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Abstract— We consider the problem of tracking moving
algal bloom fronts using an unmanned surface vehicle (USV)
equipped with a sensor that measures the concentration of
chlorophyll a. Chlorophyll a is a green pigment found in
plants, and its concentration is an indicator of phytoplankton
abundance. Our algal bloom front tracking mission consists of
three stages: deployment, data collection, and front tracking.
At the deployment stage, a satellite collects an image of the sea
from which the location of the front, the reference value for the
concentration at this front and, consequently, the appropriate
initial position for the USV are determined. At the data
collection stage, the USV collects data points to estimate the
local algal gradient as it crosses the front. Finally, at the front
tracking stage, an adaptive algorithm based on recursive least
squares fitting using recent past sensor measures is executed.
We evaluate the performance of the algorithm and its sensitivity
to measurement noise through MATLAB simulations. We also
present an implementation of the algorithm on the DUNE
onboard software platform for marine robots and validate it
using simulations with satellite model forecasts from Baltic sea
data.

I. INTRODUCTION
Ocean ecosystems are greatly influenced by the structure

and dynamics of fronts [1]. Detection and tracking of ocean
fronts is important for investigating the formation, evolution,
and interaction of ocean water masses [2], [3]. In this paper
we develop an experimental setup capable of detecting and
tracking ocean fronts using an unmanned surface vehicle
(USV). Knowing the boundary between these water masses
enables targeted sampling of the waters. An ocean front
delineates the boundary between water masses distinguished
by different physical, chemical, or biological characteristics.
Some examples of ocean fronts are algae, salinity, and tem-
perature fronts. A lack of efficient observations has hampered
progress in understanding the dynamics of fronts. Global
satellite measurements of ocean-surface velocities and air-sea
fluxes, for instance, are only available at resolutions of a few
hundred kilometers [4]. Therefore, the present paper suggests
to approach data collection by using unmanned new sampling
strategies for USVs. In fact, USVs can perform measurement
runs over a long period of time at sea [5], which makes them
a frequent choice for oceanographic data collection [6]. For
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this paper, the motivating scenario is harmful algal blooms
(HABs), which occur frequently and cause significant dam-
age. According to [7], “HABs cause human illness, large-
scale mortality of fish, shellfish, mammals, and birds, and
deteriorating water quality”. To monitor and mitigate these
detrimental effects, accurate information about the location
and movement patterns of algal blooms are needed.

Front tracking has received an increasing amount of atten-
tion in the recent years. Ocean fronts are characterized by
strong variations of some phenomena or variables such as
algal blooms [8], salinity [9], temperature [10], Rhodamine
dye [11], oil propagation [12], or other water properties.
Front tracking can be divided into front estimation and
vehicle control algorithms. Regarding front estimation, a
variety of methods have been considered in the literature,
such as model-based estimation for plume propagation [13]
or local estimation of front direction [14]. Regarding vehicle
control algorithms, we can find both multi-agent [15] and
single-agent strategies [16], as well as adaptive algorithms
for tracking depth [17] and non-adaptive zig-zag algorithms
for tracking upwelling fronts [18], or velocity fronts [19].
While some tracking algorithms have been theoretically
justified and proven to converge [20], [21], there is a lack
of robustness guarantees in realistic setups, using local
measurements of chlorophyll a concentration.

The main contribution of this paper is a numerical eval-
uation of an algal bloom front tracking strategy using
Baltic sea data. An estimation algorithm for the gradient
of chlorophyll a concentration, is proposed together with a
control law for the USV heading. We define the front as
a dynamic curve that corresponds to the level set of the
chlorophyll a concentration with reference value obtained
from satellite data. The USV records its position and the
concentration at each position. The estimation is performed
at each timestep in a receding-horizon fashion using the
latest datapoints collected by the USV. The control input is
a heading reference computed as a function of the estimated
gradient, such that the USV moves towards the front when
it is far away from it and along the front when it is close to
it. The USV will remain within close proximity of the front
after having reached it for the first time.

The paper is organised as follows. In Section II, the main
problem is formulated and we give an overview of the
components included in the experimental setup. We explain
the front tracking algorithm in Section III. In Section IV,
we describe the implementation of the algorithm, and sim-
ulations using satellite data of chlorophyll a concentration.
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Concluding remarks and future directions follow in Section
V.

II. PROBLEM FORMULATION

We consider the problem of detecting and tracking irregu-
lar, moving, and time-varying algal bloom fronts. We propose
a solution that consists of an experimental setup as in Fig. 1,
composed of an USV with a chlorophyll a concentration
sensor, a control and detecting algorithm implemented in
the software platform DUNE [22], a message protocol im-
plemented in IMC [23], a visualization tool implemented on
Neptus [24], satellite data from the previous day, and the
CMEMS simulated chlorophyll a data of the region from
the past months [25].

DUNE NeptusIMC

CMEMS

Fig. 1. Experimental setup including the USV, satellite, DUNE, IMC, and
Neptus.

A. Algal blooms

In Fig. 2 we plotted two time instances of a forecasted
chlorophyll a concentration field, part of the Baltic Sea
biogeochemistry analysis and forecast product [25]. The
spatial resolution is 2 km by 2 km, the time resolution
is hourly, and we selected data from the east coast of
Sweden, near Stockholm, from February 2020. The range
from 0 (dark blue) to 1 (yellow) indicates the chlorophyll a
concentration. The white areas represent land and correspond
to the archipelago near Stockholm, Sweden.

We define a front (red) as a level set of a time-varying
scalar field δ : R× R2 → R:

F (t) = {p ∈ R2 : δ(t,p) = δref}, (1)

where δref is some reference value, p the position and t time.
The reference δref is chosen according to the latest satellite

data of the location, before the mission starts. It can be
seen as a calibration of the USV to different algal bloom
situations.

B. Experimental setup

The components of the experimental setup are described
next.

Satellite data – collected in the area of the experiment is
used to initialize the controller, including the reference value
and initial gradient estimate. CMEMS provides forecasts
used for simulations before mission execution.

Fig. 2. CMEMS simulation data of chlorophyll a in the Baltic Sea, at two
different time instances hours apart, with higher concentration (yellow),
lower concentration (blue), land (white), and the front F (t) (red line).

The USV – has a sensor to measure the concentration of
chlorophyll a. See the UAV SAM from SMaRC (Swedish
Maritime Robotics Centre, KTH [26]) with the Total Algae
sensor from YSI [27] in Fig. 3.

Fig. 3. Top: SAM UAV from SMaRC. Bottom: Total Algae sensor from
YSI

The USV onboard software contains the sensing, com-
munications, navigation and control software used during
the operation. For the implementation we used the LSTS
toolchain that contains DUNE, IMC, and Neptus. For a
detailed overview of the toolchain’s components and capa-
bilities, see [28]. DUNE is a platform- and architecture-
independent runtime environment for the robot’s onboard
computer. It provides a simple and unified programming
interface for writing embedded software components for
marine robotics such as navigation filters, controllers or
sensor drivers. Each software component is represented as
a DUNE Task, an isolated code section which is executed in
its own operating system thread. DUNE tasks communicate
exclusively using IMC messages exchanged through a global
shared message bus. Tasks can expose parameters (e.g,
controller gains) which may be set in plain text configuration
files and changed on-the-fly in the Neptus’ operator console.
DUNE contains an implementation of a navigation and con-
trol suite for the USV, as well as a detailed full-order USV
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Fig. 4. Illustration of the three stages of the front tracking algorithm.

simulator. The simulator is used as a drop-in replacement
of the sensor and actuator drivers which would interact with
the real vehicle hardware, allowing us to simulate the same
code that will later be deployed on the real robot.

The mission control software is used to monitor the
system’s position and operating state during the mission, and
to retrieve collected data from the vehicle’s storage. Neptus
is a command and control application software providing a
configurable and extensible graphical interface for mission
planning and simulation, control, and review analysis.

Finally, the mission control systems are comprised of all
the operators and support staff and systems involved in the
mission. This may include research vessels or other types of
manned or unmanned systems used to deploy and recover
the USV.

C. Problem

The problem considered in this paper is how to track
irregular and dynamic algal bloom fronts using the described
experimental setup. The solution is a front tracking algorithm
consisting of a control law, and a gradient estimator, as
presented in the next Section.

III. FRONT TRACKING ALGORITHM
Given the problem stated above, we present a solution

split into three stages, as illustrated in Fig 4. The first stage
(indicated by 1 in the figure) is initialization and deployment
aided by the satellite or forecast data, the second one (2) is
finding and approaching the front, and the final one (3) is
persistent front tracking.

The initialization stage consists in selecting the chloro-
phyll a reference value δref and the vehicle’s initial position
and heading. We assume here that suitable values for these
parameters can be obtained by examining satellite or forecast
data corresponding to a point in time sufficiently close to the
mission start time.

The front finding and approaching stage is lead by the
control law which gives a velocity reference as a function

Gradient
estimator
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𝛿t-n+1

Control 
law USV

F(t)

ut

pt
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pt
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Fig. 5. USV control architecture

of the measured chlorophyll a concentration at the vehicle’s
position. This velocity reference will lead the vehicle to the
front location when it is away from the front and make
the vehicle travel along the front when it is close to it.
An essential ingredient in the control law is the gradient of
the concentration, which is estimated from the measurements
taken by the vehicle. The estimator computes an approximate
value of the gradient at the vehicle’s location using a local
linear approximation of the chlorophyll a concentration. The
final stage is the persistent front tracking which consists on
keeping the USV in and around the front for the duration of
the mission.

We summarize the overall architecture of the front tracking
algorithm in Fig. 5. In the remaining subsections we give a
detailed description of the control law, the gradient estimator,
and the USV model.

A. Control Law

Assume for the moment that the reference value δref is
known and that the USV is holonomic, that is, the dynamics
are given by

ṗ = u,

where p = (x, y) is the vehicle’s horizontal position and u
is the velocity control. We define the feedback velocity law
as:

u(t,p) = αseekuseek(t,p) + αfollowufollow(t,p)

useek(t,p) = −(δ(t,p)− δref)∇δ(t,p)
ufollow(t,p) = Rπ/2∇δ(t,p),

(2)

where ∇δ is the gradient of δ with respect to p and Rπ/2 is a
mapping which rotates vectors by 90 degrees. This feedback
law has two components: the useek component controls the
vehicle to the level set of δ corresponding to the front by
following the gradient vector field, while ufollow makes the
vehicle travel along the front. The direction in which the
vehicle travels along the front after having reached it is
determined by the orientation of Rπ/2.

It can be seen that if the front F (in (1)) is static (i.e.,
∂δ/∂t ≡ 0) then the feedback law u achieves convergence
of the vehicle’s position to the front (i.e. δ(t,p(t)) → δref )
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as long as ∇δ 6= 0, so that the vehicle does not get stuck in
a critical point of δ. When the front is not static, there is
no such guarantee. We assume that the vehicle is capable of
moving and taking measurements at a time scale much faster
than that at which the chlorophyll field is changing, so that
we can view the time variation of δ as a perturbation.

B. Gradient estimator

In order to realize the control law (2), the gradient ψ(t) :=
∇δ(t,p(t)) is needed. The vehicle takes noisy measurements
of the concentration at discrete instants of time:

yk = δ(tk,p(tk)) + εk,

where tk are the measurement times and εk is the mea-
surement noise. We assume the position of the vehicle at
the measurement times, pk := p(tk) is perfectly known.
We can then define the data available to the vehicle at time
t ∈ [tk, tk+1) as

D(t) = ((p0, y0), (p1, y1), . . . , (pk, yk)).

The gradient estimation problem is then to construct an
estimate ψ̂(t) of ψ(t) based on D(t).

We propose to construct such an estimate as follows. Let
tk be the time of the most recent measurement, and take n
such that the set of measurements

Dn(t) = ((pk−n+1, yk−n+1), . . . , (pk, yk))

satisfies the following conditions:

• the measurements are taken suficiently close together in
time so that the concentration is approximately constant
on [tk−n+1, tk];

• the measurements are taken close together in space.

These assumptions allow us to replace δ by its first order
Taylor approximation on a set containing the measurement
positions:

δ(t,p) ≈ δ(t?,p?) +∇δ(t?,p?) · (p− p?),

where p? is some position in this set and t? ∈ [tk−n+1, tk]
is some time instant. We define

ψ̂ = ∇δ(t?,p?)
δ0 = δ(t?,p?)−∇δ(t?,p?) · p?,

so that

δ(t,p) ≈ δ0 + ψ̂ · p.

Applying this equation to the n measurements in Dn(t), we
get a set of equations which are linear in δ0 and ψ̂, which can
be solved with standard least squares methods. An alternative
is to use recursive least squares with exponential forgetting.

C. USV model

We adopt a typical 3 degree of freedom (surge, sway, and
yaw) model for the USV [29]. It is represented as

η̇ = R(ψ)v

M v̇ +C(v)v +D(v)v = τ , (3)

where η = [x, y, ψ]T is the cartesian position [x, y] and angle
ψ, v = [u, v, r]T are the velocities, and R(ψ) := Rz,ψ is
the rotational matrix.

IV. NUMERICAL EXPERIMENTS

A. MATLAB simulations

In this subsection we approximate the kinematics of the
USV by a single integrator, ṗ = u. We simulated a 20 hour
mission, having the length of saved data Dn(t) as n = 20 and
the algal front concentration reference as δref = 2. Having
measurements taken with a period of 3 minutes, we choose
to start the gradient estimation after the first hour. We set
the parameters αseek = 6 and αfollow = 2 of the control law
u(t). We deploy the USV at p(0) = [65, 1] with an initial
algal gradient estimate of ψ̂(0) = [1,−1]. We introduce a
measurement error in the chlorophyll a sensor of the form
δmeasured(t) = δreal(t) + δnoise(t) with maximum noise of
about 0.4.

Fig. 6 shows six instances of the algal front tracking
mission. From the first one, we can see the initial position
at which the USV was deployed, as well as its convergence
towards the algal front F (t). The following figures indicate
a constant and accurate tracking of the algal bloom front.
Here, we can also see the gradient estimator ψ̂ indicating a
fair estimation of the normal vector to the algal front on the
USV’s position.

Tracking and estimation errors are depicted in Fig. 7.
The first figure contains three chlorophyll a concentration
values: the measurement δmeasured(t), the real chlorophyll a
concentration δ(t), and the reference δref . The oscillation
around the reference value represents the deviation to the
front. Here we can notice two things: first, the measured
and real values have a difference corresponding to the
sensor noise; second, the USV starting point is far from the
front, but it then oscillates around the reference value of
chlorophyll a concentration.

The second figure illustrates the distance of the USV to the
closest point of the front F (t): inff∈F (t) ‖f − p(t)‖. Here,
the initial distance is large as the USV is starting far from the
front. Then, the distance oscillates around zero, indicating a
zig-zag motion around the front. The last figure depicts the
angle of the estimated gradient, ∠ψ(t). By plotting the angle,
we can evaluate the variation of directions towards the front
F (t).

B. DUNE controller implementation

In the DUNE control implementation, a two-step waypoint
generation scheme is used, where the robot performs a ‘zig-
zag’ motion of amplitude θ and horizontal displacement d
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Fig. 6. Time-lapse of the USV (blue rectangle) and its gradient estimator
ψ (red arrow) tracking the algal front (indicated with red contour lines))
with representation of USV’s path (green).

Fig. 7. First plot: difference between the noisy measured chlorophyll a
concentration δmeasured(t), local chlorophyll a concentration δ(t), and the
reference chlorophyll a concentration δref . Second plot: distance from the
USV to the closest point in the front, ‖F (t)− p(t)‖. Third plot: angle of
the estimated gradient, ∠ψ(t).
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Fig. 8. Waypoint generation scheme.

around a mean bearing angle ψu. This is depicted in Fig. 8.
After the vehicle reaches the second waypoint, the measure-
ments collected during the motion are used to estimate the
gradient as described above, and a new bearing reference ψu

is computed using (2). The vehicle travels at constant speed,
so that only the relative size of αseek and αfollow in (2) is
relevant, and we fix αfollow = 1. The value of δ used in the
computation of u is the most recent sample.

As above, the gradient estimate ψ̂ is initialized with a
given value. Gradient estimation is performed only after the
average concentration is within a threshold error δthr of δref ,.
Thus, initially the vehicle travels in a straight line (i.e., d, θ =
0) and a fixed track distance is used to compute the next
waypoint, with the track bearing given by (2).

The chlorophyll a concentration field is simulated using
numerical data defined on a regular time-latitude-longitude
grid. A DUNE task simulating the chlorophyll a concentra-
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tion sensor reads messages containing the vehicle’s current
position, linearly interpolates the numerical data to the
vehicle position and current time and dispatches an IMC
message containing the current concentration value. These
messages are then read by the controller task which stores
them together with the corresponding vehicle position.

C. DUNE simulation results

αfollow d θ Speed δref δthr
25 250 m 45 deg. 5 m/s 1 mg/m3 0.1 mg/m3

TABLE I
CONTROLLER PARAMETERS USED IN THE DUNE SIMULATION.

We simulated an approximately 32 hour mission with
the controller parameters shown in Table I. The vehicle
samples the chlorophyll a concentration at its position every
3 seconds with Gaussian measurement noise of variance
0.001 mg/m3. Fig. 9 shows the position of the vehicle
and the chlorophyll a concentration field at two instants of
time. Blue regions indicate low concentration values at the
corresponding position, while green regions indicate high
concentration values. The red curves represent the front F (t)
at the corresponding time instant. After the initial approach
phase the vehicle successfully tracks the time-varying front.

Fig. 10 shows the chlorophyll a concentration measured
by the vehicle, normalized to the maximum value contained
in the data. The shaded blue area indicates the value of δthr.
One can see that the vehicle loses track the front at around
t = 18 h. This is because the chlorophyll field changes
significantly between t = 18 h and t = 19 h, so that the
assumptions considered in the estimator design are no longer
valid. After this sudden change the vehicle recovers the front
and tracks it successfully again, showing that the algorithm
is robust to temporary violations in the assumptions.

V. CONCLUSIONS
In this paper we considered the problem of algal bloom

front tracking using a sensing USV. We assumed the USV
has a GPS receiver which reports its position, and a chloro-
phyll a concentration sensor which measures the local algal
concentration. We proposed an experimental setup composed
of satellite data, USV hardware and software, CMEMS
forecasted data, and an algorithm in which the USV estimates
the local algal gradient using recent past measurements and
least squares fitting. We provided a MATLAB simulation
and analyzed convergence given sensor noise. The USV
converged and moved along the detected algal bloom front
for the duration of the mission. The algorithm was also
implemented on the LSTS Toolchain using model forecasts
of the chlorophyll a concentration in the Baltic Sea in
February 2020 from CMEMS.

Our future plan is to do tests on the Baltic Sea using
our algorithm implemented on DUNE and Neptus as well as
algal bloom forecasting using satellite data of different water
properties, such as salinity, temperature, and water currents.
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Fig. 9. Two time instants (t = 10 h and 25 h) of the mission. The black
line shows the USV path over the preceding 10 hours.
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Fig. 10. Chlorophyll a concentration measured by the vehicle.
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