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Abstract— This paper proposes a solution to the overtaking
problem where an automated vehicle tries to overtake a human-
driven vehicle, which may not be moving at a constant velocity.
Using reachability theory, we first provide a robust time-
optimal control algorithm to guarantee that there is no col-
lision throughout the overtaking process. Following the robust
formulation, we provide a stochastic reachability formulation
that allows a trade-off between the conservative overtaking
time and the allowance of a small collision probability. To
capture the stochasticity of a human driver’s behavior, we
propose a new martingale-based model where we classify the
human driver as aggressive or nonaggressive. We show that if
the human driver is nonaggressive, our stochastic time-optimal
control algorithm can provide a shorter overtaking time than
our robust algorithm, whereas if the human driver is aggressive,
the stochastic algorithm will act on a collision probability of
zero, which will match the robust algorithm. Finally, we detail
a simulated example that illustrates the effectiveness of the
proposed algorithms.

I. INTRODUCTION

Due to the recent surge of interest in the introduction of
automated vehicles into present-day traffic, many are tackling
problems that arise when we introduce automated vehicles
into mixed traffic settings where they must interact with
human drivers [1]. The problem of overtaking a human-
driven vehicle with an automated vehicle exemplifies one
of these mixed traffic problems. Many researchers believe
that by solving this problem safely, robustly, and efficiently,
we will significantly progress the capabilities of automated
vehicles [2].

The overtaking maneuver is a special maneuver that con-
sists of several sub-maneuvers that observe both lateral and
longitudinal movements an automated vehicle is expected
to perform on a multi-lane road [3]. Several other works
propose solutions for performing the overtaking maneuver
safely and efficiently [4]–[7]. However, these solutions all
assume the overtaken vehicle moves at a constant velocity,
an assumption we avoid in this work.

Explicitly, the process we study in this work is the process
of overtaking a human driven vehicle, which may not be
moving at a constant velocity, with an automated vehicle.
This overtaking maneuver requires the automated vehicle
to change into an empty lane, then, longitudinally overtake
the human-driven vehicle, and finally, merge back into the
original lane in front of the human-driven vehicle. At each
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stage of the overtaking maneuver, many variables and factors
introduce uncertainties that make overtaking complex and
difficult to perform robustly and safely [8]. In this work, we
focus on addressing the uncertainty around human driving
behavior. We remark that our approach is different from [9],
which considers the stochastic measurement uncertainties.

Our contributions towards solving the overtaking problem
with a human-driven vehicle is two fold. First, we con-
tribute two reachability analysis-based algorithms for safe
overtaking: a robust algorithm for safe overtaking with strict
guarantees of collision-avoidance and a stochastic algorithm
for overtaking with a small collision probability, but pos-
sibly with shorter overtaking time. We discuss the trade-
offs between the two algorithms in detail in Section V and
Section VI. Second, we propose a new stochastic model
based on martingales for modeling the expected behavior
of the human-driven vehicle throughout the overtaking pro-
cess. Moreover, to the extent of our knowledge, this is the
first application of martingales for modeling human driving
behavior.

We choose to use reachability analysis for the overtaking
process due to its formal safety guarantees. Reachability
analysis-based approaches are used in many applications in
order to provide formal guarantees on the safety of ve-
hicles [10]. Robust reachability analysis-based approaches
maintain strict guarantees that there does not exist unsafe
trajectories within a certain time horizon, assuming certain
bounds on the system and its disturbances [11]. Stochastic
reachability analysis-based approaches, instead, guarantee
that there will not be an unsafe trajectory within a cer-
tain time horizon with a significantly large probability [12].
The stochastic reachability analysis-based approaches can be
beneficial, since they permit a trade-off between collision
probability and optimality (e.g., overtaking time). These
approaches are also used for probabilistic collision detection
in automated driving [13]. However, the introduction of
stochasticity also introduces the problem of finding a good
stochastic model for poorly understood phenomenon, such
as human driving behavior. To address this challenge, we
choose to utilize martingale theory for modeling a human’s
driving behavior during the overtaking process.

Historically, martingales are most often applied to gam-
bling or pricing problems since they efficiently model the
lack of arbitrage [14]. In [15], the author discusses the use of
martingales in several classical stochastic control problems.
However, in this paper, we show that they are a potentially
useful model for modeling human behavior in certain driving
scenarios. In particular, we find that martingales could be
a strong choice for modeling the expected behavior of a
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Fig. 1. Scenario where an automated vehicle V1 is overtaking a human-
driven vehicle V2 on a road with two lanes.

human-driven vehicle. We remark that this martingale-based
model is different from the Markov model used in [16],
[17], which assumes a characteristic of the distribution of
a human’s decision-making process. In addition, unlike [18]
which proposes an empirical method for ensuring safety in
human-in-the-loop driving systems, our model is, by con-
struction, agnostic to historical data.

This paper is structured as follows: in Section II, we intro-
duce our notation and background used throughout the paper;
in Section III, we detail the problem we address in this work;
in Section IV, we propose our robust reachability analysis-
based algorithm for safe overtaking with strict guarantees; in
Section V, we propose our stochastic reachability analysis-
based algorithm for overtaking with small collision proba-
bilities; in Section VI, we demonstrate the efficacy of our
proposed algorithms and compare the different approaches;
in Section VII, we discuss our results and future work.

II. NOTATIONS AND PRELIMINARIES

A. Notations

Let N denote the set of nonnegative integers and R denote
the set of real numbers. For some q, s ∈ N and q < s, let
N[q,s] = {r ∈ N | q ≤ r ≤ s}. For a set X, cl(X) denotes
its closure. For two sets X and Y, X ⊕ Y = {x + y | x ∈
X, y ∈ Y}. When ≤, ≥, <, and > are applied to vectors,
they are interpreted element-wise. For a set X ⊆ R, B(X)
denotes the Boral space of X. Pr denotes the probability and
E the expectation.

B. Preliminaries

We introduce some definitions for submartingales and
supermartingales, and one related inequality.

Definition 2.1: [19] A discrete-time integrable stochastic
process {Xi, i ∈ N} with a filtration {Fi, i ∈ N} and
Fi ⊆ F on the probability space (Ω,F ,Pr) is said to be
(i) a submartingale if E[Xi+1|Xi] ≥ Xi, ∀i ∈ N; (ii) a
supermartingale if E[Xi+1|Xi] ≤ Xi, ∀i ∈ N.

Lemma 2.1: [20] Consider a discrete-time supermartin-
gale {Xi, i ∈ N} with a filtration {Fi, i ∈ N} and Fi ⊆ F
on the probability space (Ω,F ,Pr). If for all i ∈ N≥1, (i)
Var[Xi|Fi−1] ≤ σ2

i , (ii) Xi − E[Xi|Xi−1] ≤ M, then the
following inequality holds

Pr[Xi ≥ X0 + λ] ≤ exp(− λ2

2
∑i

j=0(σ2
i + Mλ/3)

).

III. PROBLEM STATEMENT

As we introduced in Section I, we consider an overtaking
scenario where an automated vehicle approaches a human-
driven vehicle on a road with two lanes (illustrated in Fig. 1).
We refer to the automated vehicle as V1 and the human-
driven vehicle as V2. The road consists of two lanes: one
slow lane and one fast lane. A vehicle typically keeps to the
slow lane until it would like to overtake its preceding slower
vehicle. We show a sample overtaking trajectory in Fig. 1.

A. Modeling of Road

The lateral width of each lane is d. The longitudinal
velocity, vx, of the vehicle moving along the slow lane (or
the fast lane) is required to satisfy vSmin ≤ vx ≤ vSmax (or
vFmin ≤ vx ≤ vFmax). Without loss of generality, we assume
that 0 < vSmin ≤ vFmin and vSmax < vFmax. Two regions
beyond the slow and fast lanes are regarded as two obstacles
O1 and O2.

B. Modeling of Automated Vehicle

We describe the dynamics of the automated vehicle, V1,
as

x1(k + 1) = A1x1(k) +B1u1(k)

where x1(k) = [px1(k); py1(k); vx1 (k)], u1(k) =
[vy1 (k); ax1(k)], A1 = [1, 0, δ; 0, 1, 0; 0, 0, 1], and
B1 = [0, 0; δ, 0; 0, δ]. px1(k) and py1(k) are the longitudinal
and lateral positions, respectively; vx1 (k) and vy1 (k) are the
longitudinal and lateral velocities, respectively; ax1(k) is the
longitudinal acceleration.

To impose physical limits on the dynamics, we subject V1

to the state and control input constraints:

x1(k) ∈ X1(k), u1(k) ∈ U1(k),

where X1(k) = {z ∈ R3 |
[
−∞; 0; vx1,min(k)

]
≤

z ≤
[
∞; 2d; vx1,max(k)

]
}, and U1(k) = {z ∈ R2 |[

ax1,min; vy1,min

]
≤ z ≤

[
ax1,max; vy1,max

]
}; if 0 ≤ py1(k) ≤ d,[

vx1,min(k); vx1,max(k)
]

=
[
vSmin; vSmax

]
, and if d ≤ py1(k) ≤

2d,
[
vx1,min(k); vx1,max(k)

]
=
[
vFmin; vFmax

]
. The occupancy

of V1 on the road is a circle with radius R1: S1(k) = {z ∈
R2 | ‖z − [px1(k); py1(k)] ‖2 ≤ R1}.

C. Modeling of Human-driven Vehicle

We describe the dynamics of the human-driven vehicle,
V2, as

x2(k + 1) = A2x2(k) +B2u2(k) (1)

where x2(k) = [px2(k); vx2 (k)], u2(k) = ax2(k), A2 =
[1, δ; 0, 1], B2 = [0; δ]. px2(k), vx2 (k), and ax2(k) are the
longitudinal position, velocity, and acceleration, respectively.
During the overtaking process, we assume that V2 keeps to
the slow lane and maintains a lateral position of py2(k) = d

2 ,
∀k ∈ N.

For representing the physical limits and assumptions over
V2, we subject V2 to the state and control input constraints:

x2(k) ∈ X2, u2(k) ∈ U2,
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where X2 = {z ∈ R2 |
[
−∞; vSmin

]
≤ z ≤

[
∞; vSmax

]
}, and

U2 = {z ∈ R | ax2,min ≤ z ≤ ax2,max}. The occupancy of V2

on the road is a circle with radius R2: S2(k) = {z ∈ R2 |
‖z − [px2(k); py2(k)] ‖2 ≤ R2}.

Assumption 3.1: The state x2(k) of the human-driven ve-
hicle V2 satisfies x2(k) ∈ X2, ∀k ∈ N.

D. Control Objective

Our control objective is to design a sequence of control
inputs such that V1 starts behind V2 and ends in front of V2

by taking a set of sequential maneuvers: lane-changing, lane-
keeping, and merging. Throughout the entire process, we
maintain the following safety constraints: collision avoidance
between V1 and V2 and collision avoidance between V1 and
Oi, i = 1, 2.

IV. ROBUST TIME-OPTIMAL OVERTAKING ALGORITHM

A. Reachable Set of Human-driven Vehicle

At time step k, px2(k) and vx2 (k) are the longitudinal
position and velocity of the V2, respectively. We define the
reachable set as follows.

Definition 4.1: The reachable set of the V2 predicted i
steps ahead at time step k, denoted by P(k + i|k), evolves
as{

P(k + i+ 1|k) = (A2P(k + i|k)⊕B2U2) ∩ X2,

P(k|k) = {x2(k)},
(2)

We define the projection of the reachable set on the
longitudinal position as Px(k + i|k) = Proj1(P(k + i|k))
and the projection of the reachable set on the longitudinal
velocity as Pv(k+ i|k) = Proj2(P(k+ i|k)), where Projj(Q)
denotes the projection of the set Q on the jth dimension.

Lemma 4.1: The set P(k + i|k) is a compact and convex
set for all finite i ∈ N. Furthermore, the sets Px(k+ i|k) and
Pv(k + i|k) are two compact intervals for all finite i ∈ N.

For notational simplicity, let Px(k + i|k) = [px2,min(k +
i|k), px2,max(k + i|k)] and Pv(k + i|k) = [vx2,min(k +
i|k), vx2,max(k + i|k)]. Denote all the possible occupancies
of V2 corresponding to Px(k + i|k) as S2(k + i|k) , i.e.,
S2(k + i|k) = {z ∈ R2 | ‖z −

[
px2 ; d2

]
‖2 ≤ R2, p

x
2 ∈

Px(k + i|k)}.

B. Robust Time-Optimal Overtaking Controller

At time step k, x1(k) is the state of V1. Consider
a finite horizon T . Given a sequence of control in-
puts {u1(k|k), · · · ,u1(k + i|k), . . . ,u1(k + T − 1|k)},
we can have a state trajectory {x1(k|k), · · · ,x1(k +
i|k), . . . ,x1(k + T |k)} and thereby a sequence of occupan-
cies {S1(k|k), · · · ,S1(k + i|k), . . . ,S1(k + T |k)}.

The robust time-optimal overtaking problem can be for-

mulated as P1(x1(k),x2(k)):

min
{u1(k+i|k)}T−1

i=0

T (3a)

subject to
∀i ∈ N[0,T−1] :

x1(k + i+ 1|k) = A1x1(k + i|k) +B1u1(k + i|k),(3b)
u1(k + i|k) ∈ U1(k + i|k), (3c)
∀i ∈ N[0,T ] :

x1(k + i|k) ∈ X1(k + i|k), (3d)
S1(k + i|k) ∩Oj = ∅, j = 1, 2, (3e)
S1(k + i|k) ∩ S2(k + i|k) = ∅, (3f){
px1(k + T |k) ≥ px2,max(k + T |k) +R1 +R2,

py1(k + T |k) = d
2 ,

(3g)

where px2,max(k + T |k) = maxPx(k + T |k).
Denote the optimal objective function of P1(x1(k),x2(k))

as T ∗k and the corresponding optimal solution as {u∗1(k +

i|k)}T
∗
k−1
i=0 . We call T ∗k the optimal overtaking time at time

step k under our robust control formulation.

C. Robust Time-Optimal Overtaking Algorithm

We show the robust time-optimal overtaking algorithm
in Algorithm 1. The initial feasibility of P1(x1(k),x2(k))
determines the possibility of safe overtaking. The following
theorem shows the recursive feasibility of P1(x1(k),x2(k)).
Thus, if the problem P1(x1(0),x2(0)) is feasible, we solve
P1(x1(k),x2(k)) in a receding horizon way until the whole
overtaking process is finished.

Algorithm 1 Robust Time-Optimal Overtaking Algorithm
1: Initialization: Set k = 0 and measure x1(k) and x2(k);
2: if P1(x1(k),x2(k)) is not feasible then
3: Output: Infeasible overtaking;
4: else
5: while px1(k) ≤ px2(k) +R1 +R2 or py1(k) 6= d

2 do
6: Solve P1(x1(k),x2(k));
7: Implement u∗1(k|k);
8: Set k = k + 1 and measure x1(k) and x2(k);
9: end while

10: Output: Successful overtaking;
11: end if

Theorem 4.1: Suppose that Assumption 3.1 holds and the
problem P1(x1(k),x2(k)) is feasible at time step k = 0.
Then, it is feasible for all k ≥ 1 and the optimal overtaking
time is decreasing, i.e., T ∗k+1 ≤ T ∗k − 1. Furthermore, the
total overtaking time is no greater than T ∗0 .

Proof: Assume that the problem P1(x1(k),x2(k)) is
feasible at time step k, the optimal overtaking time is T ∗k , and
the corresponding optimal solution is {u∗1(k+ i|k)}T

∗
k−1
i=0 . At

time step k+1, it follows from (2) that P(k+1+ i|k+1) ⊆
P(k + 1 + i|k) and S2(k + 1 + i|k + 1) ⊆ S2(k + 1 + i|k).
It yields that px2,max(k+T ∗k |k+ 1) ≤ px2,max(k+T ∗k |k). We
have that the solution sequence {u∗1(k + 1 + i|k)}T

∗
k−1
i=0 still
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guarantees that the constraints (3b)–(3g) are satisfied at time
step k+ 1. That is, the problem P1(x1(k+ 1),x2(k+ 1)) is
feasible and the optimal overtaking time T ∗k+1 is no greater
than T ∗k −1. Furthermore, it follows that the total overtaking
time is no greater than T ∗0 .

V. STOCHASTIC TIME-OPTIMAL OVERTAKING
ALGORITHM

A. Stochastic Model of Human-driven Vehicle

Given any state x2(k) ∈ X2 at time step k, assume that
the predicted velocity {vx2 (k+i), i ∈ N} of V2 is a stochastic
process with a filtration {B(Pv(k + i|k), i ∈ N} on the
probability space ([vSmin, v

S
max],B([vSmin, v

S
max]),Pr). In this

sense, the future state x2(k+ i|k), i ≥ 0, is also a stochastic
process.

Definition 5.1: Given any state x2(k) ∈ X2 at time step
k, a human driver is said to be
• aggressive if

∀i ∈ N,

{
x2(k + i|k) ∈ P(k + i|k),

E[vx
2(k + i + 1|k)|vx

2(k + i|k)] ≥ vx
2(k + i|k),

• nonaggressive if

∀i ∈ N,

{
x2(k + i|k) ∈ P(k + i|k),

E[vx
2(k + i + 1|k)|vx

2(k + i|k)] ≤ vx
2(k + i|k).

We assume that the type of the human driver (aggressive
or nonaggressive) does not change throughout the overtaking
process. If the driver is nonaggressive, the set Pαv (k + i|k)
is defined as

Pαv (k + i|k) = {z ∈ R | z ∈ Pv(k + i|k),Pr[z̃ ≥ z] ≤ α},

where z̃ ∈ Pv(k+ i|k) is a random variable, α ∈ [0, ᾱ], and
ᾱ is a positive constant smaller than 1.

Next let us consider how to compute the set Pαv (k+ i|k).
Proposition 5.1: If the driver is nonaggressive, the set

Pαv (k+ i|k) = [min{vx2 (k)+λ, vx2,max(k+ i|k)}, vx2,max(k+
i|k)] where

λ =
1

3
M ln(

1

α
) +

√
1

9
M2(ln(

1

α
))2 + 2iM2 ln(

1

α
),

M = max{δ|ax2,min|, δax2,max}.
Proof: From Lemma 4.1, the set Pv(k + i|k) is a

compact interval for all finite i. Construct a filtration Fi =
σ({Pv(k+j|k)}j∈N≤i

). From Definition 5.1, we have that if
the driver is nonaggressive, the stochastic process vx2 (k+i|k),
i ≥ 0, is a supermartingale. It follows from Popoviciu’s
inequality that the standard variance of v2(k + i|k), which
is conditional on v2(k + i − 1|k), is upper bounded by
M2, which implies the condition (i) in Lemma 2.1. By
the constraint on the longitudinal acceleration of Vehicle
2, it gives vx2 (k + i|k) − E[vx

2(k + i − 1|k)] ≤ M, which
implies the condition (ii) in Lemma 2.1. By Lemma 2.1
and setting α = exp(− λ2

2
∑i

j=0(σ2
i +Mλ/3)

), we have λ =

1
3M ln( 1

α ) +
√

1
9M

2(ln( 1
α ))2 + 2iM2 ln( 1

α ), which implies
that the set Pαv (k + i|k) = [min{vx2 (k) + λ, vx2,max(k +
i|k)}, vx2,max(k + i|k)].

Let P1−α
v (k + i|k) = cl(Pv(k + i|k) \ Pαv (k + i|k)), i.e.,

P1−α
v (k+ i|k) = [vx2,min(k+ i|k),min{vx2 (k)+ε, vx2,max(k+
i|k)}]. The corresponding set can be obtained from P1−α(k+
i|k) = {z ∈ R2 | z ∈ P(k+ i|k),Proj2(z) ∈ P1−α

v (k+ i|k)},
and the projection on the longitudinal position is denoted
as P1−α

x (k + i|k) = Proj1(P1−α(k + i|k)). Denoted by
S1−α

2 (k + i|k), all the possible occupancies of the vehicle
V2 corresponding to P1−α

x (k + i|k), i.e., S1−α
2 (k + i|k) =

{z ∈ R2 | ‖z −
[
px2 ; d2

]
‖2 ≤ R2, p

x
2 ∈ P1−α

x (k + i|k)}.
Remark 5.1: The parameter α represents the tolerated col-

lision probability in the prediction. The introduction of α
releases a larger overtaking region than that in the robust
case for V1 and thereby generates a smaller overtaking time
if the human driver is non-aggressive.

B. Stochastic Time-Optimal Overtaking Controller
If the driver is nonaggressive, at time step k, the stochas-

tic time-optimal overtaking problem can be formulated as
Pα2 (x1(k),x2(k)):

min
{u1(k+i|k)}T−1

i=0

T (4a)

subject to
∀i ∈ N[0,T−1] :

x1(k + i+ 1|k) = A1x1(k + i|k) +B1u1(k + i|k), (4b)
u1(k + i|k) ∈ U1(k + i|k), (4c)
∀i ∈ N[0,T ] :

x1(k + i|k) ∈ X1(k + i|k), (4d)
S1(k + i|k) ∩Oj = ∅, j = 1, 2, (4e)
S1(k + i|k) ∩ S1−α

2 (k + i|k) = ∅, (4f){
px1(k + T |k) ≥ px,1−α2,max (k + T |k) +R1 +R2,

py1(k + T |k) = d
2 ,

(4g)

where px,1−α2,max (k + T |k) = maxP1−α
x (k + T |k).

Proposition 5.2: For a nonaggressive driver, if α =
0, then the problem Pα2 (x1(k),x2(k)) is equivalent to
P1(x1(k),x2(k)).

Proof: If α = 0, then the set Pαv (k+i|k) = {vx2,max(k+
i|k)}, which implies that P1−α

x (k+i|k) = Px(k+i|k). Thus,
the problems P1(x1(k),x2(k)) and Pα2 (x1(k),x2(k)) enjoy
the same constraints, which proves the equivalence.

Denote the optimal objective function of
Pα2 (x1(k),x2(k)) as T̄ ∗k and the corresponding optimal
solution as {ū∗1(k + i|k)}T̄

∗
k−1
i=0 . We call T̄ ∗k the optimal

overtaking time at time step k under our stochastic control
formulation.

Theorem 5.1: If the driver is nonaggressive, then the
feasibility of P1(x1(k),x2(k)) implies the feasibility of
Pα2 (x1(k),x2(k)) for any α ∈ [0, ᾱ]. Furthermore, if
P1(x1(k),x2(k)) is feasible, then the optimal overtaking
time satisfies T̄ ∗k ≤ T ∗k .

Proof: Since P1−α
x (k + i|k) ⊆ Px(k + i|k), the

constraints satisfaction of P1(x1(k),x2(k)) always ensures
the the constraints satisfaction of Pα2 (x1(k),x2(k)). Thus,
the feasibility of P1(x1(k),x2(k)) implies the feasibility of
Pα2 (x1(k),x2(k)), which leads to the second result.
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(a) Aggressive human driver

(b) Non-aggressive human driver

Fig. 2. (a) Position trajectory under Algorithm 1 for aggressive human driver; (b) Position trajectory under Algorithm 2 for non-aggressive human driver.

C. Stochastic Time-Optimal Overtaking Algorithm

The stochastic time-optimal overtaking algorithm is
shown in Algorithm 2. We offline identify that the
human driver is nonaggressive or aggressive. If the
driver is aggressive, then we solve the robust time-
optimal overtaking problem P1(x1(k),x2(k)). Otherwise,
we solve Pα2 (x1(k),x2(k)). The initial feasibility of
Pα2 (x1(k),x2(k)) determines the possibility of overtaking.
Thus, if the problem Pα2 (x1(0),x2(0)) is feasible, then we
solve Pα2 (x1(k),x2(k)) in a receding horizon fashion until
the whole overtaking process is finished.

Algorithm 2 Stochastic Time-Optimal Overtaking Algorithm
Offline: Identify that the human driver is nonaggressive or
aggressive.
Online:

1: if The human driver is aggressive then
2: Implement Algorithm 1.
3: else
4: Initialization: Choose α. Set k = 0 and measure

x1(k) and x2(k);
5: if Pα2 (x1(k),x2(k)) is not feasible then
6: Output: Infeasible overtaking;
7: else
8: while px1(k) < px2(k) or py1(k) 6= d

2 do
9: Solve Pα2 (x1(k),x2(k));

10: Implement u∗1(k|k);
11: Set k = k+ 1 and measure x1(k) and x2(k);
12: end while
13: Output: Successful overtaking;
14: end if
15: end if

TABLE I
CASE STUDY PARAMETERS

Lane Vehicle 1 Vehicle 2

vSmin = 60km/h vy1,min = 2m/s ax1,min = 1m/s2

vSmax = 90km/h vy1,max = −2m/s ax1,max = −1m/s2

vFmin = 60km/h ax1,min = 2m/s2 R2 = 2.3m

vFmax = 100km/h ax1,max = −2m/s2

d = 5m R1 = 2.3m
δ = 0.2s
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Fig. 3. (a) Longitudinal velocities of human-driven vehicle; (b) Inter-
vehicle distance under Algorithm 1 for aggressive human driver and Algo-
rithm 2 for non-aggressive human driver.

VI. EXAMPLE

This section will provide a case study to demonstrate
the effectiveness of our theoretical results and compare our
results with the existing overtaking where the vehicle V2

drives at a constant velocity. The parameters used in the
case study are listed in Table I. We choose the initial state:
x1(0) = [0m; 2.5m; 75km/h] and x2(0) = [20m; 70km/h].

We consider two overtaking scenarios in which the human
driver is aggressive or non-aggressive. We implement the ro-
bust time-optimal overtaking algorithm (Algorithm 1), for an
aggressive driver and the stochastic time-optimal overtaking
algorithm (Algorithm 2) for a non-aggressive human driver.
For Algorithm 2, we choose α = 0.2. First, we verify that
two problems P1(x1(k),x2(k)) and Pα2 (x1(k),x2(k)) are
feasible at k = 0. In Fig. 2, we show the position trajectories
of two vehicles under Algorithm 1 and Algorithm 2. In
subfigure (a) of Fig. 3, we show the longitudinal velocities
of the vehicles driven by the aggressive and non-aggressive
human drivers. The total overtaking time for the first scenario
is 7.8s, while it is 6.8s for the second scenario.

We use the inter-vehicle distance as a safety certificate:
Dveh =

√
(px1(k)− px2(k))2 + (py1(k)− d

2 )2. As shown in
subfigure (b) of Fig. 3, the distance between the vehicles
in both scenarios is always greater than the safe distance
R1 +R2 = 4.6m throughout the overtaking process. In par-
ticular, the safety is also ensured even though some predictive
collision is permitted with small probability in the stochastic
overtaking setup. One explanation for this is that the receding
horizon implementation provides feedback by taking into
account the velocity of the human-driven vehicle, while the
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Fig. 4. State trajectories and control inputs of the automated vehicle under
Algorithm 1 for the aggressive human driver and Algorithm 2 for the non-
aggressive human driver: (a) longitudinal velocities; (b) lateral positions; (c)
lateral velocities; (d) longitudinal acceleration.

short-term prediction does not increase the collision risk.
In subfigures (a)–(b) of Fig. 4, we show the corresponding
longitudinal velocities and lateral positions of the automated
vehicle for these two scenarios. In subfigures (c)–(d) of
Fig. 4, we show that the control inputs of the automated
vehicle (lateral velocities and longitudinal velocities) satisfy
the control input constraints.

We also apply Algorithm 1 to a second overtaking
scenario, where the human driver is non-aggressive. The
initial optimal overtaking time by solving the problem
P1(x1(0),x2(0)) is 9.8s, as expected, which is 8.89%
greater than that by solving the problem Pα2 (x1(0),x2(0)).

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work, we study the overtaking problem where an
automated vehicle attempts to overtake a human-driven vehi-
cle. Here, we do not require the conventional assumption that
the human-driven vehicle moves at a constant velocity. Using
a reachability analysis-based approach, we first provide a
robust time-optimal control algorithm with the guarantee
of collision-free overtaking. To capture the stochasticity of
a human driver’s behavior, we propose a new model for
classifying the human driver as aggressive or nonaggressive.
Based on this model, we provide a stochastic time-optimal
control algorithm which allows a trade off between the
conservative overtaking time of the robust formulation and
the allowance of a small collision probability. Finally, we
illustrate the effectiveness of the proposed algorithms in a
simulated case study.

There are several future directions of great interest. First,
we plan to investigate an approach with lower computational
complexity to solve the robust or stochastic time-optimal
overtaking problems. Second, we would like to model the
time-varying stochasticity of human drivers and online iden-

tify the states of human drivers. Furthermore, we are in-
terested in studying the interplay between the automated
vehicle and the human-driven vehicle in more detail and
incorporating the findings into our formulation.
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