, all applicable to both automated and
human-driven vehicles. Based on the assumed scope, the
proposed layered architecture is shown in Fig. 1, composed
of vehicle layer, coordination layer, and prediction layer.

Prediction layer

Coordination layer

Vehicle layer

Infrastructure

Individual

vehicle

Fig. 1: Layered control architecture for management of vehicles in
an enclosed environment. Those layers and their communication
interfaces are detailed in Section III, IV and V respectively.

Specifically, the vehicle layer is composed of planning
and control functionality for individual automated vehicles,
which construct their own feasible paths over the access-
granted area from the coordinator, and track the paths in
a distributed manner. The control layer also contains a
distributed MPC which is applied to resolve local conflicts
when the risk of collision arises.

The aim of the coordination layer is twofold. First, it grants
permission to enter and to leave, assigns parking spots to
vehicles, and grants access to certain areas for automated

vehicles to travel over at the same time, based upon current
conditions. Second, it closely monitors the situation and
initiates cooperation between vehicles if needed.

The prediction layer also has two functions. First, it
models a human-driven vehicle by a path planner with a
tracking MPC to predict its trajectory to assist cooperation.
Second, it updates the grid occupancy conditions based on
information from the coordination layer and the vehicle layer,
both of which are viewed by the prediction layer as inputs
for updating the grid condition. For automated vehicles, its
predicted path can be directly obtained from the relevant
individual, whereas for human-driven vehicles, it includes all
the surrounding grids as positions that a driver may intend
to drive to.

III. VEHICLE LAYER

A. Vehicle dynamics

The vehicle dynamics is described by a kinematic bicycle
model. Denote (x, y) as the vehicle coordinate, v as the
vehicle speed, ψ as the heading angle, all measured in the
same Cartesian global coordinate system, β as the angle of
the vehicle velocity with respect to the longitudinal axis of
the car, a as the acceleration along the same direction, and
lr as the distance from the center of mass of the vehicle to
the rear axle. The model is given by

ẋ(t) =v(t) cos(ψ(t) + β(t)), (1a)
ẏ(t) =v(t) sin(ψ(t) + β(t)), (1b)
v̇(t) =a(t), (1c)

ψ̇(t) =
v(t)

lr
sin(β(t)), (1d)

and we apply a and β as control inputs. The constraints
imposed on the system are

|a(t)| ≤ amax, |β(t)| ≤ βmax, |β̇(t)| ≤ β̇max.

B. Communication interface with coordination layer

Consider enclosed environment composed of grids which
form a set G. At a certain instance t a set N = {1, 2, ..., n}
of automated vehicles are active inside. Due to the assump-
tions introduced in Section II, all those vehicles broadcast
their current states, planned paths, predicted paths, and all
of them have a consistent view of the environment and
therefore their dynamics can be described by the coordinates
of the same coordinate frame. Denote z = [x y ψ]T as
the state vector, Zr = [zr,0 zr,1 ... zr,Nz

] and vr(t) =
[vr,0 vr,1 ... vr,Nv

]T as the reference from the planner at
time t with length Nz and Nv respectively, u∗0 = [a∗0 β

∗
0 ]T

as the control law calculated by longitudinal and lateral
controllers. Denote the predicted trajectory from the MPC
controller as Z̃. For an automated vehicle k, denote its
access-granted area as G ⊆ G, the suggested velocity is
vr and γ is cooperation initialization signal, which will be
introduced in Section IV. We use superscript k to indicate
which vehicle the variable is related to. Note that Gk is only
sent to k when the permission is granted in the first time.
While a vehicle is active, coordinator does not repeat Gk
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to the same vehicle. For human-driven vehicles, the only
information available is its current location, which is detected
by the authority. Then the assumed communication interface
between active vehicles and the coordination layer is given
in Fig. 2. The dashed line from the human-driven vehicle
indicates its position zhm(t) is detected by, not reported to,
the authority and we use superscript hm to indicate human-
driven vehicles. The information flow between the prediction
layer and the coordination layer is explained in Section IV.

Coordination layer

Planner Controller
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Planner Controller
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Grids dynamics &
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Fig. 2: Communication interface between different layers. The
automated vehicles (a.v.’s) are depicted as white cars while the
human-driven vehicle (h.v.) is the orange one. Note that all the
signals appeared are function of time and notation (t) has been
dropped.

C. Path planning and nominal tracking

Upon receiving the access-granted grid numbers Gk at
the entrance, or at its parking spot, automated vehicle k
constructs its own feasible path. One example is shown in
Fig. 3, where on the left the access-granted area is marked
as green, and the red line on the right plot is one path Zkr
from the planner.
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Fig. 3: Access granted grids (marked green on the left) with grid
code names in Gk and path planning by vehicle k. The names of
parking spots are shown in the left plot.

For this study, each vehicle needs to have two different
steering controllers: one for the case when the cooperative
vehicles are far away, which we call nominal MPC; the
other one for the case when those vehicles are close and

information from control layer is shared to perform collision
avoidance, which we call cooperative MPC. We restrict our
attention to the lateral control for collision avoidance, and
the longitudinal control therefore is not presented here.

When vehicles are far away from each other, the primary
target of the controller is to track the reference signals Zr and
vr given by the planners. Therefore, at each sampling time
ts, the nominal MPC is a constrained quadratic programming
problem given by

min.
b

N∑
i=0

(‖zi − zr,i‖Q + ‖βi‖R) + ‖zN+1 − zr,N+1‖Qf

(2a)
s.t. z0 = z(t), β−1 = β(t− ts), (2b)

zi+1 = Aizi +Biβi + fi, ∀i, (2c)
|βi| ≤ βmax, ∀i, (2d)

|βi − βi−1

ts
| ≤ β̇max, ∀i, (2e)

where Q ∈ R3×3
+ and is diagonal, R ∈ R+, Qf ∈ R3×3

+ , N
is the prediction horizon, b = [β0 β1 ... βN ]T . Ai ∈ R3×3,
Bi ∈ R3×1 and fi ∈ R3×1 are obtained by linearizing
(1) along vr, [ψr,0 ψr,1 ... ψr,N ] and βi = 0 and then
discretizing it through forward Euler. The presence of fi
is due to that the reference control signal is not given for
tracking the reference position and the states here are not
tracking errors. Once the optimization problem is solved and
b∗ is obtained, the control law implemented is β∗0 . Here
shared information between cooperative vehicles would be
disregard as tracking the reference is the primary goal.

D. Cooperative MPC

Once some individual vehicle k gets a cooperation signal,
γk = 1, the primary goal is to avoid collision. The shared
information between cooperative vehicles can be used to
form additional constraints or to create a collective cost
function. Here we present an approach where the vehicles are
coupled by cost function. By doing so, the feasibility can be
easily ensured compared to using dynamic constraints. Note
that the dynamics of the vehicles are fully decoupled. Denote
the set of cars engaging cooperation as C ⊆ N and suppose
k ∈ C. Denote Ck = C \ {k}. Suppose C = {c1, c2, ..., c|C|}
where | · | denotes set cardinality, and k = cq . Then we
have Ck = {c1, c2, ..., cq−1, cq+1, ..., c|C|}. Suppose the
sampling time instance when the vehicle starts cooperation
is t = jts. The object of the centralized MPC for the overall
system containing those |C| vehicles is formulated as

min.
U

∑
k∈C

( Nc∑
i=0

(
‖zki − zkr,i‖Qk + ‖βki ‖Rk+ (3)∑

p∈Ck
φk,p(z

k
i , z

p
i )
)

+ ‖zkNc+1 − zkr,Nc+1‖Qk
f

)
where U = [bc1 bc2 ... bc|C| ], k indexes the vehicles, Nc is
the prediction horizon for cooperation, φk,p : R3×R3 → R+

is some quadratic or linear function indicating the vehicle
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distances between each other. The optimal control law can
be obtained by solving such a problem once every sampling
time.

However, solving the optimization problem for multiple
vehicles in real time is difficult. Luckily, the optimal control
law can still be obtained by solving the optimization prob-
lem (3) in a distributed and iterative manner. Assume the
dynamics of all vehicles can be captured by (1) and each
vehicle communicates its local optimal control law bk∗ and
its current state. For vehicle k, its local optimization objective
is given by

min.
bk

V k :=

Nc∑
i=0

(
‖zki − zkr,i‖Qk + ‖βki ‖Rk+ (4)∑

h∈C

∑
p∈Ch

φh,p(z
h
i , z

p
i )
)

+ ‖zkNc+1 − zkr,Nc+1‖Qk
f
,

Denote the computation and communication time to solve (4)
for one iteration as ∆tc. Then it is guaranteed to recover the
global optimal solution of (3) by solving (4) when ∆tc � ts
under some other conditions if the constraints are properly
included [15]. Those constraints are introduced later. The
optimal solution is recovered in an iterative manner, that is
the same optimization objective (4) is solved several times
during two sampling instants based on updated information
from other vehicles.

We use subscript l with brackets to indicate which iteration
the variables are associated to. Define the optimal solution
of (4) at iteration l as

bk∗(l) := arg min.
bk

V k(l). (5)

Here we introduce two approaches to recover the optimal
solution via distributed MPC depending on whether the
models or the predictions are shared.

1) Model shared approach: To begin with, at the instance
of any sampling time t = mts where m ∈ N+ during
the course of cooperation, vehicle k broadcasts its current
state zk(t). In addition, at the instance of the sampling
time t = jts when the cooperation starts, each vehicle also
broadcasts its vk(jts), ψk(jts) and βk(jts) to others such
that the dynamics of vehicle p ∈ Ck, namely Apj , B

p
j and

fpj , are also available locally for vehicle k. At each sampling
instant, l = 0, U(0) is the same for all the vehicles and can be
available locally. Then the local optimization objects Eq. (4)
can be minimized to get bk∗(0) subject to certain constraints.
After bk∗(l) is obtained, the optimal control law can be updated
locally by

U(l+1) =
∑
k∈C

ωkŨk
(l) (6)

where
∑
k∈C ω

k = 1 are predefined weights and

Ũk
(l) =

[
U(l)[1] ... U(l)[q − 1] bk∗(l) U(l)[q + 1] ... U(l)[|C|]

]
where U(l)[q] denotes the q-th column vector of matrix U(l).
Denote the maximum number of iteration allowed as lmax,

then the local optimization problem at time t+ l∆tc where
0 ≤ l ≤ lmax is

min.
bk

(l)

V k(l) (7a)

s.t. zk0(l) = zk(t), βk−1(l) = βk(t− ts), (7b)

zp0(l) = zp(t), ∀p ∈ Ck, (7c)

zpi+1(l) = Apjz
p
i(l) +Bpj βi(l) + fpj , ∀i, ∀p ∈ C, (7d)

|βki | ≤ βkmax, ∀i, (7e)

|
βki − βki−1

ts
| ≤ β̇kmax, ∀i, (7f)

bp(l) = U(l)[d], ∀p = cd ∈ Ck, (7g)

2) Path shared approach: Note that the model shared
approach can be modified to be extended for the cases
where the vehicles are heterogeneous, by which we mean
that not all of their dynamics can be captured by (1) and
one simple data package containing vk(jts), ψk(jts), and
βk(jts). Recall that we assume k = cq , that is k ∈ N is
q-th element of C. Then U[q] is the control corresponding
to vehicle k. The solution comes from the observation that

U(l+1)[q] = ωkbk∗(l) + (1− ωk)U(l)[q] (8)

due to that the weight ωk, k ∈ C is predefined and remains
unchanged in (6). That is, when U(l)[q] is available and
bk∗(l) can be computed, U(l+1)[q] can be updated locally
in vehicle k. To compute bk∗(l), vehicle k directly requires
the predicted paths of vehicle p. At t = mts + l∆tc
during the course of cooperation, assume U(l)[q] has been
obtained. Then vehicle k solves bk∗(l) and computes U(l+1)[q]
by (8). Then it applies U(l+1)[q] to (7d) to compute its
predicted trajectory Z̃k(l) = [z̃k0(l) z̃

k
1(l) ... z̃

k
Nc(l)] under such

control and communicate Z̃k(l) to vehicle p ∀p ∈ Ck for
iteration l + 1. By doing so, each iteration would require
data packages of other vehicles’ predicted path instead of
their dynamics and the local optimization problem Eq. (7) for
vehicle k is slightly modified as given in Eq. (9). However,
the overall optimization problem remains the same and the
properties of distributed MPC also hold for this approach.
The communication data package shown in Fig. 2 is for the
path-shared approach.

min.
bk

(l)

V k(l) (9a)

s.t. zk0(l) = zk(t), βk−1(l) = βk(t− ts), (9b)

zki+1(l) = Akj z
k
i(l) +Bkj βi(l) + fkj , ∀i, (9c)

zpi(l) = z̃pi(l), ∀p ∈ C
k, (9d)

|βki | ≤ βkmax, ∀i, (9e)

|
βki − βki−1

ts
| ≤ β̇kmax, ∀i, (9f)

In case of cooperation with a human-driven vehicle, the
predicted path Z̃hm is directly given by the prediction layer.
The details are given in Section V-A
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IV. COORDINATION LAYER
The coordination layer has two main responsibilities: man-

aging grid occupancy via assigning parking spots and grant-
ing access to automated vehicles, which we call resource
allocation, and initiating cooperation among some vehicles
if necessary, which we name as cooperation initiation.

A. Communication interface with the prediction layer

Denote l ∈ {0, 1}|G| to indicate grid occupancy and l[g]
as the state of grid g. l[g] = 0 means g is not assigned
to any active vehicles and l[g] = 1 otherwise. Denote the
sampling time of the coordination and prediction layer as Ts
and denote n ∈ Z|G|+ as the number of cars planned to reach
each grid at t + Ts predicted at time t. Besides, we also
denote Ξ(t) ∈ 2G as the set of grids the coordinator grants
permission at instance t, where 2G denotes the power set of
G. The predicted human-driven trajectory by the prediction
layer is denoted as Z̃hm. The communication interface is
also shown in Fig. 2.

B. Resource allocation

Denote P ⊂ G as the set of all parking spots and F(t) ⊆
P as the set of free parking spots at time t. Since the grid
structure remains unchanged, ∀g ∈ P , we can find G̃e(g)
and G̃l(g) offline, which are the set of grids that a vehicle
is allowed to travel to in order to reach the parking spot g
and grids to leave from g respectively. Besides, ∀g ∈ G, we
can also find O(g) ⊆ G which is its neighbor grids. Define
a label function λ : G → N ∪ {0} as

λ(g) =

{
0, no car active in grid g,
k, k ∈ N active in grid g.

Note that the label function bridges the grid name and car
name at the current moment. Then the central task is to
decide whether a vehicle is allowed to leave if it wants to,
and which spot one should be assigned to if there is any
free. We introduce the following rules based on heuristics
but note that those rules can be formally verified.

For a vehicle parked at g to leave, we require ∀g′ ∈ O(g),
l[g′] = 0. Once the permission is granted, the active vehicle
set N changed accordingly by the prediction layer and if we
assume N (t) = N (t − Ts) ∪ {|N (t − Ts)| + 1} with car
|N (t)| = |N (t − Ts)| + 1 departing from g, then Ξ(t) =
G̃l(g), λ(g) := |N (t)| and F(t) = F(t− Ts) ∪ {g}. When
F(t) 6= ∅, namely there are parking spots available, the rule
of assigning spot is Ξ(t) = G̃e

(
arg minF(t)

)
.

C. Cooperation initiation

Define the translation function τ : R2 → G, which
calculates its corresponding grid name for a coordinate
(x, y). Then with a slight abuse of notation, we also write
τ(z) = τ(x, y) where z = [x y φ] and denote s̃ = τ(Z̃)
as the vector of grid names of some predicted trajectory.
Recall the definition of label function λ(·), then at current
time t, if λ(g) 6= 0, then g = τ(zλ(g)(t)) shall hold. Recall
that n ∈ Z|G|+ predicts in short time the number of vehicles
planned to reach each grid. Then for any g ∈ G, if p(g) > 1,

namely within short time [t, t + Ts], at least two vehicles
plan to reach g, then vehicle λ(g′) ∈ N where g′ ∈ O(g)
are notified by signal γλ(g′) = 1 to perform cooperation.

V. PREDICTION LAYER

The prediction layer has two functionalities. First, it
predicts the human-driven vehicle trajectory by modeling
it as a vehicle with nominal tracking functionality. Second,
it processes the information from the vehicle layer and the
control signals from the coordination layer to update the grid
occupancy by modeling it as a hybrid automaton.

A. Human-driven vehicle dynamics

Although the position of a human-driven vehicle zhm(t)
can be detected, its predicted trajectory can not be obtained
from the human driver. The prediction layer models the
dynamics of human-driven vehicle as (1) and predicts its
trajectory within short time span. Due to the assumption in
Section II that drivers would park to the assigned spot, the
destination of human-driven vehicle is always known. Then
the behavior of the driver is modeled by the path planning
and nominal tracking functionality introduced in Section III-
C. By doing so, we can obtain a predicted path Z̃hm, which
can be used for individual automated vehicles form their
collective cost functions in the cooperative MPC as if the
human-driven vehicles are in cooperation.

B. Grid dynamics

To model the grid dynamics, we introduce a function ε :
G × G × G → {−1, 0} as

ε(g1, g2, g3) =

{
−1, if g2 = g3 and g1 6= g2,

0, else.
(10)

This function is used for calculating the grid occupancy. For
example, for some g1 ∈ O(g2), at time t, ε(g1, τ(zλ(g1)(t−
Ts)), g2) is to check whether some car λ(g1) ∈ N travels
from grid g2 to g1 during time [t − ts, t]. Due to such
definition, once a vehicle is parked and is removed from set
N , the corresponding parking spot would remain assigned.
Denote the indicator function for set N as χN . Recall that
Ξ(t) is the set of grids the coordinator grants permission to
at instance t. Then χΞ(t) can be applied to update the number
of vehicles due to the coordinator command. Besides, if
g = τ(zhm), we assume that human-driven vehicle has been
granted permission to ∀g′ ∈ O(g) \ P . Denote n ∈ Z|G|+

as number of vehicles assigned permission to, but not yet to
travel over the grid and denote the g-th element as n[g], then
we have grid dynamics as

n[g](t) =n[g](t− Ts) + χO(g)\P

(
τ
(
zhm(t)

))
−

χO(g)\P

(
τ
(
zhm(t− Ts)

))
+ χΞ(t)(g)+∑

g′∈O(g)

ε(g′, τ(zλ(g′)(t− Ts)), g). (11)

Note that we use χO(g)\P(τ(zhm)), rather than z̃hm pre-
dicted by the prediction layer, which would be relatively
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conservative since τ(Z̃hm) ⊂ O(g) if g = τ(Z̃hm)[1].
However, by doing so, we do not solely rely on the predicted
τ(Z̃hm) to make decision. In addition to the grid dynamics
described by n(t), the set of active vehicles N ⊂ Z+ is also
time dependent, therefore we write it as N (t). Recall that
l(t) ∈ {0, 1}|G| denotes whether each grid has been assigned
to any vehicle or not until time t, then we have

l[g](t) =

{
1, if n[g](t) > 0,

0, else.
(12)

Then the overall system can be viewed as a trivial hybrid
system and modeled as (L, D, E) where l ∈ L = {0, 1}|G|
is the control location, D : L → D(l) is the dynamics of
system state, which is a duple (n,N ) and the dynamics of n
is given by Eq. (11), and the edge E ⊂ L×Guard×Jump×
L where Guard and Jump is specified by (12). The model
can be interpreted as processing n grid maps, each of which
belongs to one active vehicle in N , and extract information
from them. One illustration of such procedure is shown in
Fig. 4, where the last layer is due to those parked vehicles.

n
.

.

.

Fig. 4: Processing information from vehicles and coordinator.

Recall that p ∈ Z|G|+ is defined as number of vehicles
planned to travel to each grid at t + Ts. The approach for
modeling p is similar to that of n and therefore is neglected.

VI. NUMERICAL EVALUATION

This section provides numerical evaluation of the proposed
control architecture. The results are demonstrated in two
different scales, namely in the infrastructure level and in
individual vehicle level. We first remove the human-driver
prediction to demonstrate that a deadlock maybe caused by
human driving behavior and then show that such deadlock
can be resolved by adding the predicting functionality to
assist individual automated vehicle involved in the situation.

A. Setup and parameters

We consider one particular layout of a parking lot, as
shown on the left in Fig. 3, with 31 parking spots, two
of which (grid 30 and 31) are reserved spots, and in total
82 grids. Therefore, we have G = {1, 2, ..., 82} and P =
{1, 2, ..., 29} (30 and 31 excluded). At time t = 0, we have
|F(0)| ∼ U(|P|), that is the number of free spots in the
beginning is a random variable with uniform distribution.
For vehicle in P \ F(t), its intention to leave is a Bernoulli
distribution Be(pl), that is the probability it may leave at any

sampling instance is pl. Similarly, at any sampling instance,
the event that a vehicle would like to enter the parking
lot is following Be(pe). When a vehicle shows up at the
entrance, the event that the vehicle is human-driven is also
following a distribution Be(ph). The parameters used here
are pl = pe = 0.5 and ph = 0.05. Ts = 3ts where Ts and
ts are the sampling time in the infrastructure and the vehicle
respectively.

For vehicle cooperation, the parameters used are listed in
Table I and the distance function φh,p appearing in the cost
function (4) is defined as

φk,p(z
k
i , z

p
i ) := ‖sgn(ypj − y

k
j )(zki − zp1) + d‖Qc (13)

where sgn(·) is a sign function and we require sgn(0) = 1,
d = [0 ymin 0]T and Qc = diag(0, ∆, 0). Here ymin defines
the minimum distance in y direction between two vehicles.

TABLE I: Simulation parameters (SI units)

lw lr lf βmax β̇max amax

2 2 2 π/4 π/1.8 1
ts tp N Nc Nz Nv

0.1 1 15 15 100 100

B. Performance without human driver prediction

Although performing accordingly most of time, the de-
signed control may indeed cause a deadlock. Fig. 5 shows
one such instance. The plot on the left illustrates n, namely
the number of vehicles planning to reach each grid at t+Ts
estimated at time t. Empty grid g means n[g] = 0, one with
green circle means n[g] = 1 and red if n[g] > 1. The figure
on the right shows vehicle position with blue for parked,
green for entering, red for leaving, black for on-hold (not
showing in this figure), and solid for human-driven. In this
case, two automated vehicles plan to take spot 10 and 12
respectively, and the human-driven vehicle is assigned to spot
11 since the vehicle there just departures.
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Fig. 5: Grid dynamics n and vehicle positions at certain instance
without human driver prediction. Deadlock is formed around park-
ing spot 12.

C. Performance with human driver prediction

When the human driving prediction is installed, the dead-
lock can be predicted, as shown in Fig. 6 and the cooperation
of automated vehicles can be initiated. Note that due to the
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human-driven vehicle at g, all g′ ∈ O(g) \ P are set to
more than 0 to raise the caution. Fig. 7 shows the vehicle
positions before and after the cooperation where the coop-
erative MPC is initiated by the coordinator and operated by
the automated vehicles to avoid human-driven vehicles. Blue
dots are planned path, purple ones are predicted and blue
solid lines are traveled trajectories. The convergence of the
distributed MPC and the control with and without distributed
MPC engaged are shown in Figs. 8 and 9 respectively.
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Fig. 6: Grid dynamics n and vehicle positions at certain instance
with prediction layer. Deadlock around spot 12 is predicted.
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Fig. 7: Cooperative MPC for avoiding human-driven vehicle.
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Fig. 8: Convergence results during 10 iteration starting from differ-
ent sampling instances m.

VII. CONCLUSION

In this paper, a hierarchical control system is introduced
to manage mixed automated and human-driven vehicles in
smart parking lots. The layered system includes distributed
planning and tracking for individual vehicles and centralized
prediction and coordination in the management level. Due
to the unique characters of parking lots, the prediction of
human drivers is addressed by the management level. The
predicted information is applied by the automated vehicles
to resolve deadlock via cooperative distributed MPC.
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Fig. 9: Control comparison without and with the cooperative MPC.

Numerical evaluation shows the effectiveness of the pro-
posed architecture and indicates its potential for any enclosed
environment. However, in the current setup the distributed
control in the vehicle layer only handles the steering control
while the desired speeds are set by the management level. In
the future, the longitudinal controller will also be designed
as part of cooperative controller in the vehicle layer.
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