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In this paper, we consider repeated routing games with piecewise-constant congestion tax-
ing in which a central planner sets and announces the congestion taxes for fixed windows
of time in advance. Specifically, congestion taxes are calculated using marginal congestion
pricing based on the flow of the vehicles on each road prior to the beginning of the taxing
window (and, hence, there is a time-varying delay in setting the congestion taxes). We
motivate the piecewise-constant taxing policy by that users or drivers may dislike
fast-changing prices and that they also prefer prior knowledge of the prices. We prove
for this model that the multiplicative update rule and the discretized replicator dynamics
converge to a socially optimal flow when using vanishing step sizes. Considering that the
algorithm cannot adapt itself to a changing environment when using vanishing step sizes,
we propose adopting constant step sizes in this case. Then, however, we can only prove
the convergence of the dynamics to a neighborhood of the socially optimal flow (with
the size of the neighbourhood being of the order of the selected step size). The results
are illustrated on a nonlinear version of Pigou’s famous routing game.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

In 1963, William S. Vickrey, a Nobel Laureate in Economics and well-known for the development and analysis of the
second-price auction, started his paper on resource allocation in transportation with the ‘‘proposition that in no other major
area are pricing practices so irrational, so out of date, and so conductive to waste as in urban transportation’’ (Vickrey, 1963).
He argued the waste is caused by the ‘‘absence of off-peak differentials’’ and the ‘‘underpricing of some modes relative to the
others’’. He went on to say that ‘‘the pricing of the use of urban streets is all but nonexistent’’. In Vickrey (1992), he
subsequently proposed that we use a ‘‘detection and billing method’’ based on ‘‘electronic identifier units carried in each
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vehicle, which would activate recording devices in or on the road.’’ These recordings should be used to charge the vehicles as
closely as possible to the marginal social cost1 of each trip in terms of the impacts on others (Vickrey, 1992).

We have come a long way since 1963 in the implementation of congestion pricing. The local government in Stockholm
implemented a congestion taxing2 system in August of 2007 after a seven-months trial period. The influence of the congestion
taxes over the trial period was later studied in Eliasson et al. (2009), which showed improvements in travel times in addition to
several other positive economic and environmental effects. Other behavioural aspects and influences of the congestion taxing in
Stockholm was discussed in Karlström and Franklin (2009), Winslott-Hiselius et al. (2009), Eliasson and Mattsson (2006), and
Börjesson et al. (2012). Several other cities, such as London, San Francisco, and Singapore, have also implemented congestions
taxing schemes (Leape, 2006; Santos, 2005; Frick et al., 1996). However, there are several issues that still need to be addressed
in congestion taxing systems. For instance, as the study in Börjesson et al. (2012) notes ‘‘[s]ince the traffic flow increases due to
external factors, primarily increasing population in the county, the charge must, however, increase to keep the traffic flow at the
present level’’. More importantly, the implemented fixed tolls do not react to temporary traffic changes and are designed based
on the average behaviour of the travellers (i.e., they do not follow the marginal social cost of each trip in terms of the impacts on
other vehicles as suggested in Vickrey (1992)).

To avoid this problem, dynamic congestion pricing techniques have been employed. For instance, in San Diego I-15
High-Occupancy Toll (HOT) Lanes, the single-occupancy vehicles must pay tolls that varies dynamically with the level of
congestion over that lane3 (Federal Highway Adminstration). The tolls are updated every six minutes and may vary in
25-cents increments, and can go as high as eight dollars. Generally, this scheme was considered to be fair and effective by
the public and the media (Federal Highway Adminstration). This is thought to be because the scheme offered all travellers
on I-15 a choice whether to pay for the use of the express lanes as an alternative to being stuck in a traffic jam in free4 lanes
(Federal Highway Adminstration; Lindsey and Verhoef, 2000). However, to achieve a socially optimal flow, we need to impose
the congestion taxes on all the vehicles and over all the lanes (based on the marginal social cost of the trip) (Vickrey, 1992).
Imposing taxes on all the lanes is certainly controversial or, to say the least, cumbersome to understand for the drivers as they
need to calculate and respond to time-varying congestion taxes at the same time as driving. Therefore, it is desirable to devise a
slowly-varying or piecewise-constant congestion charges for the roads (that are announced well in advance so that the drivers
can respond to them properly).

1.2. Previous studies

Using routing games for understanding the drivers’ behaviour and interplay dates back to the work of Wardrop (Wardrop,
1952), where the notion of equilibrium for the routing games was introduced. Due to this pioneering work, the equilibrium is
widely known as the Wardrop equilibrium in the transportation literature (Smith, 1979; Haurie and Marcotte, 1985; Braess
and Koch, 1979). However, authors in different communities sometimes use other names for this equilibrium, e.g.,
user-optimizing flow (Dafermos, 1972; Braess and Koch, 1979), Wardrop first principle (Smith, 1979), and Nash5 equilibrium
(Roughgarden and Tardos, 2002; Krichene et al., 2012). In Beckmann et al. (1956), it was shown that the problem of finding a
Wardrop equilibrium can be cast as an optimization problem under a mild condition (which happens to be a convex one if the
latencies are non-decreasing functions of the flow over each road). For a survey of results in routing games, see Roughgarden
(2007).

It is widely known that, in general, the equilibria in non-cooperative games are inefficient (Roughgarden and Tardos,
2004; Roughgarden and Tardos, 2002; Dubey, 1986; Correa and Stier-Moses, 2010), i.e., they do not necessarily minimize
the social cost function.6 Therefore, many studies have been dedicated to bounding the price of anarchy (i.e., the worst-case
ratio of the social cost of the Nash equilibrium over the social cost of the optimal flow) (Koutsoupias and Papadimitriou,
1999; Papadimitriou, 2001). For instance, in routing games with linear latency functions, it was proved that the price of anarchy
is upper-bounded by 4/3 (Roughgarden and Tardos, 2002). The authors of Roughgarden and Tardos (2002) also showed that for
general continuous and non-decreasing latency functions the total latency at the equilibrium is no more than the total latency
incurred by the optimal flow for routing twice as much traffic between the source–destination pairs. The price of anarchy for a
wide-ranging family of latency functions was subsequently captured in Roughgarden (2003).

Due to this inherent inefficiency of the Nash equilibrium, there have been several studies in reducing the inefficiency
through devising appropriate congestion taxes on the edges of the transportation network (see Pigou, 1932; Yang and
Huang, 2005; Yang and Huang, 2004; Yang and Huang, 1998; Beckmann et al., 1956; Hoefer et al., 2008 among other studies)
and through rerouting a fixed percentage of the flow (see Stackelberg routing in Korilis et al. (1997), Kaporis and Spirakis
1 Economists have for long suggested that marginal congestion prices (which are traffic-flow-dependent taxes) can result in socially optimal traffic flows
(Pigou, 1932).

2 We use the terms ‘‘toll’’, ‘‘congestion tax’’, ‘‘congestion price’’, and ‘‘congestion charge’’ interchangeably throughout the paper.
3 Note that the dynamic congestion pricing was part of the second phase of the project also known as I-15 FasTrak.
4 The term ‘‘free’’ is used here in the sense that the congestion tax is equal to zero.
5 The term Nash equilibrium might be slightly confusing as, in the game theory literature, it is reserved primarily for games with finitely-many players

(Haurie and Marcotte, 1985) opposed to the routing game where we deal with a continuum of players when modelling the traffic flow. Nevertheless, the notion
is fairly common in the computer science literature (Roughgarden and Tardos, 2002; Krichene et al., 2012).

6 This observation is true for a utilitarian social cost function (i.e., summation of the individual cost functions of all the players) as well as a Rawlsian social
cost function (i.e., the worst-case cost function of the players).
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(2006), Roughgarden (2004), Yang et al. (2007)). In an early work, Pigou, a prominent English economist and best known for
his contributions to welfare economics, proposed marginal taxes7 (i.e., each driver is charged by the marginal increase in cost
caused by her multiplied by the amount of the traffic that suffers from this increase) as a way of achieving the socially optimal
flow (Pigou, 1932). This claim was revisited and mathematically proved in Beckmann et al. (1956). The idea was extended to
multi-class traffic in Dafermos (1973). The authors of Engelson and Lindberg (2006) designed fixed and marginal congestion
taxes for static routing games in which the drivers have different value of time.

Static routing games and Wardrop equilibria are idealized models for traffic assignment in transportation networks. A
study in Hall (1983) suggests that the main idealizations are that (i) the players are omniscient (i.e., the cost functions over
the edges, the demand over various destination–source pairs, and other characteristics of the game, are universally known
or, even stronger, they are common knowledge8) and (ii) the players are rational (i.e., the can correctly reason to find the opti-
mal decision without any mistakes). To weaken such idealizations, various studies have proposed other notions of equilibrium.
For instance, quantal9 response equilibrium weakens these idealizations by assuming that the players only have access to noisy
measurements of their utilities or cost functions (McKelvey and Palfrey, 1995), where the noise can model the players lack of
knowledge and/or experience in their decision making. The authors of McKelvey and Palfrey (1995) mention that (i) in static
scenarios, the players might use questionnaires, experiments, and approximations to construct noisy estimates of the cost func-
tions and (ii) in repeated scenarios, the players may use their observations (from earlier stages) to estimate the cost functions,
which results in noisy estimates of the actual costs (with the noise variance decreasing as the players play more and gain more
experience).10 Using quantal response equilibrium, we can model the cases where costly errors are unlikely and a players can
afford to make mistakes that are not ruinous. The quantal response equilibrium has shown to match experimental results,
specifically, that with gaining more experience players act more in line with the rational expectation equilibrium (McKelvey
and Palfrey, 1995). These results were subsequently generalized to a dynamic setting in Mckelvey and Palfrey (1998). Other
models for including uncertainties in decision making have been introduced in Rosenthal (1989) and Beja (1992). These studies
did not focus on learning, but they have still inspired follow-up studies on learning in repeated games).

Repeated games have been an interest of the economists as a way to enforce cooperation through repetition and repu-
tation11 (Axelrod, 1984; Mertens, 1986). Repeated games in combination with various learning dynamics, such as best response
dynamics (Ellison, 1993; Hopkins, 1999), fictitious play (Brown, 1951; Monderer and Shapley, 1996), logit-response dynamics
(Alós-Ferrer and Netzer, 2010), no regret learning (Arora et al., 2012), and Cournot dynamics (Seade, 1980; Hahn, 1962), have
introduced useful approaches for extracting Nash equilibria in games using distributed dynamics. Several studies have com-
pared the predictions from the dynamics in repeated games with experimental data to investigate their practicality (Morgan
et al., 2009; Erev and Roth, 1998; Mookherjee and Sopher, 1997; Camerer et al., 2002; Sarin and Vahid, 2001). For instance,
the authors of Erev and Roth (1998) investigate experimental data from several repeated matrix games (with unique mixed
strategy equilibria) repeated over one hundred periods. They show that one-parameter reinforcement learning performs very
well; however, the predictions can be significantly improved by allowing richer models or considering fictitious play.
Experimental data on constant-sum matrix games were studied in Mookherjee and Sopher (1997), where it was shown that
dynamics from the experiments are best captured by the multiplicative update rule (an update rule in which the probability
of selecting an action is proportional to the exponential of the average received payoff over the past or, equivalently, inversely
proportional to the exponential of the average cost). In Mookherjee and Sopher (1997), the authors use the term ‘‘quantal
response learning’’ instead of the multiplicative update rule since their proposed learning scheme is motivated by a family
of quantal response equilibria called the logit-equilibria (McKelvey and Palfrey, 1995). Later, richer dynamics were introduced
to capture the behaviour portrayed in a large set of experimental data (Camerer et al., 2002). These dynamics contain most of
the learning rules in the repeated games literature as special cases and, hence, can result in better fitnesses if finely tuned to the
data.

Repeated routing games,12 as a special class of repeated games, have attracted attention recently (Blum et al., 2007; Blum
et al., 2010; Krichene et al., 2014). For instance, in Blum et al. (2010), the authors studied no-regret learning (i.e., the difference
between the average latency caused by the online decisions and the average latency for the best fixed decision in hindsight
grows very slowly). They also proved the convergence of a subsequence of the flows to a neighbourhood of the Wardrop equi-
librium. The convergence result was further strengthened to the whole sequence of flows in Krichene et al. (2014). Repeated
7 In the economics literature, marginal taxes have a long history in achieving a socially optimal solution when there are negative externalities (i.e., actions of
a player has negative effect on the welfare of the other players in the environment) (Buchanan and Stubblebine, 1962).

8 In the game theory literature, the term ‘‘common knowledge’’ refers to an event that everyone knows about, everyone knows that everyone knows about it,
and so on Aumann (1976) and Milgrom (1981). For instance, the knowledge that green traffic light means that the drivers may pass through the intersection
should be common knowledge between the drivers in a society otherwise they cannot make any decision in a distributed manner regarding how to pass an
intersection (Fagin et al., 1995).

9 According to McKelvey and Palfrey (1995), the term ‘‘quantal’’ is borrowed from the statistical literature, where in quantal choice theory the players are
rational while only relying on noisy estimates of costs and payoffs.

10 They call this learning-by-doing; however, they not study the convergence aspects of such models in repeated games. Subsequent studies have used this
idea to propose learning dynamics in repeated games, e.g., (Mookherjee and Sopher, 1997).

11 This follows from the so-called Folk Theorem, which specifies that every feasible and individually-rational action profile of a static game is achievable as an
equilibrium of its corresponding repeated game (Friedman, 1971; Mertens, 1986; Aumann and Shapley, 1994; Rubinstein, 1994).

12 In repeated routing games, the drivers select their path on each iteration based on what they have observed so far in the game. The iterations can be dubbed
into days, which motivates a setup in which a fixed group of drivers compete, on a daily basis, for the resources offered by the transportation network.
Alternatively, repeated routing games can also be considered as an efficient methods for extracting a Wardop equilibrium using distributed dynamics.
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routing games are in close connection with evolutionary game theory (Weibull, 1997; Sandholm, 2001; Sandholm, 2012;
Friedman, 1991), in which users adopt simple update rules motivated by biological systems and evolutionary observations,
e.g., the users meet with a given probability with other users and replicate their behaviour if it results in a better utility. For
instance, the authors in Fischer and Vöcking (2004) introduced an ordinary differential equation for the evolution of the flows
(motivated by population dynamics in evolutionary game theory) and studied its convergence. A wide range of dynamics fre-
quently used in evolutionary game theory is surveyed in Hofbauer and Sigmund (2003). Other day-to-day traffic flow assign-
ment models have also been proposed and studied extensively. Examples of these dynamics are the simplex gravity flow
dynamics (Smith, 1983), proportional-switch adjustment (Smith, 1984; Smith and Wisten, 1995), network tâtonnement process
(Friesz et al., 1994), and projected dynamical system (Zhang and Nagurney, 1996). In Yang and Zhang (2009), it was shown that
these dynamics are a subset of rational behaviour adjustment processes, which implies that stationarity of link flows is equiv-
alent to Wardrop equilibrium. Link-based day-to-day traffic dynamics were subsequently introduced in Guo et al. (2015) and He
et al. (2010). To the best of our knowledge, none of the mentioned studies propose a piece-wise constant scheme for setting
congestion taxes in repeated routing games to achieve a socially optimal flow.

In the transportation literature, when the demand and/or the cost functions are unknown, trial-and-error methods have
been used for setting the congestion charges (Yang et al., 2010; Yang et al., 2004; Zhao and Kockelman, 2006; Wang and
Yang, 2012; Zhou et al., 2015; Han and Yang, 2009). For instance, a trial-and-error implementation of marginal-cost pricing
on road networks when the demand functions are unknown was introduced in Yang et al. (2004). An iterative two-stage
approach with an adaptive step size to update the link tolls based on the observed link flows and given flow restraint levels
was developed in Yang et al. (2010) to find effective link tolls that reduce flows to below a desirable target level. A modified
bisection method for the trial-and-error implementation of tradable credit scheme (to achieve a revenue-neutral congestion
pricing system) was proposed in Wang and Yang (2012). A combination of trial-and-error congestion pricing schemes was
studied in Zhou et al. (2015) to both consider the minimization of the total system cost and address the capacity constraints.
Although extremely powerful in setting and adapting the congestion taxes with minimal knowledge of the demand and
based on recent changes in the transportation network, these studies do not consider the day-to-day traffic assignment
aspect of the problem.

1.3. Contributions

In this paper, we consider a repeated routing game in which a group of drivers uses the transportation network on a daily
basis. We specifically follow two widely-recognized discrete-time dynamics, namely, the multiplicative update rule
(Kleinberg et al., 2009; Cominetti et al., 2010) and the discretized replicator dynamics (Fischer and Vöcking, 2004;
Cominetti et al., 2010), for updating the flows on various paths. We assume that the central planner sets the congestion taxes
for wide windows of iterations in advance and announce the taxes publicly for those days. This would amount to
piecewise-constant congestion taxes as the tolls stay constant for a number of days (e.g., a week, a month). Fig. 1 shows
an illustrative example of such piecewise-constant congestion taxes when the congestion taxes gets updated on a weekly
basis. Our interest in this scheme is motivated by the facts that the drivers (i) dislike fast-changing prices (as it is cumber-
some to be updated with the latest information to make educated decisions) and (ii) want prior knowledge of the prices (so
that they can make informed decisions prior to the trip). The proposed congestion taxes are calculated using marginal con-
gestion prices based on the flow of the vehicles on each road prior to the beginning of the taxing window (and, therefore, the
tolls are not really marginal congestion prices since they do not reflect the actual flow of cars). Firstly, we show that the
introduced dynamics (for the repeated routing game) are very similar to each other and, therefore, we can analyze both
of them together. Then, we prove that, for the proposed piecewise-constant congestion taxes, both dynamics converge to
a socially optimal decision if their step sizes is set to be of the order of 1=k for iteration k. Unfortunately, the shrinking step
size renders the algorithms impractical for the cases where the parameters of the routing game (e.g., the demands) vary over
time since the proposed dynamics cannot adapt fast enough, especially, after a long time, because the step size becomes very
small. Following this observation, we propose using a constant step size. Doing so, we realize that we can only converge to a
Fig. 1. An illustrative example of the piecewise-constant congestion taxing policy.
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neighborhood of the socially optimal flow, with its size being proportional to the selected step size. This is an interesting
trade-off because so long as the step size is large the algorithm can adapt rapidly to the changes in the routing game; how-
ever, the solution can potentially be far from the socially optimal flow. Although other dynamics have been introduced in
Camerer et al. (2002) to capture specific behaviours in experimental data, we prefer using the mentioned dynamics because
of three main reasons. Firstly, the proposed dynamics, specifically, the multiplicative update rule, have been proved very suc-
cessful for predicting people’s behaviour when playing various games (Mookherjee and Sopher, 1997). Secondly, the multi-
plicative update rule and replicator dynamics are, respectively, rooted in the logit-equilibria (from quantal response
equilibrium theory) and biological traits in nature, which have been repeatedly tested on various theoretical and experimen-
tal setups with successful results and observations over the past. Thirdly, the proposed dynamics are simple enough to allow
us to achieve meaningful theoretical results without overly-technical and cumbersome proofs. However, as an avenue for
future research, we certainly suggest investigating also richer set of dynamics, such as the one introduced in Camerer
et al. (2002).

1.4. Organization

The rest of the paper is organized as follows. In Section 2, we introduce our notations for routing game and review some
results in this area. We present our results in the repeated routing game in Section 3. Numerical examples are presented in
Section 4. Finally, we finish the paper with the conclusions and avenues for future research in Section 5.

2. Routing game

In what follows, we use notations R and N to denote the sets of real and integer numbers, respectively. We also define
RPð>Þa ¼ fx 2 Rjx P ð>Þag for any a 2 R. Furthermore, let sKt ¼ f1; . . . ;Kg for any K 2 N.

We model the transportation network with a directed graph G ¼ ðV; EÞ in which V denotes the nodes in the network (e.g.,
intersections) and E#V � V denotes the edges in the network (e.g., roads). We assume that the graph can admit parallel
edges. We are also provided with a set of source–destination nodes fðsk; dkÞgk2sKt;K 2 N, where each pair ðsk; dkÞ; k 2 sKt,
should transfer a total flow of Fk 2 R>0. The assumption that Fk – 0 is without loss of generality as, otherwise, we can remove
the source–destination nodes with zero flow from the problem without changing the underlying routing game. Let Pk denote
the set of all directed paths that connect the source sk to destination dk for any k 2 sKt, where a directed path from node sk to
node dk is an ordered sequence of edges ððij; ijþ1ÞÞnj¼1 2 E

n such that i1 ¼ sk and inþ1 ¼ dk. Moreover, let us define the set of all
paths as P ¼ [k2sKtPk.

Example 1 (Transporation Network). Let us consider the graph G ¼ ðV; EÞ in Fig. 2, where the solid black arrows show the
edges in the transportation network. We have K ¼ 3 source–destination nodes ðs1; t1Þ ¼ ð0;1Þ; ðs2; t2Þ ¼ ð7;3Þ, and
ðs3; t3Þ ¼ ð0;8Þ. The corresponding paths for these source–destination nodes are
13 For
14 We

corresp
P1 ¼ ð0;1Þð Þ; ð0;4Þ; ð4;5Þ; ð5;1Þð Þ; ð0;4Þ; ð4;6Þ; ð6;1Þð Þf g;
P2 ¼ ð7;2Þ; ð2;3Þð Þ; ð7;2Þ; ð2;4Þ; ð4;5Þ; ð5;3Þð Þ; ð7;2Þ; ð2;4Þ; ð4;6Þ; ð6;3Þð Þf g;
P3 ¼ ð0;1Þ; ð1;3Þ; ð3;8Þð Þ; ð0;4Þ; ð4;5Þ; ð5;3Þ; ð3;8Þð Þ; ð0;4Þ; ð4;6Þ; ð6;3Þ; ð3;8Þð Þ; ð0;4Þ; ð4;5Þ; ð5;1Þ; ð1;3Þ; ð3;8Þð Þ;f

ð0;4Þ; ð4;6Þ; ð6;1Þ; ð1;3Þ; ð3;8Þð Þg:
In Fig. 2, each source–destination pair is portrayed in a separate color.13 Furthermore, the set of paths for each source–
destination pair is illustrated with dashed color lines. h

We use the notation f p 2 RP0 to denote the flow of vehicles on a path p 2 P. In addition, we may define the aggregate flow

vector as f ¼ ðf pÞp2P 2 RjPj. A flow vector is called feasible if
P

p2Pk
f p ¼ Fk for all k 2 sKt. Let us denote the set of all such fea-

sible flows with FððFkÞk2sKtÞ. When the source–destination flows ðFkÞk2sKt can be deduced from the context or are irrelevant to

the discussion, with slight abuse of notation, we shorten the notation to F . For any aggregate vector of path flows ðf pÞp2P , we

can define edge flows14 /e ¼
P

p2P:e2pf p 2 RP0 for all e 2 E. We make the following standing assumption.

Assumption 1. FððFkÞk2sKtÞ – £.

A necessary and sufficient condition for guaranteeing the satisfaction of Assumption 1 is to ensure that Pk – £ for all
k 2 sKt.
interpretation of color in ‘Fig. 2’, the reader is referred to the web version of this article.
use the aggregate vector of edge flows / ¼ ð/Þe2E and the aggregate vector of path flows f ¼ ðf pÞp2P interchangeably as there is a one-to-one

ondence between them (i.e., given one, we can determine the other one uniquely).



Fig. 2. An example of a transportation network.
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A vehicle that travels along the edge e 2 E observes a cost (e.g., latency) of ~‘eð/eÞ with a given mapping ~‘e : RP0 ! RP0.
Hence, a vehicle that uses the path p 2 P observes a total cost of ‘pðf Þ ¼

P
e2p

~‘eð/eÞ. Notice that we use ~‘e and ‘p for, respec-
tively, denoting the cost of using the edge e 2 E and the path p 2 P.

Example 2 (Bureau of Public Roads’s Edge Latency Functions (Singh and Dowling, 2002)). A widely used model for the edge cost
functions is the Bureau of Public Roads model for the delay on each edge
15 Not
~‘eð/eÞ ¼
de

vmax
e

1þ 0:15
/e

ce

� �4
" #

;

where de 2 RP0 is length of the road, vmax
e 2 RP0 is the speed limit (e.g., 50km=h in most of the inner-city Stockholm), and ce

is the capacity of the road (e.g., approximately 2000 vehicles per hour multiplied by the number of lanes (Roess and
McShane, 1987)). h

In this formulation, each player is an infinitesimal amount of flow that tries to minimize its cost by selecting its path.
Now, we define the Wardrop equilibrium for the introduced routing game.

Definition 1 (Wardrop Equilibrium). An aggregate vector of path flows f ¼ ðf pÞp2P is a Wardrop equilibrium for the routing
game if, for all k 2 sKt; f p > 0 for a path p 2 Pk implies that ‘pðf Þ 6 ‘p0 ðf Þ for all p0 2 Pk.

This definition implies that for each source–destination pair ðsk; dkÞ; k 2 sKt, all the paths with a nonzero flow (i.e., the
utilized paths) have equal latencies and the rest (i.e., the paths with a zero flow) have a larger (or equal) latency.
Throughout this paper, we make the following assumptions.

Assumption 2. For each e 2 E, the mapping ~‘e : RP0 ! RP0 is (i) twice continuously differentiable, (ii) convex, and (iii)
non-decreasing.
Theorem 1 (Wardrop Equilibrium (Beckmann et al., 1956; Roughgarden, 2007)). The path flows f � ¼ ðf �pÞp2P , with their corre-

sponding edge flows /� ¼ ð/�eÞe2E , constitute a Wardrop equilibrium if and only if
ðf �;/�Þ 2 argmin
ðf ;/Þ2RjPj

P0
�R
jEj
P0

X
e2E

Z /e

0

~‘eðnÞdn;

s:t: /e ¼
X

p2P:e2p

f p;

Fk ¼
X
p2P

f p:
Therefore, the problem of finding a Nash equilibrium boils down to solving a convex optimization15 problem because,
under Assumption 2 (i)–(ii), the routing game is a potential game (i.e., it admits a potential function whose minimizers are
the equilibria of the game).

We can now define the social cost function
Cðf Þ ¼
X
p2P

f p‘pðf Þ ¼
X
e2E

/e
~‘eð/eÞ;
where the second equality can be proved following simple algebraic manipulations (Roughgarden, 2007).
ice that Assumption 2 (iii) guarantees that the cost function of the optimization problem in Theorem 1 is indeed convex.
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Definition 2 (Socially Optimal Flow). An aggregate vector of path flows f ¼ ðf pÞp2P is a socially optimal flow for the routing
game if f 2 arg minf 02FCðf 0Þ.

It is a widely-known fact that the Wardrop equilibria can be inefficient (i.e., the social cost of the Wardrop equilibrium is
larger than the social cost of a socially optimal flow) (Roughgarden and Tardos, 2002). Due to this, there have been several
studies in reducing the inefficiency gap (Roughgarden, 2007). In the remainder of this section, we will discuss the effect of
imposing tolls on the edges of the graph G to reduce the inefficiency of the Wardrop equilibria.

Let us assume that a driver must pay a toll ~seð/eÞ, with ~se : RP0 ! RP0, for using the edge e 2 E, where (as stated earlier)
/e ¼

P
p2P:e2pf p is the flow on edge e 2 E. Therefore, a vehicle that is using path p 2 Pk endures a total cost of ‘pðf Þ þ spðf Þ,

where spðf Þ is total amount of money that this vehicle must pay for using path p and can be calculated as
spðf Þ ¼

P
e2p

~seð/eÞ. Hence, the definition of the equilibrium should be slightly modified to account for the tolls.

Definition 3 (Wardrop Equilibrium with Tolls). An aggregate vector of path flows f ¼ ðf pÞp2P is a Wardrop equilibrium for the
routing game with tolls if, for all k 2 sKt; f p > 0 for a path p 2 Pk implies that ‘pðf Þ þ spðf Þ 6 ‘p0 ðf Þ þ sp0 ðf Þ for all p0 2 Pk.

In Pigou (1932), Pigou suggested marginal cost taxes
~seð/eÞ ¼ /e
d~‘eð/eÞ

d/e
; ð1Þ
as a powerful way for reducing the inherent inefficiency of the equilibria in routing games. These tolls are called marginal
cost taxes since they correspond to the marginal increase in cost caused by adding one user to the edge d~‘eð/eÞ=d/e multi-
plied by the amount of the traffic that suffers from this increase /e. The following theorem shows the effectiveness of these
tolls.

Theorem 2 (Beckmann et al., 1956). Let us impose the marginal cost taxes in (1) for all e 2 E. Then, a flow f is a Wardrop
equilibrium for the routing game with tolls if and only if it is a socially optimal flow of the routing game.

Although extremely effective, it is difficult to implement these taxes since they are flow dependent (i.e., the drivers do not
know the actual value of tolls prior to using the road and, hence, the might not be able to make an informed decision). To
remove this dependency, one can use the following result.

Theorem 3 (Engelson and Lindberg, 2006). Let f � be a socially optimal flow. Let us impose the constant tax
~se ¼ /e
d~‘eð/eÞ

d/e

" #
/e¼
P

p2P:e2p
f �p

; 8e 2 E:
Then, the flow f � is a Wardrop equilibrium for the routing game with tolls.
Although much more convenient (since the tolls are constant), this scheme has two main problems. First, the tolls are a

function of the socially optimal solution that may not be available a priori. Secondly, there might be other Wardrop equilib-
riums associated with this equilibrium that are inefficient. Hence, it would be advantageous if we could devise an online
method for setting the tolls adaptively so as to recover a socially optimal flow; however, we would like the scheme to result
in piecewise-constant taxes over relatively large periods of time (see Fig. 1). This way, we can guarantee that the drivers have
enough time to (re)calculate their preferred route and make an informed decision.

3. Repeated routing game

Here, we assume that the routing game is played repeatedly on each day n 2 N for an infinite horizon. On each day, the
vehicles select their preferred path, which generates the flows f ½n� ¼ ðf p½n�Þp2P . Then, they observe the cost associated with

each path, i.e., the actual travel cost and the imposed tolls, and use this information, accompanied with their (finite) memory,
to select their path on the subsequent day(s). Here, we consider two widely-known update rules, namely, multiplicative
update rule and discretized replicator dynamics.

The multiplicative update rule is a no-regret learning strategy (see (Kleinberg et al., 2009) for more information on
no-regret strategies), which is very common in repeated games (Littlestone and Warmuth, 1994; Freund and Schapire,
1999). In this strategy, the agents select their actions with a probability distribution inversely proportional to the exponen-
tial of the average cost that they have observed so far. Considering that there is a continuum of players in a repeated routing
game, this amounts to dividing the players into various paths with portions inversely proportional to the exponential of the
average cost of the paths. This results in Algorithm 1. Steps 4–5 in Algorithm 1 show that, for each source–destination pair,
the total flow is split between various paths according to the accumulated costs (the weighted sum of the latencies and the
congestion charges over the horizon). The division is so that less cars commute in roads that have high costs (as drivers tend
to avoid congested roads or expensive ones).
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Algorithm 1. Multiplicative update rule.

Require: f�½n�gn2N and q1;q2 2 R>0

1: Initialize wp½1� ¼ 1;8p 2 Pk;8k 2 sKt

2: Initialize ~se½n0� ¼ 0;8e 2 E;8n0 2 sDt

3: for n ¼ 1;2; . . . do
4: Calculate the flows
16 In Gall
they have
f p½n� ¼ Fk
wp½n�P

p02Pk
wp0 ½n�

;8p 2 Pk;8k 2 sKt
5: Update the weights
wp½nþ 1� ¼ wp½n� exp � �½n�
q1 þ q2

X
e2p

~‘eðf ½n�Þ þ ~se½n�
� � !
6: if n � 0ðmodDÞ then
7: Set the tolls for the next D days
~se½n0 � ¼ /e
d~‘eð/eÞ

d/e

" #
/e¼
P

p2P:e2p
f p ½n�

; 8e 2 E;8n0 2 N : n0 � n 2 sDt
8: end if
9: end for
Remark 1. Notice that, in the multiplicative update rule in Algorithm 1, for each driver to calculate the evolution of the
weights ðwp½n�Þp2P , she needs to have access the measurements of the costs (not necessarily the actual cost functions) at each
iteration over all the available paths. Evidently, the driver can directly measure the cost of the path that she has chosen in
that iteration. We assume the drivers can measure the costs of the alternative paths as well. This can be achieved by broad-
casting the measurements from a central node (e.g., a traffic forecast unit in a radio station). In support of this assumption,
experimental studies show that players sometimes notice and consider the costs and payoffs of the actions that they have
not selected (Camerer et al., 2002), even if they are not directly fed the information.16 An alternative approach could be to
assume that drivers only update the average cost of the paths that they have travelled. This may, however, result in asymmetric
update rules that are more difficult to analyze and slower to converge.

Through out the rest of the paper, we make the following assumption regarding the parameters of Algorithm 1.

Assumption 3. Parameters q1;q2 2 R>0 are selected so that ‘pðf ½n�Þ 6 q1 and sp½n� 6 q2 for all p 2 P and all n 2 N.
Note that finite constants q1 and q2 can always be found when dealing with smooth edge cost functions and

upper-bounded flows. In the presented numerical algorithms, we use these constants to scale down the adjustments to
the traffic flows, due to the costs of the paths in each iteration, to avoid sudden jerks in the flows. In the reminder of this
section, we prove that the multiplicative update rule in Algorithm 1 converges to a socially optimal flow. To do so, first,
we need to prove the following lemma.

Lemma 1. For Algorithm 1, we have
f p½nþ 1� ¼ f p½n� þ
�½n�

q1 þ q2
f p½n�

X
p02Pk

f p0 ½n�
Fk

‘p0 ðf ½n�Þ þ sp0 ½n�
� � !

� ‘pðf ½n�Þ þ sp½n�
� �" #

þOð�½n�2Þ:
Proof. See Appendix A. h

The replicator equation is a deterministic monotone nonlinear dynamics which is commonly used in the evolutionary game
theory (Fischer and Vöcking, 2004). The replicator dynamics is motivated by case where the agents randomly switch their
actions (i.e., path selections) if the other agents have a better utility than them. Once discretized, this update rule results in
Algorithm 2. Intuitively, Step 4 in Algorithm 2 reduces the flow of cars on paths that have a higher cost than the average cost
(of all the paths that connect a source–destination pair) and increases the flow on paths that have a lower cost than the average.
istel (1990), the author presents an experiments with pigeons in which the animals account for the forgone payoffs (i.e., the payoff of the options that
not tried) if the information is provided. Moreover, they use ‘‘probability matching’’ to account for these forgone payoffs if the information is missing.
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Following Lemma 1, we can easily see that discretized replicator dynamics is very similar to the multiplicative update
dynamics (i.e., the discretized replicator dynamics is the linearized version of the multiplicative update rule).

Algorithm 2. Discretized replicator dynamics.

Require: f�½n�gn2N and q1; q2 2 R>0

1: Initialize f p½1� ¼ Fk=jPkj; 8p 2 Pk; 8k 2 sKt

2: Initialize ~se½n0� ¼ 0; 8e 2 E; 8n0 2 sDt

3: for n ¼ 1;2; . . . do
4: Update the flows as

X f 0 ½n�X� � ! X� �" #

f p ½nþ 1� ¼ f p½n� þ

�½n�
q1 þ q2

f p½n�
p02Pk

p

Fk e2p0

~‘eðf ½n�Þ þ ~se½n� �
e2p

~‘eðf ½n�Þ þ ~se½n�
5: if n � 0 ðmodDÞ then
6: Set the tolls for the next D days
~se½n0 � ¼ /e
d~‘eð/eÞ

d/e

" #
/e¼
P

p2P:e2p
f p ½n�

; 8e 2 E;8n0 2 N : n0 � n 2 sDt
7: end if
8: end for

To present the rest of the results, let us, for each p 2 P, define the mapping
gp : R
jPj
P0 ! R

f #
X
e2p

/e
d~‘eð/eÞ

d/e

" #
/e¼
P

p02P:e2p0
f p0

:

Evidently, the imposed piecewise-constant tolls in Algorithms 1 and 2 can now be calculated as sp½n� ¼ gpðf ½n� Dn�Þ,
where Dn ¼ n� Dbn=Dc.

Lemma 2. Let us select the step size sequence f�½n�gn2N either as

� �½n� ¼ a=ðnþ bÞ for some a; b 2 R>0,
� �½n� ¼ � 2 R>0,

for all n 2 N. Then, for both Algorithms 1 and 2, we have
f p½nþ 1� ¼ f p½n� þ
�½n�

q1 þ q2
f p½n�

X
p02Pk

f p0 ½n�
Fk

‘p0 ðf ½n�Þ þ gp0 ðf ½n�Þ
� � !

� ‘pðf ½n�Þ þ gpðf ½n�Þ
� �" #

þOð�½n�2Þ:
Proof. See Appendix B. h

This lemma shows that the time-varying delay for setting the tolls is not important so long as it is bounded (i.e., the delay does
not change the update rule significantly). Before stating the main result of this paper, we prove the following simple lemma.

Lemma 3. For all p 2 P, the mappings ‘pð�Þ and gpð�Þ are Lipschitz continuous over F .
Proof. We only present the proof for ‘pð�Þ as the proof for gpð�Þ follows the same logic. First note that, for any f ; f 0 2 F , we

may define the mapping p : R! R as pðxÞ ¼ ‘pðxf þ ð1�xÞf 0Þ for all x 2 R. Mean value theorem (Rudin, 1976) shows that
there exists ~x 2 ½0;1� such that�
pð1Þ � pð0Þ ¼ d
dx

pðxÞ
���
x¼ ~x

;

and as a result
‘pðf Þ � ‘pðf 0Þ ¼ pð1Þ � pð0Þ ¼ d
dx

pðxÞ
����
x¼ ~x
¼ @‘pð~f Þ

@~f

" #>
ðf � f 0Þ; ð2Þ
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where ~f ¼ ~xf þ ð1� ~xÞ f 0 2 F (since F is a convex set and ~x 2 ½0;1�). Therefore, using (2) and the Cauchy–Schwarz inequal-
ity (Rudin, 1976), we get
j‘pðf 0Þ � ‘pðf Þj 6
@‘pð~f Þ
@~f

" #>
ðf � f 0Þ

�����
����� 6 @‘pð~f Þ

@~f

					
					

2

kf � f 0k2 6 max
�f2F

@‘pð�f Þ
@�f

					
					

2

" #
kf � f 0k2;
where the Lipschitz constant is bounded because F is compact and ‘pð�Þ is continuously differentiable (see Assumption 2). h

Now, we are ready to present the main result of the paper.

Theorem 4. Let us select �½n� ¼ a=ðnþ bÞ for some a; b 2 R>0 and for all n 2 N, and define S ¼ arg minf2FCðf Þ. Then, for both
Algorithms 1 and 2, we get
lim
n!1

distðS; ðf p½n�Þp2PÞ ¼ 0:
Proof. Let us define the sequence ft½n�gn2N such that t½0� ¼ 0 and t½nþ 1� � t½n� ¼ �½n� for all n 2 N. For all t 2 RP0, we may
define
�f pðtÞ ¼ f p½n� þ ðf p½nþ 1� � f p½n�Þ
t � t½n�

t½nþ 1� � t½n� :
This is a first-order interpolation of the discrete-time flow sequence ðf p½n�Þn2N for all p 2 P. Moreover, for all t 2 RPs, we

may define ~f s
pðtÞ as the unique solution of the ordinary differential equation
d
dt

~f s
pðtÞ ¼

1
q1 þ q2

~f s
pðtÞ

X
p02Pk

~f s
p0 ðtÞ
Fk

‘p0 ð~f sðtÞÞ þ gp0 ð~f sðtÞÞ
� � !

� ‘pð~f sðtÞÞ þ gpð~f sðtÞÞ
� �" #

; ~f sðsÞ ¼ �f ðsÞ; ð3Þ
where ~f sðtÞ ¼ ~f s
pðtÞ

� �
p2P

and �f ðtÞ ¼ ð�f pðtÞÞp2P . Note that Lemma 3 implies that the mapping on the right-hand side of (3) is

Lipschitz continuous. Now, combining the results of Lemma 2 in this paper and Lemma 1 in Borkar (2008, Ch. 2, p. 12), specif-
ically, from the third extension introduced in Section 2.2 of Borkar (2008, Ch. 2, p. 17), we can see that
lim
s!1

lim
t2½s;sþT�

k~f sðtÞ � �f ðtÞk ¼ 0; 8T 2 R>0:
Evidently, the set of socially optimal solutions S is an invariant set of the ordinary differential equations in (3). This holds

because if ~f s
pðtÞ 2 S, we get
‘pð~f sðtÞÞ þ gpð~f sðtÞÞ ¼
X

p02Pk

~f s
p0 ðtÞ
Fk

‘p0 ð~f sðtÞÞ þ gp0 ð~f sðtÞÞ
� �

; 8p 2 P:
To show the next step, first, we should prove that, for any k 2 sKt, we have ~f s
pðtÞ=Fk P 0 for each p 2 Pk andP

p2Pk

~f s
pðtÞ=Fk ¼ 1. The first property that ~f s

pðtÞ=Fk P 0 follows directly from the ordinary differential equation in (3). For

the second property note that by definition of the initial point, we have
P

p2Pk

~f s
pðsÞ=Fk ¼ 1; see Algorithms 1 and 2 in con-

junction with the definition of the interpolation for constructing �f ðtÞ. Now, we can easily see that
d
dt

X
p2Pk

1
Fk

~f s
pðtÞ

" #
¼
X
p2Pk

1
Fk

d
dt

~f s
pðtÞ ¼ 0; 8t 2 RPs;
and, as a result,
P

p2Pk

~f s
pðtÞ Fk ¼

P
p2Pk

~f s
pðsÞ

. .
Fk ¼ 1 for all t 2 RPs. Using this property of flows, we can prove that
d
dt

Cð ~f s
pðtÞÞ ¼

X
p2P

@Cðf Þ
@f p

�����
f¼ð~f spðtÞÞp2P

d
dt

~f s
pðtÞ

¼ 1
q1 þ q2

X
k2sKt

X
p2Pk

‘pð~f sðtÞÞ þ gpð~f sðtÞÞ
� �

~f s
pðtÞ

�
X

p02Pk

~f s
p0 ðtÞ
Fk

‘p0 ð~f sðtÞÞ þ gp0 ð~f sðtÞÞ
� � !

� ‘pð~f sðtÞÞ þ gpð~f sðtÞÞ
� �" #

¼ 1
q1 þ q2

X
k2sKt

Fk

X
p02Pk

~f s
p0 ðtÞ
Fk

‘p0 ð~f sðtÞÞ þ gp0 ð~f sðtÞÞ
� � !2

�
X
p2P

~f s
pðtÞ
Fk

‘pð~f sðtÞÞ þ gpð~f sðtÞÞ
� �2

2
4

3
5 6 0; ð4Þ
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where the last inequality follows from Jensen’s inequality (when using the fact that the mapping x # x2 is a convex function).

Because the mapping x # x2 is strictly convex, the equality in (4) holds if and only if ‘p00 ð~f sðtÞÞ þ gp00 ð~f sðtÞÞ ¼ ‘p0 ð~f sðtÞÞþ
gp0 ð~f sðtÞÞ for any two p0; p00 2 P such that ~f s

p0 ðtÞ;~f s
p00 ðtÞ – 0. This is the definition of S. Therefore, the equality in (4) holds if

and only if ~f sðtÞ 2 S. By defining the Lyapunov function in Corollary 3 in Borkar (2008, Ch. 2, p. 15) as Vðf Þ ¼
Cðf Þ �minf2FCðf Þ, we can see that fðf p½n�Þp2Pgn2N

converges to an internally chain transitive invariant set contained in S.

This concludes the proof. h

Unfortunately, the shrinking step sizes in Theorem 4 renders the algorithms impractical for the cases where the param-
eters of the routing game (e.g., the demands over the source–destination nodes) are time varying since the algorithm cannot
adapt itself fast enough (especially, after many steps because the step size is very small). This observation motivates using a
constant step size, however, the price for such a selection is that we can only converge to a neighborhood of the socially opti-
mal flow.

Theorem 5. Let us select �½n� ¼ � 2 R>0 for all n 2 N and define S ¼ arg minf2FCðf Þ. Then, for both Algorithms 1 and 2, we get
lim
n!1

distðS; ðf p½n�Þp2PÞ ¼ Oð�Þ:
Proof. The proof follows the same line of reasoning as in the proof of Theorem 4; however, it builds upon using Lemma 1 and
Theorem 3 of Borkar (2008, Ch. 9, pp. 103–114). h

As long as the step size � is large enough, the algorithm can adapt rapidly to the changes in the parameters of the routing
game; however, the solution can potentially be far from the socially optimal flow. By reducing the step size, we can achieve a
better solution (in terms of the social cost function) but the algorithm, in such case, would respond slower to the changes.

4. Numerical results

In this section, we illustrate the results on two numerical examples. The first example is based on a nonlinear version of
Pigou’s routing game. The second example presents a general transportation network with Bureau of Public Roads’s edge
latency functions.

4.1. Nonlinear Pigou’s example

In this subsection, we study a nonlinear variant of Pigou’s famous example in routing game literature (Roughgarden,
2007). Let us consider the transportation network portrayed by the directed graph G ¼ ðV; EÞ in Fig. 3 for some d 2 R>1.
This transportation network can be seen as an example of a network of two parallel highways, where one highway (corre-
sponding to e2) is older with fewer lanes, however, the other highway (corresponding to e1) has several lanes (and, hence,
always in free flow mode). Let us assume that we want to route a total of F1 ¼ 1000 vehicle=h for the only source–destination
pair ðs1; t1Þ ¼ ð0;1Þ. This example is of special interest in the routing game literature as it can result in an arbitrarily large
price of anarchy.

Proposition 1 (The Price of Anarchy of the Nonlinear Pigou’s Example). We have
Cðf WardropÞ
minf2FCðf Þ ¼

1

1þ 1
dþ1

� �ðdþ1Þ=d
� 1

dþ1

� �1=d ¼ Oðd= lnðdÞÞ:
Proof. The unique Wardrop equilibrium is certainly equal to /e1
¼ 0 and /e2

¼ 1000, which results in Cðf WardropÞ ¼ 1000.
Now, we can calculate the socially optimal flow by solving the optimization problem
Fig. 3. A nonlinear variant of Pigou’s example.
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min
/e1

;/e2
2RP0

/e1
~‘e1 ð/e1

Þ þ /e2
~‘e2 ð/e2

Þ;

/e1
þ /e2

¼ 1000;
which is equivalent to solving
min
06/e2

61

1
1000d /dþ1

e2
þ 1000� /e2

:

Therefore, we can see that the socially optimal flow is equal to /e2
¼ 1000ð1=ðdþ 1ÞÞ1=d and /e1

¼ 1000�
1000ð1=ðdþ 1ÞÞ1=d and, hence,
C f Optimal
� �

¼ 1
1000d 1000

1
dþ 1

� �1=d
 !dþ1

þ 1000� 1000
1

dþ 1

� �1=d

¼ 1000 1þ 1
dþ 1

� �ðdþ1Þ=d

� 1
dþ 1

� �1=d
 !

:

This concludes the proof. h
4.1.1. Convergence
Let us set d ¼ 10 and D ¼ 30. Here, we use Algorithm 1 with step size �½n� ¼ 10=n for all n 2 N and q1 ¼ q2 ¼ 10. We also

initialize the algorithm at flows f ½0� ¼ f ½1� ¼ 500 vehicle=h. Fig. 4(left) and (right), respectively, show the flow of vehicles and
the congestion taxes versus the iterations of multiplicative update rule in Algorithm 1. As we expect, the congestion taxes
stay constant over windows of thirty iterations. To show the convergence of the algorithm, Fig. 5 illustrates the social cost
Fig. 4. The flows of vehicles (left) and the congestion taxes (right) over both roads for the Pigou’s example.
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5. The the social cost function of the flows extracted using the multiplicative update rule versus the iteration number for the Pigou’s example.
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function of the flows extracted using the multiplicative update rule as function of the iteration numbers. Clearly, the social
cost function of the generated flows converges rapidly to that of socially optimal flow.

4.2. Bureau of public roads’s edge latency functions

Let us consider the transportation network portrayed by the directed graph G ¼ ðV; EÞ in Fig. 2. Similar to Example 1, we
assume that there are K ¼ 3 source–destination nodes ðs1; t1Þ ¼ ð0;1Þ; ðs2; t2Þ ¼ ð7;3Þ, and ðs3; t3Þ ¼ ð0;8Þ. We adopt the edge
cost function introduced in Example 2 to model the delay on each edge. In this cost function, for all e 2 E, we set the speed
limit as vmax

e ¼ 70 km=h and set the capacity of the road ce ¼ 2000 vehicle=h (as recommended in Roess and McShane (1987)
for single lane roads). Moreover, the length of each road de; e 2 E, is presented in Table 1. In the reminder of this section, we
use Algorithm 1.

4.2.1. Fixed demand
First, we consider the case where the total flows that need to pass through source–destination nodes are constant and

equal to F1 ¼ 8000 vehicle=h; F2 ¼ 3000 vehicle=h, and F3 ¼ 4000 vehicle=h. We set D ¼ 30, which means that the conges-
tion taxes get updated monthly. Finally, let us use vanishing step sizes �½n� ¼ 1=n for all n 2 N.
Table 1
Length of roads in the transportation network employed for the numerical example in Section 4.2.

e ð3;8Þ ð0;1Þ ð0;4Þ ð5;1Þ ð4;5Þ ð6;1Þ ð5;3Þ ð4;6Þ ð6;3Þ ð2;4Þ ð2;3Þ ð7;2Þ ð1;3Þ

de (km) 40.81 17.22 17.68 52.77 55.15 29.16 12.19 45.14 26.16 25.13 46.47 22.1 25.22
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Fig. 6. The flows of vehicles over various paths for all source–destination pairs for the numerical example with the Bureau of Public Roads’s edge latency
functions.
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Fig. 7. The social cost function of flows f ½n� versus the iteration number n for the numerical example with the Bureau of Public Roads’s edge latency
functions.
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Fig. 6 shows the flows of various paths for all the source–destination pairs. For k ¼ 1, the flows settle very rapidly; how-
ever, for k ¼ 2, 3, the flows adapt much slower. Fig. 7 illustrates the social cost of the flows extracted from Algorithm 1 as a
function of the iteration numbers (solid blue curve) as well as the cost of the socially optimal flow (solid black curve). As we
expect, the social cost of the extracted flows approaches the cost of the socially optimal flow.
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Fig. 8. The congestion taxes over various edges of the transportation network versus the iteration number for the numerical example with the Bureau of
Public Roads’s edge latency functions.

Fig. 9. The delays over the roads in the transportation network at the Wardrop equilibrium of the routing game in the absence of congestion taxes (left) and
in the presence of congestion taxes (right).

Fig. 10. The total flows for various source–destination nodes as a function of time for the numerical example with time-varying demand.



Fig. 11. The flows of vehicles over various paths for all source–destination pairs for the numerical example with time-varying demand.

Fig. 12. The congestion taxes for the numerical example with time-varying demand.

Fig. 13. A measure of the efficiency of the extracted flows f ½n� versus the iteration number n for the numerical example with time-varying demand.
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Fig. 8 illustrates the congestion charges for various edges in the transportation network ~se½n�; e 2 E, versus the iteration
number n. As we expect, the drivers on highly congested roads, e.g., ð0;1Þ, should pay much more to be persuaded to use
less-congested alternatives (that are perhaps longer or less convenient for them).

Fig. 9(left) portrays the delays over the roads in the transportation network at the Wardrop equilibrium of the routing
game in the absence of congestion taxes. In contrast, Fig. 9(right) illustrates the delays over the roads at the Wardrop equi-
librium of the routing game in the presence of congestion taxes. As we expect, with imposing taxes, a portion of the flow (i.e.,
some of the vehicles) switch from highly congested roads, e.g., ð0;1Þ 2 E, to slightly less congested roads, e.g., ð0;4Þ 2 E, at the
expense of taking a longer path which is now desirable because of the high level of congestion taxes over the shorter path.
This behaviour improves the social cost function by 4.6% in such a simple system.

4.2.2. Time-varying demand
Here, let us consider the case where the total flows for various source–destination nodes vary with time as in Fig. 10. In

this case, we use Algorithm 1 with a constant step size �½n� ¼ 5� 10�2 for all n 2 N. Fig. 11 shows the flow of vehicles over
various paths for all the source–destination pairs. Furthermore, Fig. 12 illustrates the congestion taxes versus the iterations
of the algorithm. Clearly, the algorithm updates these congestion taxes in response to the changes in the demand.

Now, allow us to define f �½n� to be the socially optimal flow for demands ðFk½n�Þ3k¼1 in Fig. 10. Fig. 13 illustrates
Cðf ½k�Þ=Cðf �½n�Þ � 1 as a function of the iteration numbers. Evidently, the smaller Cðf ½k�Þ=Cðf �½n�Þ � 1 is, the closer the social
cost of the generated flow is to the cost of the socially optimal flow. This figure clearly show that the algorithm closely fol-
lows the socially optimal flow.

5. Conclusions

We introduced repeated routing game using both multiplicative update rule and discretized replicator dynamics with
vanishing and constant step-size. We devised a rule to construct piecewise-constant congestion taxes to guarantee the con-
vergence of the flows to a socially optimal solution. Using vanishing step sizes, we proved the convergence to the set of
socially optimal flows; however, using constant step sizes, we could only prove the convergence to a neighbourhood of
the socially optimal flows. Future research can focus on devising piecewise-constant congestion charges policies for only
a subset of the edges in the transportation network. We can also focus on the multi-class traffic to understand the influence
of the drivers’ value-of-time.

Appendix A. Proof of Lemma 1

Let us take a closer look at the update rule of the path flow f p½n�; p 2 P, as function of time
f p½nþ 1� ¼ wp½nþ 1�FkP
p02Pk

wp0 ½nþ 1� ¼
wp½n�Fk expð��½n�ð‘pðf ½n�Þ þ sp½n�Þ=ðq1 þ q2ÞÞP

p02Pk
wp0 ½n� expð��½n�ð‘p0 ðf ½n�Þ þ sp0 ½n�Þ=ðq1 þ q2ÞÞ

¼ Fk
wp½n� expð��½n�ð‘pðf ½n�Þ þ sp½n�Þ=ðq1 þ q2ÞÞP

p02Pk
wp0 ½n� expð��½n�ð‘p0 ðf ½n�Þ þ sp0 ½n�Þ=ðq1 þ q2ÞÞ

Fk
P

p002Pk

.
wp00 ½n�

Fk
P

p002Pk

.
wp00 ½n�

¼ Fk
f p½n� expð��½n�ð‘pðf ½n�Þ þ sp½n�Þ=ðq1 þ q2ÞÞP

p02Pk
f p0 ½n� expð��½n�ð‘p0 ðf ½n�Þ þ sp0 ½n�Þ=ðq1 þ q2ÞÞ

;

where sp½n� ¼
P

e2p
~se½n� for all p 2 P. For each p 2 P, we define the function Gn

p : RP0 ! R such that
Gn
pð�Þ ¼ Fk

f p½n� expð��ð‘pðf ½n�Þ þ sp½n�Þ=ðq1 þ q2ÞÞP
p02Pk

f p0 ½n� expð��ð‘p0 ðf ½n�Þ þ sp0 ½n�Þ=ðq1 þ q2ÞÞ
;8� 2 RP0:
Now, noting that Gn
p 2 C

x, we can use the Taylor’s theorem (see Rudin (1976, p. 110)) to get
Gn
pð�Þ ¼ Gn

pð0Þ þ
d
de

Gn
pðeÞ

����
e¼0
�þ 1

2
d2

de2 Gn
pðeÞ

�����
e¼�0
�2 ¼ f p½n� þ

d
de
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pðeÞ

����
e¼0
�þ 1

2
d2

de2 Gn
pðeÞ

�����
e¼�0
�2;
for some �0 2 ½0; ��. Hence, we need to calculate
d
d�

Gn
pð�Þ ¼

d
d�

Fk
f p½n� expð��ð‘pðf ½n�Þ þ sp½n�Þ=ðq1 þ q2ÞÞP

p02Pk
f p0 ½n� expð��ð‘p0 ðf ½n�Þ þ sp0 ½n�Þ=ðq1 þ q2ÞÞ

 !

¼ Fk
gn

pð�ÞP
p02Pk

f p0 ½n� expð��½‘p0 ðf ½n�Þ þ sp0 ½n��=ðq1 þ q2ÞÞ
� �2 ;
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where
gn
pð�Þ ¼ f p½n� exp �� ‘pðf ½n�Þ þ sp½n�

q1 þ q2

� �
� ‘pðf ½n�Þ þ sp½n�

q1 þ q2

� � X
p02Pk
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This implies that
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Furthermore, we have
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where the second inequality follows from
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6 1:
To simplify this expression, we can note that
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We can also calculate
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Finally, using Jensen’s inequality (because
P

p02Pk
f p0 ½n�=Fk ¼ 1 and f p0 ½n�=Fk P 0 for each p0 2 Pk), we get
X
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Therefore, we get
f p½nþ 1� ¼ f p½n� þ
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Appendix B. Proof of Lemma 2

Notice that
gpðf ½nþ 1�Þ ¼ gp ðf p0 ½n�Þp02P þ �½n�ðDf p0 ½n�Þp02P
� �

;

where, using Lemma 1, we have
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with jjp0 ½n�j 6 6supk2sKtFk expð3supn2N�½n�Þ ¼ . 2 RP0. Let us define a mapping hp : RP0 ! R, such that
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:

Again, using Taylor’s theorem (see Rudin (1976, p. 110)), we get
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where - ¼ supp;p02Psupf2F @gpðf Þ=@f p0

��� ���. Evidently, - <1 because of Assumption 2 (i) and the fact that F is compact set.

Therefore, we get
gpðf ½nþ 1�Þ ¼ gpðf ½n�Þ þ np½n��½n�; ðB:1Þ
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where jnp½n�j 6 jPjð2supk2sKtFk þ .�½n�Þ-. This shows that
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XDn�1

t¼0

gpðf ½n� t�Þ � gpðf ½n� t � 1�Þ
�����

�����
6

XDn�1

t¼0

gpðf ½n� t�Þ � gpðf ½n� t � 1�Þ
��� ���

6

XD�1

t¼0

gpðf ½n� t�Þ � gpðf ½n� t � 1�Þ
��� ��� because Dn 6 D;8n 2 N

¼
XD�1

t¼0

np½n� t � 1�
�� ���½n� t � 1� by ðB:1Þ

6 f
XD�1

t¼0

�½n� t � 1�;
where f ¼ jPjð2supk2sKtFk þ .supn2N�½n�Þ-. Using Lemma 1, we have
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where the last equality holds if either �½n� ¼ a=ðnþ bÞ for a; b 2 R>0 or �½n� ¼ e 2 RP0.
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