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Coordinating Vehicle Platoons for Highway
Bottleneck Decongestion and
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Abstract— Truck platooning is a technology that is expected
to become widespread in the coming years. Apart from the
numerous benefits that it brings, its potential effects on the
overall traffic situation need to be studied further, especially at
bottlenecks and ramps. Assuming we can control the platoons
from the infrastructure, they can be used as controlled moving
bottlenecks, actuating control actions on the rest of the traffic,
and potentially improving the throughput of the whole system.
In this work, we use a tandem queueing model with moving
bottlenecks as a prediction model to calculate control actions for
the platoons. We use platoon speeds and formations as control
inputs, and design a control law for throughput improvement of
a highway section with a stationary bottleneck. By postponing
and shaping the inflow to the bottleneck, we are able to avoid
capacity drop, which significantly reduces the total time spent of
all vehicles. We derived the estimated improvement in throughput
that is achieved by applying the proposed control law, and tested
it in a simulation study, with multi-class cell transmission model
with platoons used as the simulation model, finding that the
median delay of all vehicles is reduced by 75.6% compared to
the uncontrolled case. Notably, although they are slowed down
while actuating control actions, platooned vehicles experience less
delay compared to the uncontrolled case, since they avoid going
through congestion at the bottleneck.

Index Terms— Bottleneck decongestion, Lagrangian traffic
control, tandem queueing model, vehicle platooning.

I. INTRODUCTION

W ITH truck platooning progressing towards becoming
a commonplace technology [1], understanding the
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impact it will have on the overall traffic is becoming increas-
ingly important. Apart from its traditional primary purpose of
providing potential fuel savings through air drag reduction [2],
truck platooning is also expected have a positive impact
on traffic efficiency through reducing the headways between
vehicles [3], alleviating the adverse effect trucks have on the
traffic [4]. Although there have been numerous field tests
of truck platooning in real traffic [5], insufficient emphasis
has been put on understanding how these platoons affect the
behaviour of other vehicles on the road; thus the possible
drawbacks of this technology are not yet fully understood [6].

One identified problem pertains to the interaction between
truck platoons and passenger cars close to on- and off-ramps,
and bottlenecks [7]. There is concern that long platoons might
block access to an off-ramp, or from an on-ramp, resulting in
significant disturbances for the traffic. Furthermore, the arrival
of platoons can cause traffic breakdown at a bottleneck,
causing reduction of throughput due to the capacity drop
phenomenon. Recently, there have been efforts to address this
problem in microscopic [8] and macroscopic [9] frameworks.
In this paper, we are focusing on applying a new type of
macroscopic control, using the truck platoons as actuators.

Bottleneck decongestion has long been tackled by classical
traffic control measures, such as ramp metering [10] and
variable speed limits [11]. However, these control methods
require additional equipment to be installed upstream of the
bottleneck, which limits their flexibility, especially for han-
dling non-recurrent bottlenecks, such as work zones, incidents
etc. as it is not reasonable to assume the required equipment
would be available wherever such a bottleneck arises.

With the introduction of connected autonomous vehi-
cles (CAVs) to the highways, new opportunities for sens-
ing [12] and actuation [13] of the traffic are becoming
available. While variable speed limits control benefits from
the introduction of CAVs, its performance is significantly
diminished when the controllable vehicles are only a small
portion of all traffic [14]; thus a different control paradigm is
needed. Lagrangian traffic control, where we use a subset of
vehicles that can be controlled directly from the infrastructure
as actuators, is lately garnering some attention [15], [16].
This approach, with actuator vehicles acting as controlled
moving bottlenecks, can achieve a similar type of regulation
as the classical traffic control, without the need for additional
stationary equipment.

Due to their size and the existence of fleet management sys-
tems, truck platoons are ideal candidates for moving bottleneck
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TABLE I

SUITABILITY OF VARIOUS TRAFFIC MODEL FAMILIES

control. Since they consist of slow-moving vehicles, truck
platoons act as moving bottlenecks with or without external
control, which can be exploited for traffic control. This way,
using platoons as actuators for regulating the traffic flow,
we are able to mitigate the negative effects trucks have on
the traffic, and even improve the overall traffic situation.

To this end, we need a suitable control-oriented prediction
model to use for control design and calculation that is:

1) able to model platoons and moving bottlenecks,
2) able to model the capacity drop phenomenon,
3) conducive to control design, and
4) tractable when predicting over a long horizon.

We give an overview of which commonly used classes of
traffic models fulfil each of these requirements in Table I.
For a summary of state-of-the-art models for mixed-autonomy
traffic, see [17]. Microscopic traffic models offer the highest
level of detail, are able to capture all the complex behaviour,
and allow for a straightforward representation of trucks and
platoons [18], making them good simulation models. However,
the complexity of simulating individual vehicles makes them
untractable and hard to use for control design. First-order PDE
traffic models, such as the Lighthill-Whitham-Richards (LWR)
model, offer a consistent way of introducing moving bottle-
necks [19], but are ill-suited for modelling capacity drop, even
though fast algorithms for solving them exist [20], [21]. Var-
ious extensions of the Cell Transmission Model (CTM) have
been proposed to tackle modelling moving bottlenecks [16]
and capacity drop [22], as well as moving bottleneck con-
trol [16], [23], but require the use of short spatial and temporal
discretization steps to describe the traffic with high resolution,
necessitating a very high number of states and prediction
steps. These models offer exact spatial characterization of
congested areas, but if we can predict the evolution of queue
lengths at stationary and moving bottlenecks, these details
prove unnecessary in control design. Tandem queueing models
like the fluid [9] and point queues [24] focus on queue lengths,
and are very computationally simple as a result. It is also
simple to model capacity drop in this framework, but in their
basic form, these models do not consider moving bottlenecks
which we intend to use as actuators.

Therefore, the main contribution of this work is in extending
the tandem fluid queueing model to represent controlled mov-
ing bottlenecks in a way that is conducive to control design.
Using the proposed prediction model, we design a control law
for bottleneck decongestion using randomly arriving platoons
as actuators, with their speed and formation as control inputs.
We conduct stability analysis of the closed-loop system,
and derive estimates for the achieved improved throughput.

Fig. 1. Schematic representation of the control loop. We use the current
traffic state and state of controllable platoons to calculate the control actions
and improve the traffic situation.

The designed control law is tested in simulations on a road
segment with one on-ramp and one off-ramp upstream of a
bottleneck, and shown to achieve a significant reduction in
total time spent, with the median delay of all vehicles reduced
by 75.6%, compared to the case with no control.

The paper is structured as follows. In Section II, we discuss
the overall control problem and propose a system architecture
for solving it using connected vehicles. Next, in Section III,
we present the simulation and prediction models that will
be used. Then, in Section IV, we use the proposed predic-
tion model to design control laws for improving the road
throughput, and in Section V give a closed-loop stabil-
ity analysis, as well as estimates on achieved throughput.
Section VI describes the simulation set-up and results, and
finally, in Section VII we conclude and discuss the results.

II. LAGRANGIAN TRAFFIC CONTROL SYSTEM

The general problem that we address in this paper is
reduction of Total Time Spent (TTS) of all vehicles on the
considered road segment. Typically, the flow of the whole
road segment is constrained by some bottlenecks’ capacity,
which is further reduced once these bottlenecks get congested
due to capacity drop. Therefore, maximizing the flow through
the most severe bottleneck by decongesting it and keeping
it in free flow will be required for minimizing TTS. More
specifically, we study bottleneck decongestion using randomly
arriving platoons as actuators, with their speed and formation
as control inputs. We consider a group of vehicles, controlled
to travel at the same speed in close proximity, to be a platoon.
A representation of the control loop can be seen in Figure 1.

In this work we focus on a single stationary bottleneck, with
one on-ramp and one off-ramp upstream of its location acting
as disturbances to the traffic flow. Note that such segment
can be used as a building block for a more complex road
network. The traffic state is assumed to be known, and can be
measured and observed using stationary sensors or connected
vehicles. By communicating with platoon p, we may change
its reference speed u p and formation, which in turn affects
the surrounding traffic by limiting the overtaking traffic flow
to qcap

p (the overtaking flow will be reduced if the platoon
splits and drives side by side, instead of taking only one
lane). In general, reducing u p and taking multiple lanes makes
the platoon act as a more severe moving bottleneck, and we
assume that we can control the overtaking flow limit qcap

p in
some range. Therefore, we may use the platoons as controlled
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Fig. 2. Queues corresponding to stationary bottleneck nb, downstream platoon n1, and upstream platoon n2. The overtaking flow of the downstream platoon
qout

1 is limited to one lane, and the overtaking flow of the upstream platoon qout
2 to two lanes of traffic. Both the inflow from the on-ramp and the outflow

to the off-ramp factor in the inflow to the downstream platoon queue qin
1 .

moving bottlenecks to control the inflow to the stationary bot-
tleneck in order to decongest it. Using the proposed prediction
model, which accounts for the effects of the control actions,
we calculate optimal control that minimizes the total time
spent by first restricting the inflow to the stationary bottleneck
as much as possible, until its queue is dissipated, and then
keeping its flow as close as possible to its capacity.

III. MODELS

In this section, we present the traffic models that will be
used for simulation and prediction. The prediction model,
tandem queueing model with moving bottlenecks, will be
used for control design and analysis. The simulation model,
multi-class CTM, is discussed briefly along with how it is
connected to the prediction model. Control actions will be
calculated using the prediction model, and then applied on the
more detailed simulation model.

A. Simulation Model

In order for a traffic model to be suitable for use as a
simulation model for the control problem we study, it needs to
satisfy the first two requirements outlined in Table I. In case
of real-world application, the actual traffic fills the role of
the “simulation” model. Here we choose to use a multi-class
extension of CTM as the simulation model, due to its relative
simplicity and ease of use, while still able to represent the
influence of platoons as moving bottlenecks, and capacity
drop. This model is a variant of the one used in [25] and [23],
extended to handle on- and off-ramps and multiple platoons,
and its full formulation is given in the Appendix.

We assume that the current traffic density profile of the sim-
ulation model ρ(x, t) at current time is known and available
to the prediction model. We further link the prediction model
by either analytically deriving or estimating from data the
following parameters: free flow speed V , minimum enforce-
able platoon speed Umin, stationary bottleneck capacity qcap

b
and discharging flow qdis

b , minimum enforceable overtaking
flow at the moving bottlenecks Qlo, maximum enforceable
overtaking flow at the moving bottleneck that is lower than the
stationary bottleneck capacity Qhi, and average splitting ratio
at the off-ramps Rk . The general road geometry, including the
positions of the stationary bottleneck Xb and of the on- and
off-ramps X r

k , is also assumed to be known.
If the considered simulation model is deterministic with a

constant free flow speed V for all vehicles everywhere on the

road, and the road is in free flow initially, then the only place
where congestion can emerge is at the bottlenecks. Where the
road is in free flow and without on- and off-ramps, the traffic
density profile propagates downstream at speed V , and we
have ρ(x, t+θ) = ρ(x−V θ, t). Therefore, the evolution of
the full traffic state can be described using only the initial
traffic density and the evolution of the queue lengths at the
bottlenecks. We propose a model that exploits this fact in the
following subsection.

B. Queueing Prediction Model

In this work, we study the situation when there is a single
bottleneck at the downstream end of the considered stretch
of highway, and want to predict its outflow based on the
control action we chose for the platoons. Apart from this
stationary bottleneck, platoons themselves can act as moving
bottlenecks, since they will be moving slower than the rest of
the traffic. We propose modelling this highway stretch using a
queuing-based model, with queue length at the stationary bot-
tleneck nb and queue lengths at the platoons n p , p = 1, . . . ,�
as the only states. An example of a traffic situation with its
corresponding queuing representation is shown in Figure 2,
and an illustration of the derivation of the proposed model is
given in Figure 3.

Since this model is used for predicting the evolution of
traffic after sometime t0, we assume that the current traffic
situation is fully known and use it to predict the evolution
of system states. We enumerate the platoons that are on the
considered highway segment at t = t0, p = 1, . . . ,�, and
denote their position at that time x p , with x1 > x2 > . . . > x�.
Without loss of generality, we may set t0 = 0, have t represents
the prediction time shift after t0, and write the current traffic
density profile ρ(x, t0) as just ρ(x).

The evolution of the queue at the bottleneck is given by

ṅb(t) = q in
b (t)−qout

b (t), (1)

where the inflow and the outflow are

q in
b (t) = qu

b (t)+qV
b (t), (2)

qout
b (t) =

�
q in

b (t), q in
b (t) ≤ qcap

b ∧nb(t) = 0,

qdis
b , q in

b (t) > qcap
b ∨nb(t) > 0.

(3)

Typically, due to capacity drop, the discharge rate of the
queue at the bottleneck qdis

b will be lower than its capacity
qcap

b , qdis
b < qcap

b . The first part of the inflow to the queue
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Fig. 3. Illustration of the queueing model. The dotted lines represent free
flow propagation. Platoon trajectories are shown in blue. At t = t �, inflow to
the bottleneck is q in

b (t
�) = Vρ(X �). At t = t �� , we have q in

b (t
��) = q̃out

1 (t ��),
and inflows to the platoons q in

1 (t
��) = q̃out

2 (t ��), and q in
2 (t

��) = Vρ(X ��). Ramp

k will affect q in
2 (t) for

Xb−X r
k

V < t ≤ tu
2 , q in

3 (t) while xu
3 (t) ≥ X r

k and t < tu
3 ,

and q in
b (t) for the rest of time.

at the bottleneck q in
b (t) models the arrival of the platooned

vehicles,

qu
b (t) =

⎧⎨
⎩Vσl , tu

p ≤ t ≤ tu
p+

l p

V
, p = 1, . . . ,�,

0, otherwise,
(4)

travelling at speed u p < V , where tu
p = Xb−x p

u p
is the time at

which platoon p reaches the bottleneck, Xb is the position of
the stationary bottleneck, l p is the length of platoon p, and
σl is the traffic density of the platoon taking a single lane.
The second part models the arrival of background traffic,

qV
b (t) =

⎧⎪⎪⎨
⎪⎪⎩

qout
p (

x p+V t−Xb

V−u p
), max

�
tV
p , tu

p−1

�
≤ t ≤ tu

p,

p = 1, . . . ,�,

Vρ(Xb−V t), otherwise,

travelling at free flow speed V , where tV
p = Xb−x p

V . We assume
that the speed of each platoon u p is constant during the
prediction horizon, and such that there is no platoon merging
prior to reaching the bottleneck, tu

p−1 > tu
p .

Under these assumptions, we define the evolution of the
queue at each of the platoons p = 1, . . . ,� as

ṅ p(t) = V−u p

V

	
q in

p (t)−qout
p (t)



, 0 ≤ t ≤ tu

p,

which is defined until time tu
p , when the platoon reaches the

bottleneck and their queues merge,

nb(t
u
p+) = nb(t

u
p)+n p(t

u
p). (5)

The outflow and inflow are defined as

qout
p (t) =

�
q in

p (t), q in
p (t) ≤ qcap

p (t)∧n p(t) = 0,

qdis
p (t), q in

p (t) > qcap
p (t)∨n p(t) > 0,

q in
p (t) =

⎧⎪⎪⎨
⎪⎪⎩

qout
p+1

�
(V−u p)t−x p+x p+1

V−u p+1

�
, t >

x p−x p+1

V−u p
,

Vρ(x p−(V−u p)t), t ≤ x p−x p+1

V−u p
,

where we assume that the queue dissipates at rate equal to its
capacity qdis

p (t) = qcap
p (t), and allow qcap

p (t) to vary in time
and be used as a control input.

The model can be simplified by adopting a coordinate
transfer τp = x p−Xb+V t

V −u p
, for each platoon, which yields

dn p(t (τp))

dτp
= q in

p (t (τp))−qout
p (t (τp)), tV

p ≤ τp ≤ tu
p

with t = (V−u p)τp+Xb−x p
V . Taking ñ p(τp) = n p(t (τp)),

q̃ in
p (τp) = q in

p (t (τp)), and q̃out
p (τp) = qout

p (t (τp)), we may
write

˙̃n p(t) = q̃ in
p (t)−q̃out

p (t), tV
p ≤ t ≤ tu

p (6)

for each p = 1, . . . ,�. The inflow to the queue at the
bottleneck and at platoons can now be simplified to

qV
b (t) =

�
q̃out

p (t), max
�

tV
p , tu

p−1

�
≤ t ≤ tu

p ,

Vρ(Xb−V t), otherwise,

q̃ in
p (t) =

�
q̃out

p+1(t), tV
p+1 < t < tu

p ,

Vρ(Xb−V t), t ≤ tV
p+1,

and the outflow from the platoon becomes

q̃out
p (t) =

�
q̃ in

p (t), q̃ in
p (t) ≤ q̃cap

p (t)∧ñ p(t) = 0,

q̃cap
p (t), q̃ in

p (t) > q̃cap
p (t)∨ñ p(t) > 0.

(7)

The influence of on- and off-ramps can be added to qV
b (t)

and q̃ in
p (t). Denoting qr

k (t) the inflow from an on-ramp (if
q r

k(t) > 0), or outflow to an off-ramp (if q r
k(t) < 0), we have

qV
b (t) = qV\r

b (t)+



k∈K d
o (t)

q̃ r
k(t),

qV\r
b (t) =

�
q̃out

p (t), max
�

tV
p , tu

p−1

�
≤ t ≤ tu

p,

Vρ(Xb−V t), otherwise,

K d
o (t) =

�
K b

p(t), max
�

tV
p , tu

p−1

�
≤ t ≤ tu

p,

K b
ρ(t), otherwise,

(8)

and for the inflow to the queue at platoons,

q̃ in
p (t) = q̃ in\r

p (t)+



k∈K d
o (t)

q̃ r
k(t),

q̃ in\r
p (t) =

�
q̃out

p+1(t), t > tV
p+1,

Vρ(Xb−V t), t ≤ tV
p+1,

K d
o (t) =

�
K p

p+1(t), t > tV
p+1,

K p
ρ (t), t ≤ tV

p+1.
(9)
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Here, q̃ r
k(t) = q r

k

�
t− Xb−X r

k
V

�
, and K d

o (t) are sets of indices k
of all on- and off-ramps with X r

k < Xb between the bottleneck
or platoon p, and the place where their inflows originate from,

K b
p(t) =

�
k

���xu
p(t) < X r

k ≤ Xb, t ≥ t r
k

�
,

K b
ρ(t) = �

k
��Xb−V t < X r

k ≤ Xb, t ≥ t r
k

�
,

K p
p+1(t) =

�
k

���xu
p+1(t) < X r

k ≤ xu
p(t), t ≥ t r

k

�
,

K p
ρ (t) =

�
k

���Xb−V t < X r
k ≤ xu

p(t), t ≥ t r
k

�
,

where t r
k = Xb−X r

k
V and we define xu

p(t) as

xu
p(t) = u pV t+V x p−u px p

V−u p
.

Note that q r
k(t) will depend on the local traffic conditions

around X r
k at time t . Furthermore, since a portion of the

queue at the platoon will also leave the road via the off-ramp,
we reduce ñ p at the time when the platoon reaches it,

ñ p(t+) = ñ p(t)−nr,k
p (t), xu

p(t) = X r
k, (10)

and the part of the queue ñ p(t) that leaves the road, nr,k
p (t),

depends on the ratio of off-ramp-bound vehicles in it.
In summary, the proposed model consists of �+1 states,

whose evolution is described by (1) and (6). Inflow to the
bottleneck is given by (2), and consists of the background
traffic travelling at free flow speed (8), and the platoons (4).
Outflow from the bottleneck is (3), and there are discontinuous
jumps in this state triggered by the arrival of platoons at the
bottleneck, (5). For each platoon queue, inflow is given by (9),
outflow by (7), and there is a discontinuous jump in the state
when the platoon passes an off-ramp, (10). The model can
be described as a tandem queuing system, with saturation and
hysteresis, time-varying structure and jumps.

C. Validation

Finally, we validate the two used models, multi-class CTM
and the tandem queueing model with moving bottlenecks,
against microscopic traffic simulation done in SUMO, using
an appropriate example scenario. Traffic density profiles in
multi-class CTM and in SUMO (reconstructed according to
vehicle trajectories) are shown in Figure 4. We study a 4 km
stretch of road with a lane drop bottleneck at Xb = 3.75 km,
indicated by the vertical dashed red line. At the beginning of
simulation, dense traffic enters the road, followed by sparser
traffic and two controllable platoons, initially taking one lane.
Once dense traffic reaches the bottleneck, congestion starts
building up. At t = 144 s, both platoons are slowed down and
commanded to take two lanes. This expedites the dissipation
of the congestion at the bottleneck, and the platoons go back
to taking one lane at t = 216 s, allowing the congestion that
built up behind them to dissipate. Both times are indicated by
horizontal dashed red lines.

Finally, in Figure 5 we show the comparison between the
simulated queue length profiles, and the queue length pre-
diction made using the proposed queueing prediction model,
exhibiting similar behaviour. The prediction is made at time

Fig. 4. Traffic density profiles comparison. Warmer colours represent denser
traffic, thick red lines are the trajectories of platoons, and thin black lines are
the trajectories of other individual vehicles.

Fig. 5. Queue lengths comparison. Queue at the stationary bottleneck is
shown in blue, queue at the first platoon in dashed red, and queue at the second
platoon in dotted black.

t = 144 s, using currently available traffic density data from
the multi-class CTM simulation. The queue at the bottleneck
grows at first, and is then dissipated by the platoons’ control
action. The queues at the platoons grow while they take two
lanes, from t = 144 s to t = 216 s, and then decrease once
they return to single lane formation. The congestion behind
the first platoon does not get fully discharged, so it gets
transferred to the queue at the bottleneck around t = 230 s.
The discrepancies between the three queue profiles are mostly
due to the difference in queue length definitions, using traffic
density thresholds in case of multi-class CTM, and speed
thresholds in case of SUMO, as well as due to stochasticity
in lane-changing behaviour in case of the SUMO simulation.

IV. CONTROL DESIGN

Having defined the prediction model for the traffic system,
in this section we will formulate a prediction-based control
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law for improving the throughput. We are looking to maximize
the outflow from the bottleneck, which in case there are no
off-ramps corresponds to minimizing the total travel time. In
case there are off-ramps the total outflow of the mainstream
and of the off-ramps needs to be maximized instead. We first
consider the case when there are no on- or off-ramps and then
extend the control to include on- and off-ramps.

As control inputs, we use the moving bottleneck speed
u p(t), controlled by changing the reference speed of the
platoons, and the overtaking flow limit qcap

p (t), controlled
by changing the formation of the platoons, i.e. how many
lanes they occupy. We are thus able to first help dissipate
the congestion at the stationary bottleneck, by restricting the
flow as much as possible, and then dissipate the congestion in
the wake of the moving bottleneck, by reducing the moving
bottleneck severity while making sure the stationary bottleneck
remains in free flow. The proposed control laws will be
described in the remainder of the section.

A. Platoon-Actuated Not Aware of On- or Off-Ramps

The control objective, maximizing the throughput, i.e., the
outflow qout

b , can be achieved by keeping nb = 0 and
q in

b = qcap
b . Additionally, we require that the queue at the

platoon is already discharged when the platoon reaches the
bottleneck, n p(tu

p) = 0. Therefore we employ control law

q̃cap
p (t) =

⎧⎪⎨
⎪⎩

q ref(t), nb(t) = 0∧t ≥ tu
p−1,

q̃cap
p−1(t), ñ p−1(t) = 0∧t < tu

p−1,

Qlo, otherwise,

(11)

where the reference flow q ref(t) can be externally determined.
For maximizing the throughput, we set q ref(t) = Qhi−qu

b (t),
taking the largest admissible Qhi ≤ qcap

b . In order to compute
the current qcap

p (t) = q̃cap
p (tV

p ) for all platoons, we need to
predict nb until tV

� , which requires calculating qcap
� (0) and

qcap
p (t) for 0 ≤ t ≤ min

�
tu
p , tV

�

�
.

Assuming this control law is applied, we set the speed of
each platoon so that n p(tu

p) = 0 and nb(t) = 0, tc
p ≤ t ≤ tu

p ,

with minimum tc
p such that tc

p ≥ max{tV
p , t

u p−1
p−1 + l p−1

V }. This is
achieved when

ñ p(t
u
p) = ñ p(t

c
p)+

t u
1�

t c
p

q̃ in
1 (t)dt−Qhi(tu

1 −tc
1) = 0. (12)

For p = 1, in case it is known that tV
2 < tu

1 , (12) simplifies
to

ñ1(t
u
1 ) = ñ1(t

V
2 )+Qlo(tu

1 −tc
1 )−Qhi(tu

1 −tc
1) = 0,

u1 =
�
Qhi−Qlo

�
(Xb−x1)

ñ1(tV
2 )+

�
Qhi−Qlo

�
tc
1

,

since we can explicitly calculate

ñ1(t
V
2 ) =

� t V
2

t V
1

Vρ(Xb−V t, 0)dt−Qlo(tV
2 −tV

1 ).

Otherwise, u p is calculated by solving (12) numerically, and
can be obtained as a by-product of iterating the prediction steps
for nb and ñ p . We may calculate u p by initializing it to

u(0)p = min

�
Umax, u p−1

Xb−x p

Xb−x p−1+l p−1

�
,

and then decrease it until either u p = Umin or (12) is satisfied.
This also ensures that u p is constrained to be within the range

Umin ≤ u p ≤ min

�
Umax, u p−1

Xb−x p

Xb−x p−1+l p−1

�
,

which is required if there is no platoon merging.

B. Platoon-Actuated Aware of On- or Off-Ramps

Consider now the case when there are on- or off-ramps.
In order to exactly predict the evolution of queues, we need
to know the ramp flows q̃ r

k(t) in advance, which is very hard
to ensure. Therefore, we use the predicted ramp flows instead.

If ramp k is an on-ramp, we can replace the actual ramp flow
with its average q̂ r

k = q̄ r
k , which can be determined statistically.

If ramp k is an off-ramp, we can assume that a constant ratio
of vehicles Rk leave the road via the off-ramp,

q̂ r
k(t) = −Rk

	
q̃ in,r

k (t)+



l∈K r,k
o (t)

q̃ r
l (t)



,

q̃ in,r
k (t) =

�
qV

b (t), xu
1 (t) < x r

k < Xb

q̃out
p+1(t), xu

p+1(t) < x r
k < xu

p(t)

K r,k
o (t) =

⎧⎪⎪⎨
⎪⎪⎩

�
l|xu

1 (t) < x r
l < x r

k

�
, t > tV

1 , x r
k < xu

p−1(t)�
l|xu

p(t) < x r
l < x r

k

�
, x r

k < xu
p−1(t), p > 1�

l|Xb−V t < x r
l < x r

k

�
, otherwise

depending on the origin of the flow to off-ramp k at time t .
The portion of queue at platoon p that remains after the

platoon has passed the off-ramp k can be estimated to be

ñ p(t
r,k
p +) = (1−Rk)ñ p(t

r,k
p ), xu

p(t
r,k
p ) = X r

k,

and we may now apply a control law similar to the one
derived for the case when there are no on- and off-ramps.
We modify (11) to take into account the fact that there
might be some off-ramps k ∈ K ∗ whose flow we do not
want to obstruct. Since it is not possible to selectively allow
the off-ramp-bound traffic to pass without also releasing the
mainstream-bound traffic, we will only allow unrestricted flow
towards those off-ramps by setting q̃cap

p = Qhi if there are
other platoons downstream that are regulating the inflow to
the bottleneck,

q̃cap
p (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q ref(t), nb(t) = 0∧t ≥ tu
p−1,

Qhi, K p−1∗
p (t) 	= ∅∧t < tu

p−1,

q̃cap
p−1(t), K p−1∗

p (t) = ∅∧ñ p−1(t) = 0∧t < tu
p−1,

Qlo, otherwise,

(13)

where K p∗
p (t) = K p

p+1(t)∩K ∗.
The platoon speeds are obtained in the course of predicting

the queue evolution, as described in the previous subsection.
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V. ANALYSIS

In order to understand the effects and limitations this control
law will have in realistic situations, we first study it in
a simplified, idealised setting. In simulations the inflow of
background traffic will vary in time, taking random values
within some range, and platoons arrive with exponentially
distributed gaps. Here, we first assume constant background
traffic inflow Qin(t) = Qin and periodic platoon arrivals, with
period τπ , and each platoon consisting of nπ passenger car
equivalents, and later allow the inflow and gaps between two
platoons vary within some range. In this section, we derive:

1) Exact limits on the maximum initial excess congestion
for which the uncontrolled and controlled systems are
stable, assuming constant inflow and periodic platoon
arrivals,

2) The number of controlled platoons required to fully
dissipate the congestion at a stationary bottleneck and
return the road to the unperturbed free flow state, and

3) An estimate of throughput given varying inflow and gap
between platoons, i.e., the average inflow for which we
decongest the bottleneck with a predefined probability.

The stationary bottleneck has capacity qcap
b , which is

reduced to qdis
b in case there is capacity drop. We study the

case when the bottleneck is initially congested. If there is no
queue at the platoon and it arrives at a bottleneck in free flow,
the platoon passes through without causing traffic breakdown.
Otherwise, its vehicles are added to the bottleneck queue.

In summary, the system that we study in this section is

nb(t
V
1 ) = μ0, ṅb(t) = q in

b (t)−qout
b (t), (14)

q in
b (t) =

�
q̃out

p , max
�

tV
p , tu

p−1

�
≤ t ≤ tu

p,

Qin(t), otherwise,
(15)

qout
b (t) =

�
q in

b (t), q in
b (t) ≤ qcap

b ∧nb(t) = 0,

qdis
b , q in

b (t) > qcap
b ∨nb(t) > 0,

(16)

ñ p(t
V
p ) = 0, ˙̃n p(t) = q̃ in

p (t)−q̃out
p (t), tV

p < t < tu
p, (17)

q̃ in
p (t) =

�
q̃out

p+1, tV
p+1 < t < tu

p+1,

Qin(t), t ≤ tV
p+1,

(18)

q̃out
p (t) =

�
q̃ in

p (t), q̃ in
p (t) ≤ q̃cap

p (t)∧ñ p(t) = 0,

q̃dis
p , q̃ in

p (t) > q̃cap
p (t)∨ñ p(t) > 0,

(19)

nb(t
u
p+) =

�
nb(tu

p)+ñ p(tu
p)+nπ , nb(tu

p)+ñ p(tu
p) > 0,

0, nb(tu
p)+ñ p(tu

p) = 0,

(20)

for p = 1, . . . ,�, where q̃cap
p (t) ∈ [Qlo, Qhi] is set by control

law (11). The platoon speed u p ∈ [Umin, V ] determines the
time when the platoon reaches the bottleneck tu

p .

A. Constant Inflow and Periodic Platoon Arrivals

We study the stability of the queue at the bottleneck under
conditions of constant inflow and periodic platoon arrivals for
different initial bottleneck queue lengths. First, in case no
control is applied, i.e. u p = V , tu

p = tV
p , and q̃cap

p = Qhi,
the system under consideration simplifies to (14)–(16) and (20)

with ñ p(tu
p) = 0. The system is stable if

Qin+nπ
τπ

< qdis
b ,

i.e., if the total inflow is less than the bottleneck dissipating
flow, the queue will dissipate regardless of its initial length.

If the platoons can be controlled, we are able to extend
the range of Qin for which the system is stable. In this case,
it is of interest to study what is the maximum initial queue
length μ0 for which the system is stable for a given Qin.
The length of the considered road segment is � and a platoon
moving at speed uk traverses it and reaches the bottleneck after
τ u

k = �
uk

. Assuming the first platoon enter the road at time
t = 0, we define the initial queue length μ0 = nb(�/V ) as the
queue length at the bottleneck at the time when the overtaking
flow from the platoon reaches it. We say that there is μ0 excess
congestion to be dissipated, i.e. μ0 vehicles need to be delayed
in order for the bottleneck to return to free flow. For the
first platoon entering the road segment, the entire congestion
will be located at the bottleneck, and for subsequent platoons,
the initial excess congestion μk will be distributed between the
bottleneck and the platoons that entered the road previously.

We consider the case with flow values are arranged as

Qlo < qdis
b < Qin < Qin+nπ

τπ
< Qhi ≤ qcap

b , (21)

and the uncontrolled system is unstable.
The system is stable if μk+1 < μk until μk = 0 for some k,

i.e., if every subsequent platoon has less excess congestion
to dissipate until the system returns to the unperturbed state.
To find maximum μk for which this holds, we apply maximum
control, i.e. uk = Umin and maximum overtaking flow is
Qlo until the queue at the bottleneck is dissipated, which
happens at τ dis

k = μk/
�
qdis

b −Qlo
�
. Moving at minimum speed,

a platoon will reach the bottleneck after τmax = �/Umin,
so a necessary condition to be able to begin dissipating the
congestion is that τmax > τ dis

k , which yields

μ0 <
	

qdis
b −Qlo



τmax.

The process of dissipating excess congestion can be split
into two phases: saturation and recovery. In the saturation
phase, maximum control action is applied and there is a queue
at the platoons reaching the bottleneck. In the recovery phase,
each subsequent platoon will have a higher speed, until the
traffic returns to the unperturbed state.

In saturation phase, given μk ≥ μsat
Q in , the excess congestion

left for platoon k+1 to dissipate will be

μk+1 = aμk+b, (22)

a = Qhi−Qlo

qdis
b −Qlo

> 1, (23)

b = τπ

	
Qin−qdis

b



+nπ−τmax

	
Qhi−qdis

b



< 0, (24)

where the minimum saturation phase excess congestion is

μsat
Q in = 1

a

		
Qhi−Qlo



τmax−

	
Qin−Qlo



τπ



. (25)

Therefore, the excess congestion (22) will decrease if

μk <
b

1−a
.
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Starting with μ0, we can calculate μk by recursing (22),

μk = akμ0+
k−1

i=0

ai b.

Note that since the discharging flow qdis
b by definition lies

between Qlo and Qhi, we may represent it as

qdis
b = a−1

a
Qlo+1

a
Qhi,

where a is given by (23), and we have a−1
a ∈ (0, 1) and

1
a ∈ (0, 1). We may regard a as a measure of capacity drop
severity, with a ≈ 1 indicating almost no capacity drop, and
a high value of a indicating a severe capacity drop.

Given μ0, the transition into the second phase of congestion
dissipation happens after ksat platoons, where ksat is the lowest
integer such that

aksat
μ0+

ksat−1

i=1

ai b ≤ μsat
Q in ,

The recovery phase is characterized by the lack of con-
gestion at the stationary bottleneck, nb(t) = 0, i.e. all the
congestion is in the queues at the platoons.

The minimum time when platoon ksat can reach the bottle-
neck with no queue is

τ u
ksat = μksat

qdis
b −Qlo

+τπ Qin−Qlo

Qhi−Qlo ,

travelling at speed uksat = �
τ u

ksat
. Since the stationary bottleneck

will be in free flow, starting with k = ksat, μk+1 follows

μk+1 = μk−τπ
	

Qhi−Qin


,

until for some k = krec we have μkrec ≤ τπ
�
Qhi−Qin

�
, after

which the traffic returns to the unperturbed state. Given μksat ,
we may calculate krec by rounding up

krec =
�

μksat

τπ
�
Qhi−Qin

�
�
.

The dynamics of μk through both phases of congestion
dissipation can be jointly described as

μk+1 =

⎧⎪⎨
⎪⎩

aμk+b, μk ≥ μsat
Q in,

μk−τπ
�
Qhi−Qin

�
, τπ

�
Qhi−Qin

� ≤ μk < μsat
Q in,

0, μk < τπ
�
Qhi−Qin

�
,

with a and b given by (23) and (24).
We summarize the analysis in this proposition:
Proposition 1: Assuming constant inflow Qin(t) = Qin,

periodic arrival of platoons with period τπ and ordering of
flow values (21), the queue length nb(t) of system (14)–(20)
controlled by control law (11) is stable and will remain zero
after sometime t, if the initial queue length satisfies

μ0 <
b

1−a
,

where a and b are given by (23) and (24), respectively.
Furthermore, if this condition is satisfied, the system returns

to the unperturbed state with nb(t) = 0 and ñ p(t) = 0 after
platoon krec reaches the bottleneck.

Conversely, substituting b = (1−a)μ0 into (24), we may
derive the maximum Qin for which the system will be stable
for a given μ0,

Qin
μ0

= qdis
b −nπ

τπ
+a−1

a
(Qhi−Qlo)

τmax

τπ
−(a−1)

μ0

τπ
. (26)

B. Varying Inflow and Platoon Arrivals

The uncertainty coming from the varying inflow of back-
ground traffic and random platoon arrivals can be modelled
by adding another term to (22):

μk+1 = aμk+b+εk, (27)

where εk = ε
τπ
k (Q

in−qdis
b )+τπεQ in

k +ετπk ε
Q in

k represents the
disturbance, i.e. the aggregate deviation from the average
queue length update, ετπk is the difference of the gap between

platoon k−1 and k from τπ , and εQ in

k is the difference of the
average inflow from Qin during that time. We may also write

μk = akμ0+
k−1

i=0

ak−1−i (εi+b) .

Proposition 2: Assuming |εk | < E < |b|, if for any k we
have

μk <
b+E

1−a
, (28)

with a given by (23) and b by (24), then system (27) is stable,
and we are able to dissipate the congestion at the bottleneck.
Conversely, if for any k we have

μk >
b−E

1−a
, (29)

then system (27) is unstable, and the queue at the bottleneck
will grow unbounded.
Consequently the conclusions about stability can be extended
to system (14)–(20) if a suitable bound on uncertainty E can
be derived.

For the initial excess congestion between these two values,
b+E
1−a < μ0 <

b−E
1−a , μk will almost surely satisfy either condi-

tion (28) or (29) for some k. Assuming uniformly distributed
εk , with E {εk} = 0, Var {εk} = E2

3 , the probability of μk

satisfying (29) (i.e., failing to decongest the bottleneck) closely
follows the logistic curve depending on μ0,

Puns(μ0) ≈
�

1+exp

�
b

1−a−μ0

E
4

��−1

and the probability of μk satisfying (28) for some k
(i.e., decongesting the bottleneck) is Psta(μ0) = 1−Puns(μ0).

Finally, we may define the estimate of throughput of the
controlled system as the maximum Qin for which the control
algorithm decongests the bottleneck with probability P∗, given
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an appropriately chosen μ0. This yields the bound on Qin,

Qin
μ0,


= qdis
b −nπ

τπ
+ Qhi−qdis

b

τπ

�
τmax− μ0+


qdis
b −Qlo

�
,

Qin
μ0,


= qdis
b −nπ

τπ
+a−1

a
(Qhi−Qlo)

τmax

τπ
−(a−1)

μ0+

τπ

,

(30)

where
 is the measure of combined uncertainty in the system,


 = E

4
log

� P∗

1−P∗

�
.

Moreover, if we substitute 
 = 0 into (30), we recover (26),
i.e. the deterioration of Qin

μ0,

due to the introduction of

varying inflow and platoon arrivals is

Qin
μ0,


−Qin
μ0

= −(a−1)



τπ
.

Note that this bound is only valid if the dissipation process
starts in the saturation phase, μ0 > μsat

Q in
μ0,


. Substituting (30)

into (25), we find the minimum μ0 for which this holds,

μsat
0 =

�
Qhi−Qlo

�
(τmax−τπ)

a
+nπ+(a−1)
,

in which case we have

Qin
μsat

0 ,

= Qhi−a

nπ
τπ

−a(a−1)



τπ
. (31)

VI. SIMULATION RESULTS

In order to assess the performance of the proposed control
laws, we conducted a number of simulation runs, results
of which will be presented in this section. We demonstrate
the control laws’ effectiveness and show that we are able
to eliminate 52.7% of the total delay due to congestion
experienced by all vehicles on average, or 75.6% of the total
delay by median, compared to the uncontrolled case.

The simulations were executed on a 5 km long stretch of
highway, illustrated by Figure 2, with an on-ramp around
the 2 km mark, and an off-ramp around the 3 km mark.
Most of the highway stretch has three lanes, corresponding
to a critical density of σ− = 60 veh/km and capacity of
Qmax− = 6000 veh/h, with free flow speed of V = 100 km/h.
There is a bottleneck caused by an accident 80 m upstream
of the end of the considered stretch, with capacity of
Qmax+ = 4000 veh/h. The capacity drop phenomenon is mod-
elled with α = 0.4, which causes the bottleneck capacity to be
reduced to Qdis+ = 3273 veh/h, representing a 18.2% capacity
drop.

The simulation model we used was the multi-class
CTM, given in the Appendix, with three classes of traf-
fic: class a consists of the platoons we control, class b is
the mainstream-bound background traffic, and class c the
off-ramp-bound background traffic. The arrival of class a
vehicles is modelled as Poisson process with arrival rate
of λ = 81 platoons/h, τπ = 0.0123 h. We assume that each
platoon consists of 2 passenger car equivalents, corresponding
to about three trucks due to shorter inter-vehicular gaps.

The minimum platoon reference speed is set to Umin =
50 km/h. The inflow of background traffic is assumed to
be time-varying and uniformly distributed, changing every
14.4 seconds. At the beginning of the highway segment,
the inflow of mainstream-bound background traffic takes
values in φb

1 (t) ∼ U(1000, 2000) veh/h, and the inflow of
off-ramp bound traffic is φc

1(t) ∼ U(750, 1250) veh/h. All of
the on-ramp traffic is assumed to be mainstream-bound, and
is modelled as φb

ion
(t) ∼ U(900, 1500) veh/h.

With the parameters specified in previous paragraph,
we may calculate an estimate of the throughput achievable
by applying the presented control law. Using (31) with
E = τπ

	
max

	
φb

1+φb
ion



−E

�
φb

1+φb
ion

�

and P∗ = 0.9,

yielding 
 ≈ 5.4, we estimate that the throughput
would be improved from Qin

unc+nπ
τπ

= 3273 veh/h to
Qin
μc

0,

+nπ
τπ

= 3513.2 veh/h. Note that in deriving (31) we do
not take into account the existence of the on-ramp.

The duration of each simulation run is 2 hours, of which
the background traffic inflow is halved for the first 3 minutes,
in order to properly initialize the system, and for the last
12 minutes, in order to allow the traffic to return to free flow.
Simulations are done with four cases of control:

(a) No control,
(b) Platoon-actuated control ignoring on- and off-ramps

from Subsection IV-A, with q̃cap
p (t) given by (11),

(c) Platoon-actuated control accounting for on- and
off-ramps from Subsection IV-B, with q̃cap

p (t) given
by (13), and

(d) Ideally actuated control from the Appendix, with Ub
i (t)

given by (32), used as benchmark.

We demonstrate the effect these control laws have on the traffic
on a part of a simulation run shown in Figure 6.

Consider the uncontrolled case shown in Figure 6a. Around
time t = 8.6 min, the aggregate flow of platooned vehicles
and background traffic arriving at the bottleneck exceeds bot-
tleneck capacity. This causes a traffic breakdown, congestion
is formed and bottleneck capacity is reduced. Therefore, even
though the incoming flow is lower after t = 9.2 min, and does
not exceed the original bottleneck capacity, it is not enough
to dissipate the congestion at the bottleneck. Consequently,
the throughput is reduced, the total time spent significantly
increased, and the bottleneck will remain congested throughout
the simulation run. In contrast, in the ideally actuated case
shown in Figure 6d, a part of the mainstream-bound back-
ground traffic is delayed to allow the platoons to traverse the
bottleneck without a traffic breakdown, maintaining free flow
with throughput close to its theoretical maximum.

As shown in Figure 6b and Figure 6c, the performance of
the two proposed control laws is similar. However, in case
of the control from Section IV-A, the applied control is
stronger than required, resulting in more congestion upstream
of the off-ramp and lower efficiency. The control law from
Section IV-B comes close to the ideal actuation case, with
somewhat worse performance because it is unable to selec-
tively affect mainstream-bound traffic, only has access to the
average off-ramp splitting ratio, and requires delaying the
platoons.
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Fig. 6. An example comparing the four simulation cases. Traffic density is color-coded, with warmer color representing higher density.

TABLE II

AVERAGE AND MEDIAN TTS AND DELAY FOR EACH VEHICLE CLASS, AND ALL VEHICLES COMBINED

We executed 50 Monte Carlo simulations, with the same
platoon arrival times and background traffic inflow profiles
for each control case. The resulting average and median TTS
and delay are shown in Table II, for each vehicle class, and for
all vehicles combined. We define the delay as the percentage
of the increase in TTS compared to the ideal actuation case,
which is taken as a benchmark for minimum achievable TTS
of each simulation run, and also show its box plots in Figure 7.

We can see that even by applying control that ignores
the on- and off-ramps described in Section IV-A, we reduce
the TTS by about 10% of the ideal TTS on average, with the
median reduced by about 17%. This corresponds to eliminating
29.1% of the delay on average, or 43.7% by median. However,
only the TTS of class b, the mainstream-bound background
traffic, is reduced, while the TTS of other vehicles is even

somewhat increased. This can be explained by the fact that the
controller assumes that all vehicles are headed for the bottle-
neck, and will therefore delay the traffic too much, stalling the
off-ramp-bound traffic which would otherwise be able to leave
the highway unhindered. In spite of this inefficiency, and
owing to the fact that vehicles of class b comprise the majority
of the traffic, this control law is still able to preserve free flow
and forestall capacity drop at the bottleneck, thus the overall
TTS and delays are lower than in the uncontrolled case.

In contrast, with the control from Section IV-B, the TTS of
both class a and class b vehicles is reduced, with the aggregate
TTS lower by almost 20% of ideal TTS on average, or by
almost 30% in median. This corresponds to eliminating 52.7%
of the delay on average, or 75.6% by median. Even though
the platoons will be delayed in order to actuate the control,
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Fig. 7. Box plots showing the increase in TTS compared to the ideal actuation case.

their TTS will be lower, since they avoid the congestion at
the bottleneck. This is especially important, since it shows
that it is beneficial for the platooned vehicles to employ this
control law, even if their goal is to minimize their own travel
time. The increase of class c vehicles TTS is lower than with
the previous control law. Overall, this control law comes very
close to the ideal case, with the median delay being only 8.4%,
and an average delay of 17.5%.

Note that while the proposed control laws achieve sig-
nificant reduction of TTS, there is a number of outliers
corresponding to unfavourable simulation runs when there
are long gaps between two platoon arrivals. If this occur-
rence coincides with a higher demand of mainstream-bound
background traffic, we will be unable to prevent the traffic
breakdown, since there are no platoons available for actuation,
resulting in a build-up of congestion and higher TTS.

VII. CONCLUSION

In this work, we proposed a tandem queueing model with
moving bottlenecks, which we used as a prediction model for
designing bottleneck decongestion control. We used platoons
as actuators, with their speed and formation and control inputs,
in order to keep the bottleneck in free flow, improve the
throughput and reduce the TTS of all vehicles. The perfor-
mance of these control laws was tested in multi-class CTM
simulations, on a 5 km long stretch of highway upstream of
a bottleneck, with one on- and one off-ramp. The achieved
TTS using these control laws was compared to the case when
no control is used, as well as with the case when we can
fully control all vehicles individually. We demonstrated that
applying the proposed control laws significantly reduces the
TTS compared to the situation with no control, coming close
to the performance of the ideal actuation case. Moreover, even
the platooned vehicles, which are delayed in order to affect the
rest of traffic, incur lower delays, since they avoid having to
traverse the congestion at the bottleneck, making the proposed
control beneficial for all traffic participants.

For future work, we are interested in expanding the scope
by considering highway segments with multiple stationary
bottlenecks regulated in cascade, as well as traffic networks.
Theoretical bounds on the effect of the proposed control laws
on TTS should also be derived, as well as tighter bounds on
the achievable throughput. Finally, the proposed control law
should also be tested on more complex simulation models,

such as microscopic traffic simulators. In general, the influence
of truck platoons on the traffic needs to be further investigated
using both simulations and public road experiments.

APPENDIX

THE MULTI-CLASS CTM

Consider a highway stretch consisting of N cells and let K
be the set of vehicle classes. The traffic density of vehicles of
class κ ∈ K in cell i at time t , ρκi (t), evolves as

ρκi (t+1) = ρκi (t) + T

Li

�
qκi−1(t)−qκi (t)+rκi (t)−sκi (t)

�
,

where T is the time step, Li the length of cell i , rκi (t) is the
inflow and sκi (t) the outflow of each class from a potential
on-ramp and to a potential off-ramp, respectively. The traffic
flow of each class from cell i to cell i+1 is given by

qκi (t) = min
�

Dκ
i (t), Sκi+1(t)

�
.

Setting qκ0 (t) = 0, the inflow to cell 1 is technically
considered to come from an on-ramp.

Each vehicle class can have a distinct time-varying free flow
speed Uκ

i (t) ≤ Vi in every cell, where Vi is the maximum
vehicle speed for the cell. The demand and supply functions
of each class Dκ

i (t) and Sκi (t) also depend on vehicles of other
classes. Denoting the demands of each vehicle class if other
classes were ignored as dκi (t) = Uκ

i (t)ρ
κ
i (t), we write the

demand and supply allocated to each class

Dκ
i (t) = dκi (t)min

�
1,

Qi (t)

dK
i (t)

�
,

Sκi (t) = ρκi−1(t)

ρKi−1(t)
min

�
Wi (Pi−ρKi (t)), Qi (t), Fi−1(t)

�
.

Here, the cell capacity is given by

Qi (t) =
�
κ∈K

dκi (t)
Vi Piσi U κ

i (t)
(Pi−σi )U κ

i (t)+Viσi

dK
i (t)

≤ Viσi ,

and cell parameters Wi , σi and Pi are the congestion wave
speed, critical density and jam density of cell i , respectively.
Capacity drop is modelled as a linear reduction of capacity,

Fi (t) = Wi
σi+1

σi

	
Pi−(1−α)σi−αρKi (t)



,
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where α is the maximum capacity drop ratio under jam
traffic density ρKi (t) = Pi . We use the same cell length
L and maximum free flow speed V for all cells, and take
W = V σi

Pi −σi
yielding a triangular fundamental diagram.

Mainstream flow is prioritized, and the critical density is
increased in cells close to on-ramps, where a merging lane is
present. Therefore, vehicles entering the road will only queue
at the on-ramp if congestion propagates upstream and blocks
the on-ramp. We model the evolution of these queues nκr,i , for
on-ramps in cell i , with

nκr,i (t+1) = nκr,i (t)+
�
φκi (t)−rκi (t)

�
T,

rκi (t) =
�
φκi (t), κ ∈ Kpr,

min
�

Dκ
r,i (t), Sκr,i (t)

�
, κ /∈ Kpr,

Dκ
r,i (t) = φκi (t)+

nκr,i (t−1)

T
, Sκr,i (t) = nκr,i (t)

nK\Kpr

r,i (t)
Qr,i (t),

Qr,i (t) = max
�

0,min
�

Si (t)−qi−1(t), Qmax
r,i

�−rK
pr

i (t)
�
.

Here, φκi (t) is the inflow of class κ vehicles arriving at
the on-ramp, Kpr is the set vehicle classes that enter the road
directly, and Qmax

r,i is the capacity of the on-ramp.
For cell i , where vehicles of classes Ks,i ⊂ K exit the

mainstream via an off-ramp, we may write

sκi (t) =

⎧⎪⎨
⎪⎩

min

�
Dκ

i (t), Sκi+1(t),
ρκi

ρ
Ks,i
i

Qmax
s,i

�
, κ ∈ Ks,i ,

0, κ /∈ Ks,i ,

where Qmax
r,i is the capacity of the off-ramp. Finally, we update

Dκ
i (t) =

⎧⎪⎨
⎪⎩

0, κ ∈ Ks,i ,

dκi (t)min

�
1,

Qi (t)

dK
i (t)

�
, κ /∈ Ks,i .

Let there be � platoons, and let platoon p move at
speed u p(t) ∈ �

Umin,Umax
�
, with Umax < V . We denote

the position of the platoon downstream end x p(t),
x1(t) > x2(t) > · · · > x�(t), and the reference density of pla-
tooned vehicles ρ∗

p(t). Using vehicle class a for platooned
vehicles and assuming l p(t) ≥2 L, the platooned vehicles
traffic density profile from cell i t

p(t) = ��
x p(t)−l p(t)

�
/L

�
to

cell i h
p(t) = �

x p(t)/L
�

, where the upstream and downstream
end of the platoon are, respectively, is given by

ρa
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i < i t
�(t),

ρ∗
p(t)

Xit
p (t)+1−x p(t)+l p(t)

L
, i = i t

p(t),

ρ∗
p(t), i t

p(t) < i < i h
p(t),

ρ∗
p(t)

x p(t)−Xih
p(t)

L
, i = i h

p(t),

0, i h
p(t) < i < i t

p−1(t),

where i t
0 = N+1. The platoon position updates are

x p(t+1) = x p(t)+u p(t)T , and ρa
i (t+1) needs to be updated

accordingly, by setting

Ua
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V , i < i t
�(t),

ψb
i (t), i t

p(t) ≤ i < i h
p(t),

ψh
i (t), i = i h

p(t),

0, i h
p(t) < i <

ih
p (t)+it

p−1(t)

2 ,

V ,
i h

p(t)+i t
p−1(t)

2
≤ i < i t

p−1(t),

ψb
i (t) = V

Vρ∗
p(t)−

�
V−Ua

i+1(t)
�
ρa

i+1(t)

Vρa
i (t)

,

ψh
i (t) = V

�
1−

�
1−u p(t)

V

�
ρ∗

p(t)

ρa
i (t)

�
.

for p = 1, . . . ,�. Furthermore, the traffic flow overtaking a
platoon with density ρ∗

p(t) is limited to V
	
σ−ρ∗

p(t)



, which
is consistent with PDE moving bottleneck models.

Consider a bottleneck at some position Xb, with the
upstream critical density of σ− and downstream σ+, corre-
sponding to the capacity of qcap

b = Vσ+. Due to capacity drop,
its capacity will be decreased once it becomes congested, with
a congestion of density

ρc = P−(σ−−σ+)+(1−α)σ−σ+
σ−−ασ+

formed, and the density of discharging traffic being

ρd = σ−σ+(1−α)
σ−−ασ+

< σ+,

given by W (P−−ρc) = W σ+
σ− (P−−(1−α)σ−−αρc), and

Vρd = W (P−−ρc). The discharging flow from the congested
bottleneck is qdis

b = Vρd .
As a benchmark for comparing the performance of the

proposed control laws, we consider the ideal case, assuming
we can fully control every class of traffic independently.
We need to minimally delay the mainstream-bound back-
ground traffic so that the flow at the bottleneck never exceeds
its capacity. This is equivalent to ensuring that the traffic
density immediately upstream of the bottleneck ρib (t) ≤ σ+
for all t , with Uκ

i (t) as close as possible to V , which can be
achieved by setting Ub

ib
(t) = V and

Ub
i (t) = min

�
V ,max

�
Ub

min, ψ
b
i (t)

��
, i = 1, . . . , ib−1

ψb
i (t) = V

ρb
i (t)

�
ρb∗

i (t)−
V−Ub

i+1(t)

V
ρb

i+1(t)

�
,

ρb∗
i (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ+−ρ∗
p,

Xb−x p(t)

u p(t)
<

Xb−(i−1)L

V

<
Xb−x p(t)+l p(t)

u p(t)
+ L

V
,

σ+, otherwise,

(32)

for p = 1, . . . ,�. The mainstream-bound background traffic
is thus controlled so that the total flow at the bottleneck,
including the platoons, is close to the capacity.
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