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a b s t r a c t

Look-ahead cruise controllers and other advanced driver assistance systems for heavy duty vehicles
require high precision digital topographic road maps. This paper presents a road grade estimation
algorithm for creation of such maps based on Kalman filter fusion of vehicle sensor data and GPS
positioning information. The algorithm uses data from multiple passes over the same road to improve
previously stored road grade estimates. Measurement data from three test vehicles and six experiments
have been used to evaluate the quality of the obtained road grade estimate compared to a known
reference. The obtained final grade estimate compares favorably to one acquired from a specialized road
grade measurement vehicle with a DGPS receiver and inertial measurement unit, with an average root
mean square error of 0.17% grade.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The economic development of the world is driving a continuing
increase in the demand for goods transportation. Environmental
concerns together with competitive pressure to increase efficiency
make any technology that shows a potential for reductions in
energy consumption highly interesting. The increase in road
transportation also intensifies demand for new safety systems, to
protect road users in increasingly complex traffic environments.
One area that shows promise to both improve road safety and
reduce energy consumption in vehicles is electronic advanced
driver assistance systems (ADAS). Sensors, which are a part of
many such systems, help the driver by improving the total
perception of the environment. In the case of look-ahead systems,
a map with stored information is used to extend the perception
horizon beyond what either the driver or conventional on-board
sensors can see. Actuators connected to ADAS improve vehicle
control by acting in situations where the driver is unable to do so.
In map-based look-ahead systems the automatic action can be
based on information that the driver will only be able to get at a
later time.

An increasing number of vehicle control systems utilize stored
information from a map, to aid the driver in piloting the truck in a
safe and economical manner. Examples of map attributes that are

commonly used are speed restrictions, road class, road curvature
and road grade. Knowledge of the current and future road grade
can be used in engine and gearbox control systems to help meet
the instantaneous power demand while keeping fuel consumption
and environmental impact as low as possible.

The heavy duty vehicle (HDV) in Fig. 1 will speed up when
going down one hill, and loose speed when climbing the next one.
If the road grade for the kilometer or so directly ahead of the
vehicle is known, it is possible to automatically adjust the speed in
advance of up- and downhill road segments and thus save fuel
without increasing trip time. The preview road grade information
can also be utilized when determining if a gearshift should be
performed or the state of some energy buffer changed.
Furthermore the brake management system could use the road
grade information to determine the highest allowable speed when
going down a hill. Thus waste heat generation in excess of the
system’s ability to release it can be avoided. This in turn ensures
that the vehicle retains emergency stopping power, a clear safety
benefit.

Road grade maps of sufficient accuracy to support automatic
vehicle control systems are currently not widely available.
Commercial efforts to create such maps are underway, but access
to them will most certainly be associated with some cost. HDVs
commonly travel the same routes frequently, and are thus ideally
suited to be their own probes and estimate the road grade for the
small subset of all roads that are relevant for a particular vehicle.

Information about the current state of the vehicle is acquired
through various on-board sensors. Information about factors that
will influence the vehicle in the future cannot generally be sensed
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directly. However, a map with stored sensor readings or estimated
quantities can provide the required look-ahead information and
enable new control algorithms to improve overall vehicle
performance. A sensor reading or estimate recorded at the current
position in one run along the road can be used as look-ahead
information in the next run. In order to use the map the vehicle
needs to be able to position itself, this is most commonly solved
by installing a satellite navigation system receiver. Fortunately,
those are both cheap and commonplace nowadays.

One road characteristic which lends itself to estimation using
standard HDV on-board sensors and recording in a map is the road
grade. If a road is driven frequently, many estimates of the road
grade can be obtained, and these can be used to increase
confidence in the created map. This paper proposes such a
method for road grade estimation and investigates its perfor-
mance when applied to real measurements. The method has been
evaluated experimentally using the three types of HDVs shown in
Fig. 2.

1.1. Problem formulation

The problem studied in this paper is how to estimate the road
grade of roads that are frequently traveled by a HDV, based on
sensors that are part of the standard vehicle equipment. The
vehicle is described by a vector field. fv defines the longitudinal
movement and links the road grade to the engine torque. The road
is modeled with one state for the altitude, whose dynamics are
described by fz, and one for the road grade. The total systemmodel
is

dv
ds

¼ fvðv;a; TeÞ

dz
ds

¼ fzðaÞ

da
ds

¼ 0 ð1Þ

where s is the distance along the road, v is the vehicle speed, a is
the road grade, Te is the engine torque, and z is the absolute
altitude of the vehicle.

The system model and sensor information are used together to
create the road grade estimator shown in Fig. 3. The estimator
uses a Kalman filter with the time-varying systemmodel to obtain
a first grade estimate. Rauch–Tung–Striebel smoothing is then
applied to increase the measurement information used and avoid
filter lag. The smoothed estimate is then used to update a stored
map based on the relative reliability of the latest estimate and the
already stored data.

The problem that is solved in this paper is how to use sensor
signals already available in many HDVs to iteratively create road
grade maps based on all the sensor information available from
many runs along the same roads.

1.2. Notation

The term road grade will be used in this work to refer to the
rate of change in the road surface altitude along the direction of
travel for the road. In the mathematical models the road grade is
expressed as an angle between the roadway and the horizontal
plane, measured in radians. It is common, e.g. on road signs, to
express road grade in terms of percent. This generally refers to an
altitude difference divided by a corresponding traveled distance. It

Fig. 1. HDVs traveling on a hilly road. At the position of the leftmost vehicle, it is
advantageous to lower the speed to take full advantage of the upcoming downhill
road segment. In the second position the overall fuel economy can be improved by
increasing the speed before the steep part of the hill is reached. In the third
position it is important to maintain the driving torque, to avoid costly loss of turbo
pressure when entering the continued ascent.

Fig. 2. The proposed road grade estimation algorithm has been tested on highway E4 between Södertälje and Nyköping, Sweden, using three types of HDVs. Starting from
the left they were a tractor-semitrailer combination (A), tractor only (B), and rigid truck (C). (Photographs courtesy of Scania CV AB.)
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Fig. 3. The studied problem is how to estimate the road grade based on sensor
information from a standard HDV. The presented estimator depends on two
directly measured states, the vehicle speed and road altitude. The engine torque is
treated as a measured input signal. The estimator also relies on auxiliary
information about when braking and gearshifts occur, the currently engaged gear
and the number of tracked GPS satellites. Finally, additional GPS signals are
recorded to enable fusion of road grade estimates from multiple runs along a road.
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is sometimes ambiguous whether the traveled distance is
measured along the incline, or if the distance along a virtual
horizontal reference plane should be used. The difference in
practice is very small, it does not reach 1% of the road grade until a
grade of approximately 14%. In this work all road grade results are
presented as percent, calculated as the ratio of altitude change
divided by the covered distance in the horizontal plane. Expres-
sing changes or intervals of a quantity expressed with the unit % is
somewhat delicate. One have to make the distinction between a
5% change from a grade of 2.0% to 2.1% and a 5 percentage points
change from 2.0% to 7.0%. To make this clear the term ‘‘% grade’’
will be used as shorthand whenever the intended meaning is a
change denoted as percentage points of road grade.

1.3. Outline

The rest of this paper is organized as follows. Section 2
includes a motivation for the project and references to related
works. The system model used in the road grade estimator is
developed in Section 3. Section 4 describes the sensors used and
the filtering and data fusion steps taken to arrive at the final road
grade map. An account for the experimental results achieved is
given in Section 5. The paper is concluded in Section 6.

2. Related work

Methods for estimating the road grade as well as uses for the
information have been studied for some time. This section
outlines various estimation schemes and important applications
that have been previously described.

2.1. Road grade estimation

A multitude of methods for estimating the road grade can be
found in the literature. In many cases the instantaneous road
grade at the vehicle position is the primary objective in the
estimation but various methods intended for mapping of entire
road segments have also been described. As a general rule
methods for estimation of the instantaneous road grade in
production vehicles includes system cost as an important
parameter. Contributions focused on mapping applications gen-
erally utilize expensive hardware that enables accurate results in a
single pass over the road. The approach described herein, where
many measurement from low-cost sensors are merged into a road
grade map is quite rare.

One common approach for estimation of the instantaneous
road grade is to use a sensor to directly measure the grade. A
direct road grade sensor for automotive use is described in a
patent application filed as early as 1971 by Gaeke (1973). More
recent contributions often employ GPS receivers of various kinds
to obtain road grade estimates. Bae, Ruy, and Gerdes (2001)
compares a grade estimation method based on a GPS receiver
with 3D velocity output and one using a two-antenna GPS.
Another effort based on high precision GPS equipment is
described in Han and Rizos (1999), where a road in Australia
has been surveyed using geodesy GPS receivers with stationary
base stations for improved accuracy. A spatial Kalman filter with
height and road grade states is used to post-process the data. All
these methods rely heavily on the existence of a high-quality GPS
signal. Additionally, neither of the approaches is believed to work
particularly well with the low cost GPS receivers that can be
anticipated to be standard equipment in road vehicle in the
coming few years.

The idea of using vehicle sensor information in combination
with a longitudinal road model to find the road grade has been
explored in Lingman and schmidtbauer (2001), where a Kalman
filter is used to process a measured or estimated propulsion force
or estimated retardation force and a measured velocity into a road
grade estimate. A similar method, where the grade is estimated
using a ‘‘recursive least squares’’ method based on a simple
motion model has been suggested by Vahidi, Stefanopolou, and
Peng (2005).

On-line road grade estimation, without GPS, based on accel-
erometers, calculated driveline torque and a vehicle model, or
other on board sensors is state-of-the-art in today’s vehicles. One
proposed method and a survey of the area can be found in Fathy,
Kang, and Stein (2008).

The idea of automatic creation of road maps from GPS traces
has been described in a few places. An interesting approach based
on position logs from many runs along a road, using consumer
grade GPS receivers, is described in Schroedl, Wagstaff, Rogers,
Langley, and Wilson (2004). Another automatic road map
generation approach, based on more expensive DGPS receivers,
is detailed in Brüntrup, Edelkamp, Jabbar, and Scholz (2005). The
emphasis in this project is on the data mining methods being
applied. Both these contributions treat 2D-maps without road
grade information. They also do not explore the possibility to use a
vehicle model and on-board sensors to improve accuracy.

An attempt to automatically identify route conditions accu-
rately enough to be used in look-ahead vehicle control applica-
tions such as predictive powertrain control for hybrid electric
vehicles is described in Carlsson, Baumann, and Reuss (2008).

The iterative road grade estimation scheme described in this
paper was first introduced in Sahlholm, Jansson, Kozica, and
Johansson (2007). Initial data from the highway experiments were
presented in Sahlholm, Jansson, and Johansson (2007). Further
developments to the method, and a more detailed study of the
benefits of merging data from multiple experiments were given in
Sahlholm, Jansson, and Johansson (2008). The most comprehen-
sive description of the efforts is given in the technical report
(Sahlholm, 2008). A key innovation explored in the work
described herein is the method of combining the vehicle sensors
and a GPS to create a road grade map based on many runs along a
particular road segment.

2.2. Applications for road grade information

When a highway contains segments with an uphill grade so
steep that a vehicle cannot maintain the desired speed, or a
downhill grade so steep that overspeeding will occur unless the
brake system is used, there is a potential for decreasing the fuel
consumption compared to a standard cruise controller, with
unchanged trip time. In driving trials such a controller has been
shown to reduce the fuel used by 3.5% (Hellström, 2007;
Hellström, Ivarsson, Åslund, & Nielsen, 2009). Similar systems
are also described by Fröberg (2008) and Terwen, Back, and Krebs
(2004).

In hybrid electric vehicles one of the most challenging control
objectives is to keep the state of charge of the energy buffer from
hitting the boundaries of its operating range. In Johannesson
(2006) and Johannesson and Egardt (2007) various predictive
control strategies based on stochastic models of the road grade
and velocity profiles for a hybrid electric passenger car in city
traffic are evaluated. A current and instructive survey of results
obtained by route optimized control of hybrid electric passenger
cars and HDVs can be found in Gonder (2008), while a wider
survey of the current state of energy buffer management research
for hybrid electric vehicles is available in Salmasi (2007).
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A HDV contains a number of auxiliary units such as an electric
generator, a power steering pump, a water pump, a cooling fan, an
air compressor, an oil pump, and sometimes an air conditioning
unit. A common trait of these is that they operate with an energy
buffer, that can potentially be controlled based on future road
characteristics. The potential for energy savings from using more
controllable auxiliaries is explored by Pettersson and Johansson
(2006).

Automatic gearboxes stand to benefit considerably from
advance knowledge of the upcoming road grade. Performing a
gear shift in a HDV takes time and costs energy. If the grade profile
is known, the number of gear shifts required can often be reduced.

3. Modeling

The first step in creating the road grade estimator is to obtain a
model that links the observable signals vehicle speed, v, altitude,
z, and engine torque, Te to the road grade, a. This section starts
with a description of how a vehicle model is derived from a
representation of the longitudinal dynamics of a HDV as a
function of time. In order to implement the estimator a model
for how the road grade signal evolves is also adopted. Next, the
two sub-models are put together into a complete description of
the road–vehicle system in continuous time. To facilitate merging
of measurement data from multiple runs along the road the
system model is then transformed into the spatial domain and
discretized. The described system model is non-linear in the
vehicle speed. In order to use it in a standard Kalman filter it has
to be linearized, this is described in Section 3.3. In Section 3.4 the
measurement equation associated with the system model is
detailed. A summary of the system model concludes the section.

3.1. System model

A basic vehicle model that describes 1D longitudinal move-
ment and links engine torque, vehicle speed and road grade is
sufficient to support the road grade estimation. Only the relatively
low frequency dynamics of the vehicle itself are of interest. Higher
frequency phenomena such as driveline oscillations and torsional
vibration in the propeller and drive shafts can thus be ignored. The
model is developed based on straightforward mechanical rela-
tions and Newton’s laws of motion. This section provides an
overview of the vehicle model, more details on the various
subsystems and their representation can be found in Kiencke and
Nielsen (2003).

A longitudinal vehicle model is used to relate the sensor
signals to the road grade. The road grade can be calculated from
the model when the vehicle mass, engine torque, active gear and
vehicle speed are all known. In this work the vehicle mass has
been assumed known, which is reasonable in a lab setting but not
in the real world. In a real system the mass will have to be
estimated, which introduces an additional error source in the
grade estimate. The engine torque estimate comes from the on-
board engine management system and is based on fuel injector
opening times. The current gear is continuously reported from the
gearbox management system, and the vehicle speed is measured
by standard mounted wheel speed sensors. The most important
forces affecting the vehicle are shown in Fig. 4. The forces are
generally time-varying, time has been left out of the equations for
clarity:

Fpowertrain ¼
itifZtZf

rw
Te ð2Þ

is the net engine force. Knowledge of the current gear yields the
gear ratio it and the efficiency Zt from tables. The final gear ratio if ,

efficiency Zf and wheel radius rw are known vehicle constants. Te
denotes the engine torque:

Fairdrag ¼ 1
2cwAarav

2 ð3Þ

is known through the measured vehicle speed v and the constants
air drag coefficient cw, vehicle frontal area Aa, and air density rair.
A very simple model

Froll ¼mgcrcosa$mgcr ð4Þ

gives the rolling resistance from the vehicle mass m, gravity g, and
coefficient of rolling resistance cr. For the angles that are present
on major highways the effect of cosa is considerable smaller than
other errors in the relatively simple vehicle model being used
here. The effect of this term is therefore neglected. The road grade
a enters the model in a much more significant way through the
gravity induced force

Fgravity ¼mgsina ð5Þ

Computing the brake force being applied to the vehicle is quite
hard. A single truck or tractor unit can be attached to many
different trailers at different times. These can be equipped with
different types of brakes (most commonly some type of disc or
drum brakes). The states of the brakes on the vehicle and its
trailer are also generally unknown. The current temperature,
amount of wear and weather conditions affect the efficiency of the
brakes. The brake force Fbrake is thus generally unknown in a
standard HDV, and is therefore excluded from the model. The
influence of Fbrake is instead considered at a later stage of the
method. The total dynamic vehicle mass is expressed as

mt ¼mþ
Jw
r2w

þ
i2t i

2
f ZtZf Je
r2w

ð6Þ

where Jw and Je represent the inertia of the engine and the wheels,
respectively. Newton’s laws of motion are used to attain a
differential equation describing velocity changes based on forces

_vðtÞ ¼
1
mt

ðFpowertrain & Fairdrag & Froll & FgravityÞ ð7Þ

Changes in the road grade are assumed to be random on the
time scale of the filter, which leads to the road grade model

_aðtÞ ¼ 0 ð8Þ

A GPS receiver provides a 3D position (latitude, longitude, and
altitude) together with a signal indicating the number of satellites
used for the position fix. The vehicle speed and the road grade are
used to calculate the time derivative of the altitude and thus
provide a link between the GPS and the vehicle model. The road
altitude is described by

_zðtÞ ¼ vðtÞsinaðtÞ ð9Þ

Based on the described models for the vehicle on the road, and
the road itself a model for the complete system can put together. A
state vector xðtÞ ¼ ½vðtÞ zðtÞ aðtÞ(T containing the vehicle velocity,

Froll

FgravityFairdrag

Fbrake
Fpowertrain

α

Fig. 4. Longitudinal forces acting on the vehicle.
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the road altitude and the road slope is defined. Using (6) and the
expressions presented earlier for the magnitudes of the forces
involved the system model becomes

_vðtÞ
_zðtÞ
_aðtÞ

2

64

3

75

|fflfflfflffl{zfflfflfflffl}
_xðtÞ

¼

itifZtZf

rwmt
TeðtÞ &

1
2
cdAara

mt
vðtÞ2 &

mg
mt

ðcrþsinaðtÞÞ

vðtÞsinaðtÞ
0

2

666664

3

777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ðv;a;TeÞ

ð10Þ

where the time dependence of the states and the input net engine
torque signal has been made explicit. Then engine torque is
measured and regarded as a known input signal in the model,
uðtÞ ¼ TeðtÞ. Since the transmission ratio and associated efficiency
are dependent on the engaged gear the model changes discretely
at gear changes. Additionally, since the driveline friction always
causes an energy loss in the direction energy is flowing, the
efficiencies Zt and Zf depend on whether the net engine torque Te
is positive or negative. Whenever the power flow from the engine
to the wheels is negative, the efficiencies become the inverse of
their nominal values, causing another discrete switch in the
system model.

3.2. Spatially sampled system model

In order to easily obtain estimates at specific spatial locations
rather than time instants a spatially sampled version of the model
is derived. This is a prerequisite in order to effortlessly merge road
grade estimates from multiple runs along a road.

After the change of independent variable the model is
discretized using the step length Ds. By resampling measurement
data from different runs along the road to represent common
spatial coordinates a consistent merge can be performed. In this
study the spatial sample rate was chosen to be Ds¼ 2:5m, since
reference data with this spacing were available at the start of the
project. The purpose of the model is to serve in a Kalman filter to
estimate the states, so process noise to account for disturbances is
added as well. One white noise process is added to each of the
model states. The discretized model becomes

vk
zk
ak

2

64

3

75

|fflfflffl{zfflfflffl}
xk

¼
vk&1þDs

dvk&1

ds
zk&1þDssinak&1

ak&1

2

6664

3

7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fkðxk&1 ;ukÞ

þ

wv
k

wz
k

wa
k

2

64

3

75

|fflfflffl{zfflfflffl}
wk

ð11Þ

The rate of change in velocity is given by

dvk&1

ds
¼

itifZtZf

rwmt

Tek&1

vk&1
&

1
2cdAara

mt
vk&1 &

mg
mt

1
vk&1

ðcrþsinak&1Þ ð12Þ

Again, the model parameters depend on the selected gear and
the direction of power flow in the driveline, making this a time-
varying discrete model with traveled distance along the road as
the independent variable.

3.3. Linearized system model

To evaluate the influence of the nonlinearity in the vehicle
model a piecewise constant linear version of the model is also
derived. The linear model is changed at gear changes and when
the direction of power flow in the driveline changes. Each gear and
power flow direction will lead to a different mode, denoted by an
index m added to the relevant variables. For each mode a specific
torque is required to maintain a constant speed, and equilibrium
in the model. The linearization point thus changes as well when

the model parameters change. The linear discretized model
around the equilibrium xm is given by the system transition
matrix Fm and the input matrix G according to

~xk ¼ Fm ~xk&1þG ~ukþwk ð13Þ

where ~x ¼ x& xm is the state relative to the linearization point and
~u ¼ Te & Tem is the engine torque difference from the equilibrium
torque. The transition matrix is given by Fm ¼ Iþ@f=@xjxm ;um

Ds.
Using the model from before Fm and G become

Fm ¼
1þ

dvm

ds
Ds 0 &

mg
mtmvm

cosamDs

0 1 cosamDs
0 0 1

2

6664

3

7775 ð14Þ

G¼

itmifZtmZfm

rwmtmvm
Ds

0

0

2

6664

3

7775 ð15Þ

where

dvm

ds
¼ &

itmifZtmZfm

rwmtm

Tem
v2m

&
1
2cdAara

mtm
þ

mg
mtmv2m

ðcrþsinamÞ ð16Þ

The equilibrium point xm for the most common mode, cruising
under engine power on the top gear, is obtained by choosing
vm ¼ 80km=h, zm ¼ 0 m, am ¼ 0% grade, and the nominal vehicle
specific values for itm, Ztm, and Zfm. The driveline efficiencies and
transmission gear ratio will also directly give mtm. As a result the
input torque equilibrium is

Tem ¼
1
2cdAarav

2
mþrwmgðcrþsinamÞ
itm if rwZtmZfm

ð17Þ

for each mode of the linear system.

3.4. Measurement equation

Twomeasured states and the input signal engine torque, Te, are
available for estimation of the system model state. The measured
states are the vehicle velocity v and the altitude z. This leads to a
linear measurement equation

yk ¼
1 0 0

0 1 0

" #

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Hk

vk
zk
ak

2

64

3

75

|fflfflffl{zfflfflffl}
xk

þ
evk
ezk

" #

|fflffl{zfflffl}
ek

ð18Þ

that is used with both the linear and non-linear vehicle models.
The measurement noise for the two states is described by the
white noise processes evk and ezk, respectively.

4. Iterative road grade estimation

Based on the model created in the previous section Kalman
filtering is used to estimate states from measured data. Two
different filters are investigated; an extended Kalman filter that
uses the non-linear vehicle model, and a standard Kalman filter
that is based on the linearized version of the vehicle model.
Section 4.1 outlines the different steps of the road grade
estimation. The sensors used to collect measurements are treated
in Section 4.2. In Section 4.3 the Kalman filter used for state
estimation and smoothing is described. This is followed by a
discussion on fusion of estimation results from multiple measure-
ments in Section 4.4. This is followed by a section summary that
also includes a discussion on the chosen filtering approach.
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4.1. State estimation

Fig. 5 shows a schematic view of how the available sensor signals
are used together with previously stored road grade information to
generate an updated map. Three signals, the vehicle velocity v, the
absolute altitude z, and the engine torque Te are used directly with
the model and Kalman filters to produce road grade estimates. The
selected gear signal is used to choose appropriate values for the
time-varying parameters in the system model. The Kalman filters
also need the error covariance matrices Q and R to be set. These are
adjusted based on the number of available satellites, if the vehicle is
shifting gears, and whether the brakes are applied.

Once the Kalman filter has produced a complete system state
trajectory estimate for a segment of the road, this segment is
processed again in a smoothing step, in order to use all recorded
sensor information for the estimation at each distance index. The
smoothed grade and altitude estimates are then fused with any
existing data for the road segment. Finally, the new road grade
map segment is stored to the database.

4.2. Sensors

An important property of the presented road grade estimation
method is that it only relies on sensors that are commonplace in
HDVs. It is thus suitable for deployment in a large number of
vehicles, without significant hardware costs, given that the
computational and data storage requirements can be met by the
vehicle platform. The restriction of creating a method based on
existing mass market sensors limit the accuracy that can be
expected from the input data. The grade estimator is thus
designed to use many measurements from the same location in
the map creation process.

The method relies on two continuous signals to be sensed in
the vehicle driveline; the engine torque Te, and the vehicle speed
v. Information is also required about the current gear, when
gearshifts occur, and when any of the braking systems present in
the vehicle are activated. Modern HDVs generally feature a
distributed control system, with a number of interconnected
electronic control units. These control units communicate in a
network, usually an implementation of the controller area
network (CAN) described in the ISO standard (11898-1:2003,
2003). The vehicles used in this study broadcast all the needed
signals on their CAN buses.

The speed sensor is a part of the anti-locking brake system. The
average of the sensed speed on the front wheels is used as the

vehicle speed. The current gear and gearshift signals are broadcast
by the gearbox control unit. The engine torque is calculated and
broadcast by the engine control unit. It is determined by the
engine state, and how much fuel is injected during each cycle.

In addition to the driveline signals the absolute position of the
vehicle as derived from a GPS is also used. Satellite based
positioning systems are rapidly becoming ubiquitous not only as
personal navigation devices, but also built into many complex
products. In the near future it is anticipated that the majority of
HDVs being sold will have at least one satellite based positioning
device built in. Access to the absolute vehicle position opens up
the possibility of repeated measurement of a particular road
segment using vehicle sensors. In this work that is utilized in
order to update a road grade estimate each time the vehicle has
passed over a certain road segment. A description of the GPS is
beyond the scope of this work, but a good starting point for a
general overview without too much mathematics is (El-Rabbany,
2006). A thorough treatment of the subject, including the relevant
equations, is given in Misra and Enge (2006).

The accuracy of the position given by the GPS is very important
for the correct functioning of the grade estimator. The error in the
vertical position reported by the GPS will directly influence the
estimated road grade, and the horizontal positioning error will
cause grade estimates from different points on the road to be
merged together. Since the proposed system is designed for use in a
cost-sensitive environment a standard low-cost single channel GPS
receiver will have to suffice. Such a receiver delivers what is called a
standard positioning service, and has a typical 10m horizontal and
15m vertical accuracy. The accuracy figure is given as the 95th
percentile of the error distribution (Misra & Enge, 2006, p. 49).

GPS position estimates are generally bias free when averaged
over long time periods and the error is approximately normally
distributed. In the proposed grade estimation application this
means that adjacent GPS measurement points will likely have a
slow varying bias, with a period of several hours. Grade estimates
for a specific location, however, will be based on uncorrelated
normally distributed measurements. This is a prime motivation
for developing a method for fusion of many measurements spread
over time into one road grade estimate.

4.3. Kalman filtering

Two different Kalman filters are used to estimate the road
grade and other model states. The non-linear vehicle model is
used together with an extended Kalman filter (EKF), and the
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Fig. 5. Overview of the data filtering, smoothing and fusion of the proposed road grade estimation method.
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piecewise linear model with a standard Kalman filter (KF). Using
the notation of the previous section, the system model to be used
in the filtering with the EKF is given by

xk ¼ f ðxk&1;ukÞþwk

yk ¼Hxkþek ð19Þ

In the EKF the non-linear model is linearized around the
current state at every distance step. The obtained transition
matrix Fk is then used to complete the steps of the standard
Kalman filter recursions. These recursions are described by two
update steps: a distance update, or prediction, step and a
measurement update. In the distance update the system model
is used to predict the future state of the system. Using the
notation x̂kjk&1 to denote the quantity x̂ at distance index k based
on information available up to distance index k& 1 the distance
update is done according to

x̂kjk&1 ¼ f ðx̂k&1jk&1;ukÞ

Pkjk&1 ¼ FkPk&1jk&1F
T
kþQ k ð20Þ

Similarly to Fm in the piecewise linear model the transition matrix
Fk is defined to be the Jacobian Fk ¼ ð@f=@xÞðx̂k&1jk&1;ukÞ. Pkjk&1 is
the estimated error covariance, and Q k ¼ E½w2

k ( is the process noise
covariance. After the distance update the measurement at
distance index k is used in a measurement update to improve
the estimate. The measurement update is described by

Kk ¼ Pkjk&1H
T ðHPkjk&1H

TþRkÞ
&1

x̂kjk ¼ x̂kjk&1þKkðyk &Hx̂kjk&1Þ

Pkjk ¼ ðI & KkHÞPkjk&1 ð21Þ

Here Kk is the Kalman gain, and Rk ¼ E½e2k ( is the measurement
noise covariance.

The piecewise constant linear model is used with a standard
Kalman filter. At each mode change between different lineariza-
tions of the model the final state of the old filter is used to
initialize the new filter.

One of the main challenges in using the grade estimation
method on real data is that the true noise covariances Q and R are
not known. A number of methods have been proposed for
estimating these matrices, for example by Mehra (1970). In the
proposed method the covariance matrices are used as design
variables to tune the grade estimation filter to generate an
accurate and reliable estimate. The matrices were adjusted until
the estimation error for a training set of measurement data was
sufficiently small.

To simplify the choice of these design parameters the noise
covariance matrices were chosen to be diagonal. For the
measurement noise this seems reasonable since the vehicle speed
and GPS altitude are obtained through independent sensors
measuring different quantities, whose measurement error can
be assumed independent. For the process noise the situation is
more complicated. The random walk road grade model used will
lead to unmodeled systematic changes in the road grade. These
changes will also affect the altitude. It is likely that such an error
would have an effect on the velocity error as well, since the road
grade used in that calculation is faulty. The magnitudes of these
effects are hard to estimate, since they depend on the magnitudes
of the model errors themselves. In this version of the method the
results when using a diagonal Q matrix are investigated,
evaluation of possible improvements with a full matrix are left
as future work. This simplification is known to somewhat increase
the error in the final estimates.

4.3.1. Smoothing
Filtering introduces filter delay in the estimates. Since the aim

of the proposed method is to estimate the road grade at a specific
position along the road it is important to compensate for this
delay. By carrying out the road grade estimation off-line, when a
complete road segment has already been recorded, the filtering
delay can be removed through a process commonly referred to as
smoothing. An added benefit is that after smoothing all available
estimation data, both before and after the current position is used
in the estimate for each data point. The Rauch–Tung–Striebel
fixed point smoothing algorithm, introduced in Rauch, Tung, and
Striebel (1965), yields optimal smoothed estimates and is suitable
for use together with Kalman filtering. It is used to find x̂kjN where
N is the total number of data points collected during one run along
the road segment. In practice the smoothing is performed
backwards along the road, and uses quantities generated by the
Kalman filter.

The predicted quantities at the last position of the road
segment, where k¼N, are used to initialize the recursion. This
gives access to PNþ1jN and x̂Nþ1jN in the first step of the smoothing
recursion. The superscript s is used to indicate smoothed
quantities. Ps

k denotes the smoothed error covariance, x̂s
k is the

smoothed state estimate, and Ks
k is the smoothing gain. The

smoothing backwards recursion is given by

Ks
k ¼ PkjkF

T
kP

&1
kþ1jk

x̂s
kjN ¼ x̂kjkþKs

kðx̂
s
kþ1jN & x̂kþ1jkÞ

Ps
kjN ¼ PkjkþKs

kðP
s
kþ1jN & Pkþ1jkÞK

s
kT ð22Þ

4.4. Data fusion

When a quantity is measured more than once both the
confidence in the measurement and its precision are generally
increased. With multiple estimates statistical properties of the
estimation scheme can be studied. Given that the estimation
method is unbiased an increasing number of estimates will give a
better map. The effects of temporary disturbances such as local
loss of the GPS signal and braking are also better handled when
data from multiple runs are used.

In order to merge data from many runs along the same road
segment a distributed data fusion method is used. The distributed
approach has the important advantage that the amount of road
data that have to be stored does not increase as additional
estimates from known road segments are incorporated into the
map. For each road segment, the map consists of the road related
states (altitude z and grade a) and the associated estimated error
covariance estimates for those states. The vehicle velocity is not of
any interest in the map, since it is not a road property. Based on
the estimated error covariances stored in the map and the
estimated error covariances of a new smoothed estimate an
updated map is created each time a new estimate of a road
segment becomes available.

Assuming that the errors in estimates from each run along the
road are entirely uncorrelated, the quantities for the new map can
be calculated as follows:

Pf
k ¼ ððP1

k Þ
&1þðP2

k Þ
&1Þ&1

x̂f
k ¼ Pf

kððP
1
k Þ

&1x̂1
kþðP2

k Þ
&1x̂2

k Þ ð23Þ

where Pf
k is the resulting error covariance, x̂ f

k is the new state
estimate for the map. The quantities P1

k , P
2
k , x̂

1
k , and x̂2

k are the
source estimates and estimated error covariances. The super-
scripts 1 and 2 refer to the two input data sets, one being the
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current map and the other containing estimates from the run
being processed. The superscript f refers to the output fused
estimate. This data fusion method is described in more detail in
e.g. Gustafsson (2000).

The assumption in (23) that estimation errors in the two
source samples are uncorrelated is somewhat troublesome. Since
the estimates are based on repeated measurements using the
same method and road, it is unlikely that this is fully satisfied. A
main source of correlation is the difference between the road
model (a random walk) and the true road. An important area of
further study is if the results can be improved by using a more
advanced road model. Not accounting for the correlated process
noise through the use of a diagonal Q matrix in the estimation, as
described in Section 4.3, also increases correlation in the
estimation errors. The correlation will lead to an underestimate
of the state error covariances in Pf

k. Over time new estimates will
start having little influence on the already stored data.

Another important caveat is that in practice covariance terms
between the altitude and road grade states, represented by the
off-diagonal terms of the source matrices P1

k and P2
k actually

degrade the merged result. Uncertainties in the estimation of
these quantities in the Kalman filtering and smoothing steps
occasionally cause the weighting factors to give a combined
estimate that is not in the interval ½x̂1

k ; x̂
2
k (. Currently this problem

is solved by only using the diagonal elements of P1
k and P2

k in the
fusion. The result is that only the estimated covariance of each of
the states will affect how much weight the measurement of that
state has in the merge, the estimated cross correlation between
altitude and road grade errors will be ignored.

4.5. Summary

A road grade estimator based on standard HDV sensors has
been developed on the form shown in Fig. 5. The estimator uses a
Kalman filter where the noise and process variances are adapted
to driving events. Smoothing is used to compensate for filtering
delay. The estimator produces spatially sampled estimates that
are fused together with the aggregate of previous estimates of the
road grade at that location.

The Kalman filter in the estimator is known to produce an
optimal state estimate in the minimum mean square error sense,
given that the system is linear and that the measurement and
process noises are truly white, Gaussian, and have the assumed
covariances. Since the studied system is non-linear, with model
and sensor errors that most likely yield somewhat colored process
and sensor noises, there is no proof neither that the estimates will
be optimal, nor that they will even converge. The RTS smoothing
similarly provides minimum mean square error estimates of the
state at each position based on all the collected measurements, for
systems that fulfill the same assumptions as for the Kalman filter.
Since the EKF results are used as input to the smoothing recursion
there is no proof that the output will be optimal, or that it will
converge. Using the linearized model only moves the non-
compliance with assumptions about the model to the assump-
tions about the noises. In this case not only the previously existing
model errors, but also linearization errors contribute to coloring
the noise.

Similarly, optimal estimation based on all available experi-
ments would yield a very large Kalman filter, including two states
to describe the road, and one velocity state for the vehicle used in
each experiment. By only fusing the road states based on their
estimated error covariances, the problem of including models for
all the vehicles in the filter is avoided. As a consequence the
estimate will no longer be optimal. The applied fusion method
includes the assumption that the different experiments observe

the system with different realizations of the process noise. This is
not strictly true, the road realization is the same each time the
vehicle passes over it. When the process noise is correlated
between experiments, the distributed fusion method will under-
estimate the error covariance matrix. As noted in Section 4.4
issues with the cross-correlation between the altitude and slope
states further moves the implemented method away from the
theoretical optimum.

5. Experiments

The proposed road grade estimation algorithm has been tested
on experimental data collected using HDVs driving on a Swedish
highway. The road tests verify the applicability of the method, but
also provide insights on areas of possible future improvements.
This section describes the experiments that have been made and
the obtained results.

5.1. Experimental setup

Road tests with the proposed grade estimation algorithm have
been carried out on a part of highway E4 from Södertälje to
Nyköping, as shown in Fig. 6. The test road contains a mix of hills
with road grades between &4% and 4% and flat segments. This
gives an opportunity to study how the estimation algorithm
handles various highway driving situations. To illustrate details in
the behavior of the road grade estimation algorithm results are
presented for the full 29 km long southbound, and 38km long
northbound road segments, as well as a short segment where the
vehicle is braking during some of the experiments. In order to
effectively evaluate the obtained road grade estimates a reference
grade profile is required. The reference profile used in this work
has been obtained from a high-quality 3D trajectory measurement
system based on a tightly coupled GPS and inertial navigation
system (Oxford Technical Solutions Limited, 2008).

The configuration and important parameters of a HDV can vary
substantially, therefore three different vehicles have been used to
verify the applicability of the grade estimation method in each

Södertälje

Nyköping

Southbound

Northbound

Fig. 6. Map of the test area. Experiments have been conducted on highway E4
between Södertälje and Nyköping. (Image courtesy of Google.)
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case. The types of test vehicles used are illustrated in Fig. 2. The
test vehicles have weights ranging from 12 to 39 t and between 2
and 5 axles. Important properties for the test vehicles are listed in
Table 1. The modeled external forces described in Section 3.1
depend heavily on the vehicle parameters used in the equations.
Getting reasonable values for these can be a challenge. In this
work the vehicle parameters have been chosen based on
information about the vehicle configurations, but without
calibration for the individuals. The total vehicle weight in each
experiment is assumed to be known in the road grade estimator,
so it has been measured using a scale.

Experimental data were collected while the test vehicles were
being driven at normal cruising speed along the highway. A laptop
computer with a controller area network (CAN) bus interface card
was used to log both vehicle signals and GPS data. The scenario is
illustrated in Fig. 7.

5.2. Experimental results

The proposed grade estimation algorithm shows promising
results. The estimation has been carried out using the non-linear
vehicle model and EKF, at the end of Section 5.2 a comparison is
made with the linear model and KF. On the southbound test road
as a whole the root mean square error (RMSE), defined as

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eððâ & aÞ2Þ

q
ð24Þ

of the estimated road grade was 0.16% grade. A relatively large
part of the error was due to a bias of &0:08% grade. For the
northbound direction the RMSE was 0.18% grade, with a bias of
&0:12% grade. Even if individual measurements sometimes are far
from the true road grade, the merged estimate from a few runs
along the road comes quite close over most of the distance, the
estimation results for the southbound direction are shown in
Fig. 8. Events such as braking and shifting generally decreases the
quality of the road grade estimate for that experiment, but most of
the time they not occur at the exact same position in all
experiments. As a result of the data fusion many segments with
lower quality data can be identified and suppressed in the final
estimate. The main performance criterion used to evaluate results
in this study is the RMSE of the grade estimate compared to the

reference road grade, as defined in Eq. (24), expressed as percent
grade.

5.2.1. Sensor data
Example sensor data recorded on a 12 km segment of the

southbound test road are used to illustrate the different
input signals used by the state estimator. For clarity the figures
only contain data from one run along the road for each of the
three test vehicles. The ones chosen are experiments two (solid
line, vehicle A), four (dashed line, vehicle B) and six (dotted line,
vehicle C). Fig. 9 shows the recorded sensor signals used in the
estimator.

Vehicle A is heavy in relation to its engine power, and has a
typical speed profile for an economically driven HDV. The driver
has ordered the speed to be lowered ahead of long downhill
segments, thus reducing the amount of braking necessary. Vehicle
B is very light, more powerful than vehicle A, and was operated
with a constant cruise control system enabled. The speed profile is
very flat with no speed loss in uphill segments, and no run-out in
downhill segments. Vehicle C is heavy enough to gain some extra
speed in downhill segment, but was following slower moving
traffic for part of the drive. At 18–19km of experiment 6 with
vehicle C there were roadworks in one of the lanes, with an
associated mandated speed decrease. The effects of loss of satellite
coverage can be seen clearly around 24–26km in the altitude
trace for vehicle B, but short signal loss also occurs with vehicles A
and C. It is interesting to note the large almost static difference
between the altitudes reported by vehicles B and C, and the one
from vehicle A. This difference of approximately 10m is by no
means unusual for the kind of GPS system used, i.e. without
differential corrections applied. The key advantages of the GPS
altitude signal is that the error changes very slowly, and that its
mean is zero when taken over very long time periods.

It can be seen in the figure that vehicle A uses its maximum
power for long periods of time in the uphill segment, and applies
no engine power in a number of downhill segments. The very light
vehicle B never utilizes the full engine power, and rarely has a zero
utilization. Vehicle C has to work slightly harder on average than
vehicle B, but also shows a number of gear changes and peak
power utilizations during acceleration. Gear changes can be seen
in the torque data as short spikes towards zero.

It is important to know when any of the vehicles’ brakes are
applied, since this leads to an external, unknown, torque entering
the equations of motion. The ‘‘braking’’ signal indicates when the

Table 1
Key properties and specifications for the test vehicles used to collect experimental
data.

Vehicle Configuration Weight (t) Axles Exp.

A Tractor and semi-trailer 39 5 1,2,3
B Tractor 12 2 4,5
C Rigid truck 21 3 6

The total vehicle weight is given in tons.

CAN
cardVehicle

CAN bus

GPS can
bus

Fig. 7. During the road tests measurement data were collected using a laptop
computer with a dual channel CAN interface card. Vehicle data were logged
through one of the channels, and the other one was used to collect GPS messages.
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Fig. 8. The first part shows the estimated road grade profile for the southbound
direction on highway E4 south of Södertälje, based on six road experiments with
three different vehicles (solid), compared to a reference road grade profile
(dashed). The second part shows the error in the estimated grade.
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longitudinal vehicle model should not be trusted for this reason.
Vehicle A applies the brakes to avoid overspeeding, while vehicle
C uses them to avoid running into traffic ahead.

5.2.2. Braking
One of the most challenging situations for the grade estimator

is when the vehicle applies one of the brake systems. Therefore,
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Fig. 9. The measured states of the road grade estimator are the vehicle speed and the GPS altitude. The engine torque in the third sub-figure is treated as a known input to
the vehicle model. Data are shown for three runs along a road segment ranging from 15 to 27 km in the southbound data set. Auxiliary variables are recorded to facilitate
mode switching in the filtering algorithm based on anticipated signal quality and vehicle behavior. The fourth plot shows the number of tracked GPS satellites. The fifth plot
shows the current gear. The sixth and seventh plots indicate where gear shifting and braking has occurred, these events lead to adjustments in the process noise
assumptions. The solid line represents experiment 2 (vehicle A), the dashed line is experiment 4 (vehicle B) and the dotted line is experiment 6 (vehicle C).
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one such occasion is described in more detail. During braking the
engine will generally report a negative net torque from internal
friction when fueling is cut off. This means that the vehicle model
based prediction in the grade estimator will be computed using
only the engine friction as its driveline input, even though there is
a braking force present as well. The roll resistance and air drag
will still be correctly modeled. The missing brake force will then
be attributed to the gravity component, i.e. the road grade. This
should lead to a road grade estimate that is too high (more uphill
than in real life). In order to avoid this effect, and at the same time
raise a flag to the data fusion algorithm that these data deserve
lower trust than the norm, the process noise covariance for the
velocity state is increased. This causes the estimator to rely less on
the vehicle model, and more on past road grade estimates and the
GPS measurements. At the same time the estimated error
covariance of the output increases.

The example segment shown in Fig. 10 represents a
comparatively steep downhill segment, where the heavy vehicle

A needs to apply the brakes to avoid exceeding its set maximum
allowed speed. Data are shown for experiments 2 (solid, vehicle
A), 3 (dashed, vehicle A), and 6 (dotted, vehicle C). Vehicle C does
not apply the brakes in this segment. Fig. 10 shows the key signals
of interest during braking. The first two sub-figures show the
velocity profiles and GPS altitude measurements, after that comes
the reported engine torque and braking signal. Braking is required
by vehicle A for a total of almost 1 km in each of the experiments.
The resulting road grade error in the fifth part of the figure shows
that experiment 2 yields an overestimate of the grade during the
first brake application, an underestimate during the second, and
no visible additional error during the third application.
Experiment 3 yields no significant additional error during the
first application, and overestimates of the grade during the
second. The final part of the figure shows the estimated grade
error covariance after the smoothing step in the grade estimator.
The estimated error variance almost doubles during the segments
where the brakes are applied.
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Fig. 10. Signals of interest during braking for a segment of the southbound test road. Data are shown for experiments 2 (solid), 3 (dashed) and 6 (dotted). In the second and
fifth parts the merged final estimate is shown as well (thick solid).
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5.2.3. Iterative data fusion
Using data from more than one run along the road and more

than one vehicle improve the reliability of the final grade estimate.
The downhill segment from s¼ 22150 to 23150m is one of the
hardest parts of the test road to estimate accurately, it is therefore
used as an example of how the data fusion step improves the
quality of the final grade estimate. The grade maps resulting from

the progressive inclusion of data from the six experiments can be
seen in Fig. 11. As more data are added the road grade map is
improved. The mean value of all included grade estimates at each
sample point is also shown, to highlight the effect of the data
fusion step. Each figure shows the latest experiment (dashed), the
road grade map based on all experiments added so far (solid) and
the reference road grade (dotted).
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Fig. 11. Iterative road grade estimation results after each iteration. In each figure the most recently added experiment (dashed) is shown together with the reference road
grade profile (dotted) and the merged estimate based on all experiments added so far (solid). (a) The first experiment forms a road grade map by itself. Estimation errors
cause it to differ from the reference road grade. (b) When a second experiment is added to the one in (a) a new road grade map is obtained. The large disturbance in
experiment two at s¼ 22100m has high uncertainty and thus a low weight in the data fusion. (c) The third estimate from vehicle A does not differ much from the map
based on the previous two runs along the road. (d) The larger difference in the fourth estimate is probably due to different model parameter errors in relation to vehicle B.
(e) Estimate five is based on vehicle B, just like the one in (d). (f) When the sixth estimate, recorded with vehicle C, has been added the map is complete.
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Fig. 12 shows a comparison of the smoothed estimates from all
six southbound experiments with the final grade estimate and the
reference grade profile.

5.2.4. Vehicle model bias and GPS altitude noise
Without the GPS altitude measurements the vehicle model and

measured signals give an estimated grade that has a bias due to
modeling errors. The bias is reduced when the GPS altitude
measurement is introduced as a vehicle independent low
frequency correction in the filter. Depending on the vehicle
parameters the magnitude of the drift varies. Fig. 13 shows the
estimated grade and altitude when the grade estimator has been
operated without GPS input data. Table 2 shows the mean grade
biases observed in each of the experiments when compared with
the road grade reference. The grade biases range from negligible
for vehicle A (experiments 1–3), when using the GPS, to severe for
vehicle B (experiments 4–5). It is evident that results could be
improved if the parameters for vehicles B and C were better
calibrated to match the vehicles and environmental conditions
they are supposed to describe.

While the GPS altitude signal is important for the overall
estimation it is by itself not sufficient for a good grade estimate
within a reasonable number of passes over the road. The signal is
locally very noisy, and there are road sections that have no
satellite coverage, e.g. tunnels.

5.2.5. Linear system model
The results from using the piecewise constant linear model

instead of the time-varying non-linear model indicated only
marginal changes in the estimated road grade. The main non-
linearity in the vehicle model, for the magnitude of road grades
considered, is in the speed. The linear model is only valid for
velocities close to the linearization point of 80km=h. During most
of the experiments the speed of the measuring vehicle was close
to this value. The proposed method is primarily suited for
highway estimation, and it would probably be wise to reject any
data sets with large speed deviations, regardless of whether the
linear or non-linear model is used.

5.3. Summary

Experimental data have been collected in a total of eleven
experiments using three HDVs on a Swedish freeway. The six data
sets from the southbound segment and the five from the
northbound segment have been merged into two road grade
maps. Overall the performance of the proposed method is
promising, even though vehicle model or parameter errors cause
a slight bias in the estimated grade. The estimation error increases
during braking, but this is handled quite well in the data fusion. It
has been noted that the GPS receiver is vital to bias rejection.
Grade estimates based on the linearized model showed compar-
able results to those obtained with the nonlinear model.

6. Conclusions

Recent advances in the development of embedded electronics
and low cost global positioning enable new vehicle control
systems that use map data to supplement traditional sensors in
building a model of the surroundings. These systems rely on
digital maps that include accurate road geometry information.
The road grade is an attribute of particular importance to many
HDVs, and the required road grade maps are not currently at hand.
A system model has been developed that links the road grade to
sensor signals that are generally already available in the control
network of vehicles. Using this system model an iterative method
for creating and improving road grade maps has been developed.
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Fig. 12. The final merged road grade estimate (solid) is shown with the reference
grade profile (dashed) and the mean value of all smoothed estimates (dotted). The
estimates from the individual experiments are also included (thin lines). This is a
magnification of the most challenging part of the test road. The estimate based on
experiment two is particularly at odds with the rest at 22750m. This is due to a
combination of poor satellite coverage and the effect of the braking. The
detrimental effect on the fused estimate is smaller than on the mean.
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Fig. 13. The top part of the figure shows the estimated road grade without the GPS
input (solid). This signal lies significantly below the reference profile (dashed). As a
result the altitude estimate has a significant drift. Since there is no absolute
altitude measurement available in the filter it is initialize to the same starting
value as the reference profile.

Table 2
Observed mean bias in estimated road grade, with and without GPS input, for the
south- and northbound test roads.

Dir. Meas. Vehicle Mean bias w. GPS Mean bias w/o GPS

South 1 A &0.02 &0.15
South 2 A &0.04 &0.18
South 3 A &0.03 &0.34
South 4 B &0.12 &0.88
South 5 B &0.18 &1.28
South 6 C &0.09 &0.58
South Merged &0.08 &0.57
North 1 A &0.09 &0.54
North 2 A &0.10 &0.58
North 3 A &0.06 &0.57
North 4 B &0.17 &1.31
North 5 B &0.17 &1.30
North Merged &0.12 &0.86

The road grade figures are given in percent.
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The method uses information about gear shifts, vehicle braking
and satellite coverage to adapt the grade estimator and weight the
influence of new grade estimates being added to the map.

The proposed method for grade estimation combines the long
term stability of the GPS derived altitude signal with the short
term smoothing and dead reckoning capabilities of the vehicle
model based grade estimation. The inclusion of the GPS receiver
counteracts much of the bias in the grade estimate introduced by
errors in the vehicle model and its parameters. On the other hand
the vehicle model is able to capture short term variations in the
road grade much better than what would be possible using only
the noisy derivative of the GPS receiver altitude signal.

Experiments have shown that already at this stage the
proposed method is feasible for collecting road grade with an
average RMSE of 0.17% grade for the two test roads. Previous
practical experience, as well as a theoretical analysis, shows that
road grade estimates of the obtained quality are useable for
example in a look-ahead cruise controller based on road grade
data.
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