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Abstract: Control of the cooling system in heavy vehicles, with the objective to minimise 
energy consumption, is studied. Control actuators are electrically driven cooling fan and 
water pump, and the electrical generator. The problem is posed as a constrained optimal 
control problem with feedforward from measurable external variables. The design is 
based on a simplified model derived from physical principles. It is evaluated through 
simulations with external variables collected from measurements. The results show that 
significant energy savings can be obtained. Copyright © 2003 IFAC 
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1. INTRODUCTION 
 
Improving fuel efficiency is central when developing 
heavy vehicles. Increasing the controllability of the 
auxiliaries may be one method to save fuel. Today, 
the auxiliary systems are mostly mechanically driven 
by the engine, and are thus constrained to revolute 
with a fixed ratio to the engine speed. Since they 
have to work properly in all possible situations, they 
often have surplus capacity for the most frequent 
driving cases. This results in energy losses.  With 
electrically driven auxiliaries, the output can at every 
time instant be controlled to match the actual need. 
The performance of power electronics, electrical 
machines and energy storage devices for automotive 
use are rapidly improving, making electrical 
alternatives worth considering. The price to pay is 
that the peak efficiency will be lower, since the 
electrical drive includes energy conversion in several 
steps. Therefore, it is of great importance to evaluate 
the performance of the regarded alternatives during 
dynamic conditions. Control strategies with the 
objective to minimise input energy could 
significantly benefits from knowing something about 
the future external quantities that affect system. For 
vehicle applications, a possibility to accurately 
predict the future could be realised with an onboard 
GPS receiver together with digitalized maps 
including information of the altitude and speed limits 
on the travelled road. With a vehicle model, the 
future influences can be simulated from the slope of 
the road and the presumed velocity. 
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This paper presents a study on cooling system control 
in heavy vehicles.  An electrically driven cooling fan 
and an electrically driven water pump, together with 
predicted external variables are utilised to reduce the 
fuel consumption. The problem is posed as a 
constrained optimal control problem in continuous 
time. Optimal control theory allows for a wide range 
of cost criteria and system descriptions. A 
disadvantage is that solutions are often complicated 
to find even if the complexity of the system is low. 
Here a simple, but yet relevant, model is used to 

describe the physics. The numerical computations for 
finding the solution of the optimal control problem 
are reasonable. Our problem formulation fits into the 
framework of model predictive control, e.g., 
(Maciejowski, 2002), but the existing schemes seem 
not to be directly applicable. The solution here is 
instead based on the particular structures of the 
dynamics and the cost criterion.  The derived optimal 
control gives a measure of the achievable 
performance. This is not intended for direct 
implementation but can be used to evaluate different 
physical layouts. 
 
The outline of the paper is as follows: In section 2 the 
cooling system is described. The model used for the 
control design is defined in section 3. In section 4 the 
optimal control is derived. Simulation results are 
presented in section 5. Finally in section 6, 
conclusions from the study are drawn. 
 
 

2. THE COOLING SYSTEM 
 

The principal layout of the cooling system in a truck 
is illustrated in fig 1.  
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Fig 1. Cooling system layout. Components in a 

traditional truck, but excluded in this study, 
are x-marked. Novel components added to 
enable the improved control are grey. 
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There are two adjoining flows of mass and energy: 
the flow of coolant fluid and the airflow. The pump 
drives the flow of coolant fluid through the engine 
and the retarder. The combustion process in the 
engine generates heat, which is transmitted to the 
coolant. The retarder is a hydraulic brake mounted on 
the secondary side of the gearbox. When used, it 
releases heat into the cooling system. The heat 
transferred to the coolant is emitted in the air-cooled 
radiator.  The air enters at the air intake at the front of 
the truck cab and exits at the air outlet at the rear. 
The airflow is partly driven by the fan and partly by 
the pressure build up caused by the wind speed at the 
intake and outlet. The air is used to cool both the 
radiator, and the turbo charged intake air to the 
engine. The charge air cooler and the radiator are 
connected in series so that the air first passes the 
charge air cooler and then the radiator. Both the 
charge air cooler and the radiator are cross directional 
heat exchangers, i.e., the hot and the cool media 
streams are perpendicular.  

3. MODEL 
 
In order to apply the optimal control theory a 
mathematical model of the physical system is 
needed. In (Pettersson and Johansson, 2003), a 
simulation model that can be used to study the 
cooling system is developed. This model, which is 
built in Modelica (Modelica, 2002), contains a fairly 
detailed description of the main components in the 
cooling system. It is too complex to be used for 
control design. However, it is a valuable starting 
point for finding a simplified model. Here the 
separate volumes and heated masses in the simulation 
model are aggregated into one single body 
representing the total heat capacitance of the cooling 
system. Further, a low-order rational function 
approximates the nonlinear behaviour of the radiator.   
This gives the following first order model for the 
cooling system  

6 2
1 2 1

2 3 3

1 2 3 3
1 1

4 1 1 2 3 3 5 2 3 3

1 1 1 2 1 2 3

( )

( )
( ) ( )

: ( , , , , , ) (1)

c vx c x
u c v

u u c v c v
c u u u c v c u c v
f x u u v v v

= − −
+

+
+

+ + + +
=

 

 
In the current design of a Scania truck, the water 
pump is directly driven from the crankshaft while the 
fan is connected to the shaft via a viscous clutch, 
enabling a passive speed control. The temperature of 
the coolant is controlled with the thermostat and the 
fan clutch. However, the pump is restricted to run 
with a fixed ratio to the engine speed and the fan can 
only be controlled in a span limited by the lowest 
achievable torque in the clutch and the speed of the 
engine. This result in energy losses: both in the 
coolant flow in the by-pass pipe (not contributing to 
the cooling) and in the fan clutch (from the presence 
of non-zero torque and slip speed).  

Here, the state x1 represents the temperature in the 
cooling system minus the ambient temperature. The 
control variables u1 and u2 are the speed of the water 
pump and the fan, respectively. The time varying 
external variables v1, v2, v3 cannot be manipulated. 
The main external influence v1 represents the sum of 
the heat transferred to the coolant from the engine 
and from the retarder. The heat emission in the 
charge air cooler and the vehicle speed are denoted v2 
and v3, respectively.    In this study, the mechanical drives of the pump and 

the fan are replaced with speed controllable electrical 
motors, enabling continuous control of the coolant 
flow and the airflow. The electricity is produced with 
a generator driven by the engine. The generator is 
assumed to be controlled with a power electronic 
converter. Its overall efficiency is supposed to be 
substantially higher than in the type of generators 
used in cars and trucks today. Electric energy can be 
stored in a buffer, which could be an electro-
chemical battery that endures frequent cycling of the 
charge level and high de-charge and charge peaks. 
Alternatively, it colud be a module of double-layer 
capacitors (so called super caps or ultra caps), which 
are inherently well suited for this kind of use.  
Besides the energy consumption in the pump and the 
fan, auxiliary electrical consumption is regarded. 
This represents use of electricity for lights, comfort 
equipment, etc. The thermostat and the by-pass pipe 
are removed. It is assumed that it is possible to find a 
minimal coolant flow, which is sufficiently large to 
prevent the engine from running too hot at the worst 
spot, while small enough so that the entry 
temperature to the engine does not fall below the 
lowest acceptable level. In practice, this might not be 
true for the whole range of operating conditions. 
However, the studied concept can with small 
modification be changed to include a on/off valve 
acting as a thermostat at low ambient temperatures.       

A comparison with measurements indicates that this 
model is able to capture the main dynamics of the 
cooling system.   Data were recorded during a 
dynamic drive cycle performed on a dynamometer in 
a wind tunnel, where the load and the speed were 
programmed to follow trajectories corresponding to a 
specified road. In figure 2 the model in equation (1) 
is compared with the more detailed Modelica model 
and with the measurement. 
 
The energy in the electrical storage is modelled as an 
integration of the net power in and out of the buffer 

 

)2(),,,(:
)(

43212

2
48

3
211

3
110379

48
3
211

3
110372

vuuuf
vcucucucc

vcucucucx

=
−−−−

−−−=
 

 

0 100 200 300 400 500 600 700 800 900
75

80

85

90

95

100

105

Time [s]

C
oo

lin
g 

te
m

p.
 [d

eg
 C

]

 
Fig. 2. Coolant temperature obtained with the model 

used for control design (thick solid) compared 
with temperature obtained with the Modelica 
model (thin solid) and with measurements 
(dotted). 
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Fig. 3. Power losses obtained with different models 

of the energy buffer. The model used for the 
control design (thick solid) is compared with a 
constant efficiency model (thin solid), and a 
circuit model at minimum (solid-circles) and 
maximum (solid-stars) state of charge.  

 
Here the state x2 represents the state of charge above 
the lowest allowed level. The power produced in the 
generator is denoted with u3 and the power 
consumption of the pump and the fan are described 
as a cubic function of the speeds u1 and u2: 
 

)3(),( 3
211

3
11021 ucucuulc +=   

 
Other electrical consumption in the truck is 
represented by v4. The last term of (2), represents the 
power loss in the buffer, which thus is assumed to be 
proportional to the square of the difference between 
the generated and the consumed power. In general, 
the power loss will be a function of the power flow 
and the state of charge. When studying the energy 
level in the storage, a simple model suffices. Related 
models can be derived from either assuming an 
efficiency factor of the storage or to model it as an 
equivalent electrical circuit. In figure 3 these 
different models are compared. The circuit model 
includes a dependency of the state of charge while 
the others do not. At low state of charge and a large 
negative net power, the simpler models tend to 
underestimate the losses compared to the circuit 
model. For this study, the loss model in equation (2) 
still seams to be sufficient. 

 
 

4. OPTIMAL CONTROL  
 
The control objective is to minimise fuel used to 
drive the generator, while keeping the temperature in 
the cooling system and the charge level in the energy 
buffer within specified limits. It is assumed that the 
time trajectories of v1, v2, v3 and v4 are known or can 
be predicted for some time ahead. In practice this 
prediction horizon is limited by the ability to 
accurately estimate the external variables from input 
data. Based on the model defined in the previous 
section, and knowledge of the future external 
variables, the optimal input trajectory is calculated. 
 
4.1 Problem formulation 
 
The control objective of minimising the fuel 
consumption is comparable to minimising the power 
produced in the generator integrated over times when 
fuel is injected in the engine, based on the 
assumption that the both the combustion engine and 
the generator have a nearly constant efficiency. This 
is reasonable since the efficiency of the diesel engine 

in heavy vehicles varies with a few percentage points 
in the rpm range utilised in highway driving. The 
generator could be designed with fairly constant 
efficiency in the corresponding speed interval. The 
regarded prediction horizon spans from the present, 
ti, up to a fixed time tf =ti + tp, where tp is the 
prediction horizon. Let δ=δ(t) be a binary weighting 
factor that equals one when fuel is needed to drive 
the vehicle forward, while it is zero when no fuel is 
injected in the engine. Then, the objective can be 
formulated as 
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subject to the dynamics (1) and (2), and the state 
constraints 
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The set of admissible controls is equal to  
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The optimisation is performed in a receding horizon 
scheme where only an initial part of the calculated 
input is applied. The length of the input trajectory 
that is applied in each control update is called the 
control horizon and spans from ti to ti+tc, with tc < tp. 
When time ti+tc is reached, the initial and final time 
is set to ti:=ti+tc and tf:=tf+tc, and a new optimal  
control is derived. In order to force the control not to 
utilize the buffers in the end of the optimisation 
interval, constraints on the final states are introduced: 
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The optimal control for the case when state 
constraints are inactive, is derived from the 
Hamiltonian (Bryson and Ho, 1975) 
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where u and v denote the vectors of control and 
external variables, respectively. The adjoint variables 
should satisfy the differential equation 
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Hence λ2 is constant. In the above setting, the initial 
and final states are known, while the boundary 
conditions for the adjoint variables are not. Due to 
the constraints on the final states, the final values of 
the adjoint variable, λ(tf), is arbitrary. 
 
4.2 Sequential solution  
 
Suppose first that the sate constraints are inactive. 
The problem above can be numerically solved with a 

     



shooting method (Bryson 1999). However, although 
the model involves only two dynamic states, the 
solution is hard to obtain. The complexity of the 
problem can be reduced by solving for the control of 
one state at a time, as discussed next.  

the sequential solution can be iterated until the 
optimality condition is satisfied. This gives the 
following algorithm:  

0. Set λ2 to an initial guess (e.g., -1/c7). 
1. Solve the cooling optimisation problem in (12) 

with the current value of λ2 to obtain u1 and u2.   
Let us first minimise (4) with respect to u3.  For 
intervals when δ(t) = 0, the optimal u3, is dependent 
only on the sign of λ2. It is straightforward to see that 
λ2 should be negative. This gives the control  

2. Find a new λ2 such that the constraints on x2 
are satisfied and apply (10) to obtain u3.  
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3. Terminate if the current λ2 is close enough to 
λ2 used in 1 or if δ (t) u3(t) =0, ti ≤  t ≤ tf, 
otherwise jump to 1. 

 
There are two interesting special values of λ2 that 
should be considered when selecting an initial guess. 
These correspond to a zero cost policy (u3=0 
whenever δ =1) and a constant charge policy (λ2 = 
-1/c7 giving f2=0). With the zero cost policy, the 
buffer is charged when δ =0, and the stored energy is 
utilised when δ =1. If it is possible to satisfy the 
constraints with this policy it will indeed be optimal. 
With the constant charge policy, the produced power 
exactly compensate for the consumption. This policy 
will be optimal whenever δ (t) =1, ti ≤ t ≤ tf. 

 
where sat+(α) = 1, if α > 1, 0 if α  < 0, and α 
otherwise. Note that when δ = 1, not only the sign of 
λ2 is of importance. Here λ2 should be chosen such 
that the constraints on x2 are satisfied. If u3 does not 
saturate when δ = 1, the Hamiltonian becomes 
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Solving for the control of a single state implies 
finding the initial value of the corresponding adjoint 
variable while the control of the other state is given 
from the previous iteration. As a measure of the 
deviation from the correct initial values, one residual 
is defined for the control of x1 and one for the control 
x2. The residuals are evaluated in the end of the time 
interval where the shooting method is applied and 
should equal zero when proper initial values are 
found. The residuals are derived from the conditions 
at the final time tf, or at times when the states 
entering or leaving the constraints. The optimal 
control is a function of x, λ and t. Further, for a given 
time interval the initial condition of x is fixed. 
Therefore, the residuals will be functions of the 
initial condition of λ and the end point of the 
considered time interval. If ts and te denote start and 
end point of the time interval, respectively, and the 
notation λis :=λi(ts), i=1,2 is introduced, the residuals 
can be expressed as ri(te,λ1s,λ2s), i=1,2. Let r1 
represent condition on the control of x1, while r2 
represent condition on the control of x2. In each 
iteration, k, the initial values of λ1 and λ2 are updated 
so that 1k

1s is the solution of 1 1 2e s sr t , 
while 1

2
k
sλ + is the solution of 1

2 1 2( , , ) 0k
e s sr t λ λ+ = . 

Local convergence of the scheme is obtained if  

where h(λ2, v4) is a known function. If δ (t) =1, ti ≤ t 
≤ tf, the controls u1 and u2 that minimise H are 
obviously independent of u3, λ2, and x2. When 
δ(t) =0, ti  ≤ t ≤ tf, the minimising controls u1 and u2 
are independent of u3, and x2, but depends on the sign 
of λ2 (which is known to be negative). This suggests 
separation of the control of x1 from the control of x2: 
first u1, u2 is derived from (11), then lc(u1,u2) is 
plugged into equation (10), giving u3. However, if δ  
change in the prediction interval, λ2 must be known 
when deriving the control of x1. The optimal control 
problem for the cooling system corresponding to the 
Hamiltonian in (11) can thus be formulated as 
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subject to state equation (1) and constraints in 
equation (5) and (7). Hence, the control of cannot be 
separated from each other. However, here the 
approach is to solve for the control of x1 and x2 in 
sequence, and iteratively update the parameters 
linking the controls together. The simplification this 
yields is considerable since only one-dimensional 
problems are solved at each step. The iteration 
scheme and convergence properties of the iteration 
are discussed in the next section. 

λ + ( , , ) 0kλ λ =
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 holds in a neighbourhood of the optimum. Thus, 

local convergence is obtained if λ1s mostly influences 
the control of x1, and λ2s mostly influences the 
control of x2. An analytic proof has not been obtained 
for that (13) holds when the control does not saturate. 
Nevertheless, numerical analysis indicates that this is 
the case. To illustrate this, µ is evaluated as a 
function of the mean of δ(t). 

4.3 Iteration of the sequential solution 
 
The cooling optimisation problem in (12) is solved 
with an initial guess of the constant λ2. If this value 
coincides with the solution to (10), or if δ (t) u3(t) =0, 
ti ≤ t ≤ tf, an optima of the original optimal control 
problem (4) is found. If this does not hold,  
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Fig 4. Relation (13) as a function of the mean of δ(t). 
 
The result is shown in figure 4. Here the external 
variables are held constant and constraints are not 
considered. It exists cases when (13) does not holds, 
for instance when the control inputs saturate over 
large parts of the prediction horizon. These situations 
are detected and handled in a special manner. 
 
4.4 Handling of state constraints 
 
The solution to the cooling optimal control problem 
described in equation (12) is straightforward if the 
state constraints are not encountered (as described 
above). However, if the state constraints are active 
the solution is somewhat more complicated, as 
discussed next. The adjoint variable can be 
discontinuous at time instances where the state 
constraints go from being active to non-active, or 
vice versa. Therefore the optimal trajectory x1

* must 
be divided into constrained and unconstrained arcs. 
Consider the case when δ = 1, and assume that the 
optimal trajectory consist of the three parts:  an 
unconstrained arc, x1

* (t), ti ≤ t ≤ t1 ending on a 
constraint, say x1max, a constrained arc, x1

* (t)= x1max, 
t1 ≤ t ≤  t2, ending at t2 when the state leaves the 
constraint, and an unconstrained arc, x1

* (t), t2 ≤ t ≤  tf  
ending at the final state value x1

* (tf) = (x1min + x1max)/2.   
 
The optimal control that keeps x1

* (t)= x1max is  
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In this case the cost function can be re-written as 
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Since Jc0 is independent of u, t1 and t2, the problem 
can be divided into two separate optimal control 
problems over unconstrained arcs. The times t1 and t2 
are free parameters. Hence, the optimisation should 
be performed over open time intervals. The condition 
on the final state (7) is now replaced by the condition 
that the corresponding Hamiltonians should equal 
zero when the state is entering or leaving the 
constraint, (Bryson and Ho, 1975).  
 
The discussion above can easily be extended to a 
general case when the state trajectory enters and 

leaves the constraint several times. The cost function 
then becomes 
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Consequently, the optimisation can always be 
separated into independent problems over 
unconstrained arcs. In the numerical solution this is 
done iteratively, searching over the prediction 
horizon for trajectories that satisfy the condition that 
the Hamiltonian is equal to zero at the entry and exit 
to the constraints. 
 
 

5. SIMULATION RESULTS 
 
The optimal control strategy is simulated with input 
data collected from an experiment in a wind tunnel. 
The external variables v1, v2 and v3 are measured on 
the truck when the load and speed of the 
dynamometer are programmed to follow trajectories 
corresponding to a specified road. Simulations are 
performed over two road sections with altitudes 
depicted in figure 5. The first simulation runs over 
part of the road between Koblenz and Trier in 
Germany. It contains rather steep downhill slopes 
where a lot of heat is emitted to the cooling system 
from the retarder. The second simulation runs over 
part of the road between Södertälje and Norrköping 
in Sweden. It contains long flat sections with some 
moderate uphill slopes where the engine produces 
heat that have to be cooled away.  
 
The prediction horizon is set to tp=600 seconds and 
the control horizon to tc=100 seconds. It is assumed 
that the controller has exact knowledge of the 
external variables over the prediction horizon. The 
parameters of the electrical components are chosen to 
realistic values. In figures 6 and 7, the simulation 
results are shown. Simulations where optimal control 
is applied (thick lines) is compared with 
measurements on a traditional truck (thin lines). In 
the upper plot, the temperature obtained with optimal 
control (thick) and measured temperature (thin) is 
shown. The second plot shows optimal control of the 
pump (thick solid) and the fan (thick solid-stars) 
compared with the speed of the pump (thin solid) and  
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Fig. 5. Road altitudes used to collect external data. 

The used part of the Koblenz-Trier road is 
shown in the upper plot and the used part of 
the Södertälje-Norrköping road in the lower. 

     



  
Fig. 6. Simulation results on the Koblenz-Trier road. 

The variables are explained in the text. 
Fig. 7. Simulation results on the Södertälje-

Norrköping road. The variables are explained 
in the text.   

the fan (thin solid-stars) in the traditional truck. The 
third plot shows simulated state of charge in the 
energy buffer. The forth plot shows optimal control 
of the generator and indicates the intervals where 
δ(t)=1 as a bar on the time axis. The lowest plot 
shows the energy taken from the engine (when δ =1), 
with optimal control (thick) and with traditional 
control (thin). Note that with the optimal control, the 
energy saving is significant in both figure 6 and 7. 

 
other clutches on the market with lower idle speed 
(≈300 rpm instead of ≈700 rpm). In comparison with 
those, the potential energy saving will be lower but 
still considerable. 
 

6. CONCLUSIONS  
 

Optimal control of electrically driven auxiliaries in 
the cooling system of heavy vehicles is derived. The 
result shows that controllable components in 
conjunction with prediction of external influences 
offer a potential to save fuel in this type of 
application. The saving constitute a fraction of the 
total fuel consumption, but improvements of this 
order is certainly worth considering since fuel 
economy is one of the most important performance 
factors of  long haulage trucks. 

 
The optimal control utilizes the admissible range of 
coolant temperature and state of charge. Therefore 
most of the electricity can be produced when δ(t) =0, 
i.e., at times t when no fuel is injected in the engine 
and auxiliary loads can be added without any cost. 
This can be seen in the forth plot of the figures where 
the bar on the time axis indicates when δ(t)=1. The 
variables δ and u3 are simultaneously non-zero only 
in the interval 800 to 900 s in figure 6 and in the 
interval 350 to 800 s in figure 6.  As a result, the 
accumulated cost to drive the auxiliary systems, 
shown in the lowest plot of the figures, increases 
only in these intervals. All other times, the auxiliaries 
are run without cost.  

 
The assumptions on the electrical components are 
preliminary, in order to give more precise estimates 
of the achievable energy saving, refined models will 
be derived in future studies. 
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