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Risk-Aware Optimal Control for Automated
Overtaking With Safety Guarantees

Yulong Gao , Frank J. Jiang , Lihua Xie , Fellow, IEEE, and Karl Henrik Johansson , Fellow, IEEE

Abstract— This article proposes a solution to the overtaking
control problem where an automated vehicle tries to overtake
another vehicle with uncertain motion. Our solution allows the
automated vehicle to robustly overtake a human-driven vehicle
under certain assumptions. Uncertainty in the predicted motion
makes the automated overtaking problem hard to solve due to
feasibility issues that arise from the fact that the overtaken
vehicle (e.g., a vehicle driven by an aggressive driver) may
accelerate to prevent the overtaking maneuver. To counteract
them, we introduce the weak assumption that the predicted
velocity of the overtaken vehicle respects a supermartingale,
meaning that its velocity is not increasing in expectation during
the maneuver. We show that this formulation presents a natural
notion of risk. Based on the martingale assumption, we perform
a risk-aware reachability analysis by analytically characterizing
the predicted collision probability. Then, we design a risk-aware
optimal overtaking algorithm with guaranteed levels of collision
avoidance. Finally, we illustrate the effectiveness of the proposed
algorithm with a simulated example.

Index Terms— Automated overtaking, automated vehicle, mar-
tingale, reachability analysis, risk-aware optimal control.

I. INTRODUCTION

A. Motivation

OVERTAKING is a dangerous driving maneuver with
both lateral and longitudinal movements. Many

researchers believe that by developing an approach for
safe, robust, and efficient overtaking, we will significantly
progress the safety of automated vehicles [1], [2]. To this end,
several existing works propose solutions for performing safe
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Fig. 1. Scenario where automated vehicle V1 is overtaking the other vehicle
V2 on a road with two lanes.

and efficient overtaking maneuvers [3]–[7]. However, these
solutions all assume that the vehicle to be overtaken moves
at a constant velocity. Under this assumption, overtaking can
be formulated as a reference tracking problem or an optimal
control problem. As long as the velocity of the overtaken
vehicle is less than the speed limit and the prediction horizon
is chosen appropriately, these problems do not encounter
feasibility issues. Thus, the constant velocity assumption is a
natural choice in many practical implementations. However,
in this work, we consider overtaking vehicles that do not
drive at a fixed velocity. We are motivated by human drivers
who, depending on how they react to an overtaking, might
change their velocities while being overtaken. To address
these types of drivers, we present examples where if the
vehicle being overtaken is changing its velocity, we can
improve the overtaking compared to existing control laws.

B. Main Contributions

We study the process of overtaking a vehicle V2 by an auto-
mated vehicle V1, as shown in Fig. 1. The overtaking maneuver
requires the automated vehicle to laterally move into an empty
lane when it is safe to initiate the maneuver, longitudinally
overtake V2, and, finally, laterally merge back into the original
lane in front of V2. At each stage of the overtaking maneuver,
many factors introduce uncertainty, which make the overtaking
hard to perform robustly and safely [8].

The main objective of this work is to develop an algorithm
for an overtaking control problem where an automated vehicle
V1 tries to overtake another vehicle V2 with uncertain motion.

More specifically, we first propose a formulation for
risk-aware reachability analysis based on martingale theory.
We develop risk-aware reachable sets, which are subsets of
traditional reachable sets. Risk-aware reachable sets are shown
to admit predicted collision probabilities between V1 and V2.
We estimate these collision probabilities analytically using the
concentration inequality of martingale theory.
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Then, based on the proposed risk-aware reachability analy-
sis, we design a risk-aware optimal overtaking algorithm. It is
used to solve the overtaking problem in a receding-horizon
manner. We provide sufficient conditions for the feasibility of
the risk-aware optimal overtaking problem. In other words,
by performing a safety check a step ahead of the execution of
each control command, our algorithm can guarantee that the
overtaking process is collision-free.

C. Literature Review

There is a significant body of work on automated overtaking
under the assumption that the vehicle to be overtaken moves
at a constant velocity. For example, model predictive control
is used to track a reference overtaking trajectory in [3]–[5].
To handle collision avoidance, the overtaking problem is
formulated as a mixed integer program in [6] and [7]. In [9],
a constrained iterative linear quadratic regulator is used to
efficiently solve the overtaking problem. The recent work [10]
does not adopt the constant velocity assumption and considers
measurement noises in the overtaking scenario, but no formal
safety guarantees are provided.

Reachability analysis is a fundamental notion in systems and
control theory [11], and is used to give formal safety guaran-
tees for vehicle control [12], [13]. Robust approaches maintain
strict guarantees that a system’s state trajectory can be kept
inside a safe tube by a feedback controller within a certain time
horizon, despite bounded disturbances [14]. In [15]–[17], the
authors formulate approaches for reachability-based automated
overtaking for vehicles that overtake static obstacles using
the opposing direction’s lane. In [18], reachability analysis is
incorporated into a model predictive controller for ensuring the
safety of an automated vehicle when interacting with a human-
driven vehicle. On the other hand, stochastic approaches
guarantee that there will not be an unsafe trajectory within
a certain time horizon for a given probability [19]. Stochastic
reachability approaches can be beneficial, since they permit a
tradeoff between collision probability and optimality, while
avoiding decisions that are too conservative. However, the
introduction of stochasticity often introduces the additional
challenge of finding high-fidelity stochastic models. In [20],
a Markov chain is used to model the uncertainty of other traffic
participants and applied to probabilistic automated overtaking.
Markov decision processes or partially observable Markov
decision processes are used to model the stochasticity of
human driving behavior in [21] and [22]. Such assumptions on
human driving behaviors are quite strong. Another work [23]
proposes an empirical method for generating approximate sto-
chastic reachable sets for human-in-the-loop driving systems.
However, in many overtaking scenarios, an automated vehicle
will not have enough historical data to generate these empirical
sets. In our recent work [24], we choose to use martingales
to model the expected behavior of a human driver during
overtaking. Our martingale assumption is weaker than the
Markovian assumptions above. Less historical data is required
to identify martingale-based models than is required to identify
Markovian models, since Markovian models require the esti-
mation of probability distributions. This article significantly

generalizes the results in [24] by including a more detailed
nonlinear vehicle model, a risk-aware optimal overtaking
problem formulation, and a more general solution for solving
this problem.

Historically, martingales are often applied to gambling or
pricing problems since they efficiently model the lack of
arbitrage [25]. In [26], how to use martingales is discussed
in several classical stochastic control problems. In particular,
supermartingales play an important role in stochastic stability
and can be used for measures in risk theory. For exam-
ple, a risk-neutral measure can also be called a martingale
measure [27]. Moreover, in [28], the authors show that the
multiportfolio time consistency of a dynamic multivariate risk
measure is equivalent to a supermartingale property. In this
article, under a supermartingale assumption, we propose risk-
aware reachable sets and develop a risk-aware overtaking
algorithm.

D. Organization

This article is structured as follows: in Section II, we intro-
duce notation and preliminaries used throughout the article;
in Section III, we detail the addressed problem; Section IV
proposes risk-aware reachability analysis based on martingale
theory; in Section V, a risk-aware optimal overtaking algo-
rithm is presented while Section VI demonstrates the efficacy
of our algorithm and compares our work with state-of-the-art;
finally, Section VII concludes the article with a discussion on
future work.

II. NOTATIONS AND PRELIMINARIES

A. Notations

We start by briefly clarifying different notation used in this
work. Let N denote the set of nonnegative integers and R

the set of real numbers. For some q, s ∈ N and q < s, let
N[q,s] = {r ∈ N | q ≤ r ≤ s}. For two sets X and Y, X ⊕ Y =
{x + y | x ∈ X, y ∈ Y}. When ≤, ≥, <, and > are applied to
vectors, they are interpreted element-wise. For a set X, B(X)
denotes the Boral space of X and cl(X) the closure of X. Pr
denotes the probability and E the expectation.

B. Martingale Theory

Throughout this work, we will use the following definition
and inequality from martingale theory. A supermartingale is
a stochastic process for which the conditional expectation of
future values given historical information is bounded from
above by the current value. Formally, we define a supermartin-
gale with the following definition.

Definition 1: [29] A discrete-time integrable stochastic
process {Xi , i ∈ N} on a probability space (�,F ,Pr), with
a filtration {Fi , i ∈ N} and Fi ⊆ F , is said to be a
supermartingale if E[Xi+1|Xi ] ≤ Xi , ∀i ∈ N.

Due to the decreasing property of supermartingales, the
following concentration inequality holds.

Lemma 1: [30] Consider a discrete-time supermartingale
{Xi , i ∈ N} with a filtration {Fi , i ∈ N} and Fi ⊆ F . If for

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 19:30:21 UTC from IEEE Xplore.  Restrictions apply. 



1462 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 30, NO. 4, JULY 2022

Fig. 2. Notation for obstacle avoidance.

all i ∈ N≥1, and some positive σi and M , Var[Xi |Fi−1] ≤ σ 2
i

and Xi − E[Xi |Xi−1] ≤ M , then for all η ≥ 0,

Pr[Xi ≥ X0 + η] ≤ exp

⎛
⎝− η2

2
(∑i

j=1 σ
2
j + Mη/3

)
⎞
⎠.

From Lemma 1, we can see that if a stochastic process is
a supermartingale, the probability of the event Xi ≥ X0 +
η is upper bounded in terms of the variances σ j , the step
increment M , and the variable η. In this article, we assume that
the predicted velocity of vehicle V2 is a supermartingale (see
Section IV-B). According to Lemma 1, there is only a small
probability that the predicted velocity will become large. Thus,
we can reasonably truncate the reachable sets by removing the
small probability region. Furthermore, this small probability
can be dictated by the exponential term in Lemma 1.

C. Vehicle Collision-Free Conditions

Consider a vehicle with state x = [px py θ v]T , where
(px, py) is the center of the rear axis (see Fig. 2), θ the heading
angle, and v the velocity. For a given state x, the occupancy
of the vehicle is

S(x) = R(x)B ⊕ p(x) (1)

where B = {z ∈ R2 | Gz ≤ g} is the initial rectangle
occupied by the vehicle when the center of the rear axes
is [0; 0] and specified by G ∈ R2×2 and g ∈ R2, R(x) =
[cos θ sin θ; − sin θ cos θ ] the rotation matrix, and p(x) =
[px; py].

Consider an obstacle O ⊆ R2 of the form

O = {
z ∈ R2 | H z ≤ h

}
(2)

where H ∈ R2×2 and h ∈ R2 are a known matrix and vector,
respectively. Define the distance between S(x) and O as

dist(S(x),O) = min
z∈R2

{‖z‖ | (S(x)⊕ z) ∩ O 
= ∅}.

The following lemma provides a computationally useful
way for checking if dist(S(x),O) > d for some d > 0.

Lemma 2: [31] For any d > 0, dist(S(x),O) > d if and
only if there exist λ ≥ 0 and μ ≥ 0 such that⎧⎪⎨

⎪⎩
−gTμ+ (H p(x)− h)Tλ > d

GTμ+ RT (x)H Tλ = 0

‖H Tλ‖ ≤ 1.

The equivalent condition in Lemma 2 is derived using
the dual problem of dist(S(x),O). An important property
of this equivalent condition is that all the decision variables
are real numbers. This is different from the integer-based
collision-avoidance formulation in the literature when taking
into account the occupancy of the vehicle. The result of
Lemma 2 will be used to reformulate the safety constraints
on the overtaking vehicle in this article.

III. PROBLEM STATEMENT

We consider an overtaking scenario with an automated
vehicle V1 and another vehicle V2 as illustrated in Fig. 1.
Regard the two regions outside of the lanes as obstacles O1

and O2 of the form

Oi = {
z ∈ R2 | Hi z ≤ hi

}
, i = 1, 2.

The width of each lane is d . The longitudinal velocity of
each vehicle is bounded v R

min ≤ v x ≤ v R
max.

A. Automated Vehicle V1

We describe the dynamics of the automated vehicle V1 using
the following bicycle model:

x1(k + 1) = f (x1(k), u1(k))

where

x1 =

⎡
⎢⎢⎣

px
1

py
1
θ1

v1

⎤
⎥⎥⎦, u1 =

[
ψ1

a1

]
.

The longitudinal and lateral positions (px
1 , py

1 ) correspond
to the center of the rear axes, θ1 is the yaw angle with respect
to the x-axis, v1 is the velocity with respect to the rear axes,
ψ1 is the steering angle and a1 is the acceleration. The update
map is

f (x1, u1) =

⎡
⎢⎢⎣

px
1

py
1
θ1

v1

⎤
⎥⎥⎦ + δ

⎡
⎢⎢⎣

v1 cos θ1

v1 sin θ1

L−1v1 tanψ1

a1

⎤
⎥⎥⎦

where L is the wheel base and δ the sampling period.
An illustration of the bicycle model is given in Fig. 3.

There are physical limits on the state and control input

x1(k) ∈ X1, u1(k) ∈ U1

X1 =
{

z ∈ R4 | z = [
px, py, θ, v

]T

0 ≤ py ≤ 2d, θmin ≤ θ ≤ θmax

v R
min ≤ v cos θ ≤ v R

max

}
U1 = {

u ∈ R2 | u = [ψ a]T ,

ψmin ≤ ψ ≤ ψmax, a1,min ≤ a ≤ a1,max
}
.
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Fig. 3. Notation for bicycle model.

The occupancy of V1 is

S1(x1(k)) = R(x1(k))B1 ⊕
[

px
1 (k)

py
1 (k)

]
where B1 = {z ∈ R2 | G1z ≤ g1} is similarly defined as in
Section II-C.

B. Overtaken Vehicle V2

We specify the dynamics of the vehicle V2 we want to
overtake with the following linear model:

x2(k + 1) = A2 x2(k)+ B2u2(k)

where

x2 =
[

px
2
v x

2

]
, u2 = ax

2

A2 =
[

1 δ
0 1

]
, B2 =

[
0
δ

]
.

In particular, px
2 , v x

2 , and ax
2 are the longitudinal position,

velocity, and acceleration, respectively. During the overtaking
process, we assume that V2 stays in the same lane and
maintains lateral position py

2(k) = d/2, ∀k ∈ N.
Vehicle V2 has the state and control input constraints

x2(k) ∈ X2, u2(k) ∈ U2

X2 =
{

z ∈ R2

∣∣∣∣
[−∞
v R

min

]
≤ z ≤

[ ∞
v R

max

]}
U2 = {

z ∈ R | ax
2,min ≤ z ≤ ax

2,max

}
.

The occupancy of V2 is

S2(x2(k)) = B2 ⊕
[

px
2(k)
d/2

]
where B2 = {z ∈ R2 | G2z ≤ g2}.
C. Problem

Our objective is to design a sequence of control inputs
such that V1 starts behind V2 and ends in front of V2 using
the following maneuvers: lane-changing, lane-keeping, and
merging. The constraint set U2 is known to the automated
vehicle V1. At each time step k, the automated vehicle V1

can measure the states x1(k) and x2(k). Throughout the entire
process, we maintain the following safety constraints: collision
avoidance between V1 and V2, and collision avoidance between
V1 and Oi , i = 1, 2.

Fig. 4. Reachable sets for V2 in the plane and their corresponding occupancy
sets. (a) Blue: P(k+i|k) defined in (3) and S2(k+i|k) defined in (4). (b) Green:
Pβ(k + i|k) defined in (7) and S

β
2 (k + i|k) defined in (8). (c) Red: P̂(k + i|k)

defined in (11) and Ŝ2(k+i|k) defined in (9). (d) Yellow: P(k+i|k) defined in
(12) and S2(k+i|k) defined in (14). Here, β(k+i|k) = 1−exp(−(η2/2(i M2 +
Mη/3))), where M = max{δ|ax

2,min|, δax
2,max}.

IV. REACHABILITY ANALYSIS

The reachable set of a vehicle is a subset of the state
space that can be reached by the vehicle state through control
actions. In this section, we introduce the reachable set and
the risk-aware reachable set of vehicle V2 and discuss some
of their properties.

A. Reachable Set of Vehicle V2

At time step k, px
2(k) and v x

2 (k) are the longitudinal position
and velocity of V2, respectively.

Definition 2: The reachable set predicted i ∈ N steps ahead
at time step k is given by{

P(k + i + 1|k) = (A2P(k + i |k)⊕ B2U2) ∩ X2

P(k|k) = {x2(k)}. (3)

Since the dynamics of V2 is linear, the input constraint set
U2 is a compact polyhedron and the state constraint set X2 is
a polyhedron, the reachable sets in Definition 2 are compact
polyhedra for all finite i ∈ N. We show the set P(k + i |k) in
blue in Fig. 4. Here, the x-axis denotes the position and the
y-axis the velocity. The regions in different color are other
reachable sets to be defined in the following. The rectangles
below the x-axis are the corresponding occupancies also to be
defined.
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We define the projection of the reachable set on the lon-
gitudinal position as Px(k + i |k) = Proj1P(k + i |k) and the
projection of the reachable set on the longitudinal velocity as
Pv (k + i |k) = Proj2P(k + i |k), where Proj j(Q) denotes the
projection of the set Q on the j th dimension.

It is noted that the set P(k + i |k) is a compact and convex
set for all finite i ∈ N. Furthermore, the sets Px(k + i |k) and
Pv (k + i |k) are closed intervals. For notational simplicity, let

Px(k + i |k) = [
px

2,min(k + i |k), px
2,max(k + i |k)]

Pv (k + i |k) = [
v x

2,min(k + i |k), v x
2,max(k + i |k)].

These interval boundaries are also shown in Fig. 4. Denote
all possible occupancies of V2 corresponding to Px(k + i |k)
as S2(k + i |k), that is

S2(k + i |k) = {
z ∈ R2 | z ∈ B2 ⊕ [

px
1(k); d/2

]
px

2 ∈ Px(k + i |k)}. (4)

It is a compact rectangle, which we denote as

S2(k + i |k) = {
z ∈ R2 | S(k + i |k)z ≤ s(k + i |k)}

where S(k + i |k) and s(k + i |k) are a matrix and vector,
respectively, with appropriate dimensions. The occupancy set
S2(k + i |k) is the blue rectangle below the x-axis in Fig. 4.

Intuitively, safe overtaking will be performed if the vehicle
V1 is able to plan an overtaking trajectory that avoids the
reachable sets of V2 as well as the obstacles O1 and O2.
However, such a planner may encounter feasibility issues
since the reachable sets of V2 collect all possible future
realizations, including reaching the speed limit to prevent the
overtaking maneuver. In Section IV-B, we will show that
if a supermartingale assumption is made on the predicted
velocity of V2, we will be able to introduce a risk to quantify
the collision probability and truncate the reachable sets into
risk-aware reachable sets to improve the planning feasibility.

B. Risk-Aware Reachable Set of Vehicle V2

Let us next introduce the risk-aware reachable sets of V2.
Given any state x2(k) ∈ X2 at time step k, assume that the
predicted velocity {v x

2 (k + i), i ∈ N} is a stochastic process
with a filtration {B(Pv(k + i |k)), i ∈ N} on the probability
space ([v R

min, v
R
max],B([v R

min, v
R
max]),Pr). Then, the future state

x2(k + i |k), i ≥ 0, is also a stochastic process.
We assume that the predicted velocity v x

2 (k + i |k), i ≥ 0,
is a supermartingale, according to Definition 1. Consequently,
we assume that for any state x2(k) ∈ X2 at time step k

∀i ∈ N,

{
x2(k + i |k) ∈ P(k + i |k),
E
[
v x

2 (k + i + 1|k)|v x
2 (k + i |k)] ≤ v x

2 (k + i |k).
Remark 1: The supermartingale assumption makes it possi-

ble to incorporate uncertain behaviors of human drivers [32].
By assuming that the predicted velocity of the overtaken
vehicle V2 respects a supermartingale, we generalize the com-
mon assumption in the literature that V2 moves at a constant
velocity.

Let α(k) = {α(k + i |k), i ∈ N}, where 0 ≤ α(k + i |k) ≤ 1,
be the risk-coefficient sequence at time step k. This risk-
coefficient sequence plays an important role in truncating the

reachable sets and quantifies the collision probability after
truncation. Under the supermartingale assumption, we define
the sets

Yα(k + i |k) = {
y ∈ R | Pr

[
z̃ ≥ v x

2 (k)+ y
] ≤ α(k + i |k),

z̃ ∈ Pv(k + i |k)}
Pαv (k + i |k) = {

v x
2 (k)+ y | (v x

2 (k)+ y
) ∈ Pv(k + i |k),

y ∈ Yα(k + i |k)}
which corresponds to the set of velocity that V2 can reach with
probability less than α(k + i |k). Next let us consider how to
compute the set Pαv (k + i |k).

Proposition 1: The set

Pαv (k + i |k) = [
min

{
v x

2 (k)+ η, v x
2,max(k + i |k)},

v x
2,max(k + i |k)] (5)

where{
η = M�/3 + √

M2�2/9 + 2i M2�,

M = max
{
δ
∣∣ax

2,min

∣∣, δax
2,max

}
, � = − ln(α(k + i |k)). (6)

Proof: Construct a filtration Fi = B(Pv(k + i |k)).
It follows from Popoviciu’s inequality [33] that the variance
of v2(k+i |k), conditioned on v2(k+i −1|k), is upper bounded
by M2, which implies that we can choose ∀i ≥ 1, σ 2

i = M2

in the first condition of Lemma 1. From the constraint on the
longitudinal acceleration of vehicle V2∣∣v x

2 (k + i |k)− v x
2 (k + i − 1|k)∣∣ ≤ M

thus the second condition of Lemma 1 also holds. Hence, (6)
and (5) follows from Lemma 1 and setting:

α(k + i |k) = exp

⎛
⎝− η2

2
(∑i

j=1 σ
2
j + Mη/3

)
⎞
⎠.

Remark 2: The parameter η in (6) corresponds to the mini-
mal y in the set Yα(k + i |k) such that v x

2 (k + y) ∈ Pv(k + i |k).
The set Pαv (k + i |k) is nonempty for all 0 ≤ α(k + i |k) ≤ 1.

Define another sequence β(k) = {β(k + i |k), i ∈ N}, where
β(k + i |k) = 1 − α(k + i |k), ∀i ∈ N. Let Pβv (k + i |k) =
cl(Pv (k + i |k) \ Pαv (k + i |k)), that is

Pβv (k + i |k)
= [

v x
2,min(k + i |k),min

{
v x

2 (k)+ η, v x
2,max(k + i |k)}].

Next we define the risk-aware reachable set.
Definition 3: The risk-aware reachable set for risk-

coefficient α(k + i |k) is defined as

Pβ(k + i |k) = {
z ∈ R2 | z ∈ P(k + i |k),

Proj2(z) ∈ Pβv (k + i |k),
β(k + i |k) = 1 − α(k + i |k)}. (7)

Fig. 4 shows the set Pβ(k + i |k) in green. It is noted that it
is a subset of the reachable set P(k + i |k). We remark that the
set Pβ(k + i |k) depends on the risk-coefficient α(k + i |k): the
smaller risk that is acceptable, the larger risk-aware reachable
set.
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The projection of the risk-aware reachable set on the lon-
gitudinal position is denoted by

Pβx (k + i |k) = Proj1
(
Pβ(k + i |k)).

Denote by S
β
2 (k + i |k) all the possible occupancies of the

vehicle V2 corresponding to P
β
x (k + i |k), that is

S
β
2 (k + i |k) = {

z ∈ R2 | z ∈ B2 ⊕ [
px

2 (k); d/2
]
,

px
2 ∈ Pβx (k + i |k)}. (8)

The possible occupancy S
β
2 (k + i |k) of V2 is a compact

rectangle, which can be written as

S
β
2 (k + i |k) = {

z ∈ R2 | Sβ(k + i |k)z ≤ sβ(k + i |k)}
where Sβ(k + i |k) and sβ(k + i |k) are a matrix and a vector,
respectively, with appropriate dimensions. The occupancy set
S
β
2 (k + i |k) is shown as the green rectangle below the x-axis

in Fig. 4.
Remark 3: Another interpretation of the risk-aware reach-

able set is that

Pβ(k + i |k) = {
z ∈ R2 | z ∈ P(k + i |k), z = [z1; z2]

Q = B2 ⊕ [z1; d/2]

Pr(S1(k + i |k) ∩ Q 
= ∅) ≤ 1 − β(k + i |k)}
which corresponds to the predicted state set that the vehicle V2

can reach such that the collision probability with the vehicle
V1 is no greater than 1−β(k + i |k) under the supermartingale
assumption.

C. Geometrical Interpretation of Risk-Aware Reachable Sets

This section provides some geometrical interpretations of
the reachable sets defined above and establishes the relation
among them.

First of all, we show that the risk-aware reachable set Pβ(k+
i |k) scales with the coefficient β(k + i |k) = 1 − α(k + i |k).
If α(k) satisfies α(k + i |k) = 0, i.e., β(k + i |k) = 1, ∀i ∈
N, the risk-aware reachable sets equal to the reachable sets,
i.e., Pβ(k + i |k) = P(k + i |k) and P

β
x (k + i |k) = Px(k + i |k).

In this case, complete safety is guaranteed. If α(k) instead
satisfies α(k + i |k) = 1, i.e., β(k + i |k) = 0, ∀i ∈ N, the
parameter η in (6) is 0, thereby resulting in

Pαv (k + i |k) = [
v x

2 (k), v
x
2,max(k + i |k)]

Pβv (k + i |k) = [
v x

2,min(k + i |k), v x
2 (k)

]
.

We define the reachable sets, the projection on the longi-
tudinal position, and the occupancy set for α(k + i |k) = 1,
∀i ∈ N, as follows:
P̂(k + i |k) = {

z ∈ R2 | z ∈ P(k + i |k)
Proj2(z) ∈ [

v x
2,min(k + i |k), v x

2 (k)
]}

(9)

P̂x(k + i |k) = Proj1
(
P̂(k + i |k)) (10)

Ŝ2(k + i |k) = {
z ∈ R2 | z ∈ B2 ⊕ [

px
2(k); d/2

]
px

2 ∈ P̂x(k + i |k)}. (11)

These sets correspond to the red regions in Fig. 4.
In this case, the automated overtaking problem is reduced
to the scenario where we predict that the vehicle V2

moves with an average velocity no greater than the current
velocity v x

2 (k).
For comparison with the control under the constant velocity

assumption, we restrict the control set to U2 = [ax
2,min, 0],

which implies that the predicted velocity cannot be greater
than the measured velocity v x

2 (k). Similarly, we define the
reachable sets, the projection on the longitudinal position, and
the occupancy set as follows:{

P(k + i + 1|k) = (
A2P(k + i |k)⊕ B2U2

) ∩ X2

P(k + i |k) = {x2(k)}
(12)

Px(k + i |k) = Proj1
(
P̄(k + i |k)) (13)

S2(k + i |k) = {
z ∈ R2 | z ∈ B2 ⊕ [

px
2(k); d/2

]
px

2 ∈ P̄x(k + i |k)}. (14)

The set P(k + i |k) represents the reachable sets when
the vehicle V2 moves with a velocity no greater than the
current velocity, v x

2 (k), i.e., the acceleration is no greater
than 0. These sets correspond to the yellow regions in
Fig. 4.

For ease of notation, we drop the time dependence of
the sets. The relation among these sets is then given in the
following proposition.

Proposition 2: The following set inclusion relations hold:

P ⊆ P̂ ⊆ Pβ ⊆ P

Px ⊆ P̂x ⊆ Pβx ⊆ Px

S2 ⊆ Ŝ2 ⊆ S
β
2 ⊆ S2.

Proof: Follows from the definitions.
Remark 4: A safe overtaking will be ensured if the vehicle

V1 is able to plan an overtaking trajectory that avoids the
occupancy S2 induced by the reachable sets of V2 as well
as the obstacles O1 and O2. Intuitively, the less the reachable
sets are truncated, the more safety is guaranteed. From the
inclusion relation S2 ⊆ Ŝ2 ⊆ S

β
2 , we have that the risk-aware

overtaking (even though the risk-coefficient sequence α(k) is
set to be 1, which corresponds to Ŝ2) still provides more safety
guarantee along the prediction horizon than control under the
constant velocity assumption (which corresponds to S2).

In Section V, we will treat the risk-coefficient sequence
α(k) as a decision variable to design a risk-aware overtaking
controller.

V. RISK-AWARE OPTIMAL OVERTAKING CONTROL

In this section, we formulate the risk-aware overtaking prob-
lem and then design a receding-horizon overtaking algorithm.
We provide theoretical guarantee of this algorithm and discuss
how to approximately solve the risk-aware overtaking problem
to speed up computations.
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A. Risk-Aware Optimal Overtaking

At time step k, the risk-aware overtaking problem can be
formulated as P(x1(k), x2(k))

min
T ∈N,u1,α(k)

max
i∈N[0,T ]

α(k + i |k)
s.t. ∀i ∈ N[0,T −1] :

x1(k + i + 1|k) = f (x1(k + i |k), u1(k + i |k)) (15a)

u1(k + i |k) ∈ U1(k + i |k), (15b)

∀i ∈ N[0,T ] :
β(k + i |k) = 1 − α(k + i |k) (15c)

x1(k + i |k) ∈ X1(k + i |k) (15d)

S1(x1(k + i |k)) ∩ O j = ∅, j = 1, 2 (15e)

S1(x1(k + i |k)) ∩ S
β
2 (k + i |k) = ∅ (15f)⎧⎪⎪⎨

⎪⎪⎩
px

1(k + T |k) ≥ px,β
2,max(k + T |k)

py
1(k + T |k) = d/2

θ1(k + T |k) = 0

(15g)

where px,β
2,max(k + T |k) = max{z | z ∈ P

β
x (k + T |k)}.

The optimization problem P(x1(k), x2(k)) aims to mini-
mize the worst case risk value over a horizon, subject to a
feasible overtaking trajectory. The decision variables are the
risk-coefficient sequence α(k), the overtaking horizon T , and
the control sequence {u1(k + i |k)}T−1

i=0 . The essence of this
optimization problem is to tradeoff the feasibility of automated
overtaking and the collision risk along the prediction horizon.
In general, the overtaking problem encounters feasibility issues
if the reachable set P(k + i |k) is used to set up poten-
tial collision regions. The introduction of a risk-coefficient
sequence α(k) could release a larger overtaking space, which
improves feasibility. The problem P(x1(k), x2(k)) looks
for a minimal risk coefficient that makes the overtaking
feasible.

In general, the min-max optimization problem
P(x1(k), x2(k)) is difficult to solve exactly, in particular
in the presence of integer decision variable T . To remedy
this, we solve the problems P̌(x1(k), x2(k), Tk) and
P̂(x1(k), x2(k), Tk) for approximating the solution
to P(x1(k), x2(k)), where Tk ∈ N. The problem
P̌(x1(k), x2(k), Tk) is simplified from P(x1(k), x2(k))
by fixing the risk coefficients as 0 and the horizon as Tk , and
is formulated as

min
u1

J (x1, u1, Tk)

s.t. (15a), (15b), (15d), (15e)

∀i ∈ N[0,Tk ] : S1(x1(k + i |k)) ∩ S2(k + i |k) = ∅⎧⎪⎨
⎪⎩

px
1(k + Tk |k) ≥ p̌x

2,max(k + Tk |k)
py

1(k + Tk |k) = d/2

θ1(k + Tk |k) = 0

(16)

where p̌x
2,max(k + Tk |k) = max{z | z ∈ Px(k + Tk |k)}. The

problem P̂(x1(k), x2(k), Tk) is derived from P(x1(k), x2(k))
by fixing the risk coefficients to 1 and the horizon to Tk and

is formulated as

min
u1

J (x1, u1, Tk)

s.t. (15a), (15b), (15d), (15e)

∀i ∈ N[0,Tk ] : S1(x1(k + i |k)) ∩ Ŝ2(k + i |k) = ∅⎧⎪⎨
⎪⎩

px
1(k + Tk |k) ≥ p̂x

2,max(k + Tk |k)
py

1(k + Tk |k) = d/2

θ1(k + Tk |k) = 0

(17)

where p̂x
2,max(k + Tk |k) = max{z | z ∈ P̂x(k + Tk |k)}. In the

above problems, the cost function is

J (x1, u1, Tk) =
Tk −1∑
i=0

(‖x1(k + i |k)‖2 + ‖u1(k + i |k)‖2)
+‖x1(k + Tk |k)‖2.

Intuitively, P̌(x1(k), x2(k), Tk) captures the overtaking in
the most safe sense while P̂(x1(k), x2(k), Tk) captures the
overtaking in the most risky sense. We remark that: (1)
either the feasibility of P̌(x1(k), x2(k), Tk) or the feasibility of
P̂(x1(k), x2(k), Tk) implies the feasibility of the original prob-
lem P(x1(k), x2(k)); (2) the solutions to P̌(x1(k), x2(k), Tk)
or P̂(x1(k), x2(k), Tk) are suboptimal for P(x1(k), x2(k)).

Next, let us show how to reformulate the safety con-
straints (15b) (16), and (17). Recall that S2(k + i |k) =
{z ∈ R2 | S(k + i |k)z ≤ s(k + i |k)} and write Ŝ2(k +
i |k) = {z ∈ R2 | Ŝ(k + i |k)z ≤ ŝ(k + i |k)}. Thanks to
Lemma 2, these three constraints can be equivalently rewritten
as (18)–(20), as shown at the bottom of the next page. More
specifically, the variables μ1, μ2, λ1, and λ2 are introduced
for the constraint (15b), μ̌3 and λ̌3 for (16), and μ̂3 and λ̂3

for (17). To this end, we can see that the optimization problems
P̌(x1(k), x2(k), Tk) and P̂(x1(k), x2(k), Tk) are nonlinear pro-
gramming problems.

B. Algorithm

The risk-aware optimal overtaking algorithm is shown
in Algorithm 1. Here, TerInd is an indicator to deter-
mine whether the while loop (line 2) terminates or not.
When it terminates, there are three possible outputs:
{Successful, Infeasible,Undecidable}.

1) Initialization: At time k = 0, we want to find a time hori-
zon T0 such that the optimization problem P̂(x1(0), x2(0), T0)
is feasible. If the initial velocity of V1 is greater than that of
V2 (i.e., v x

1 (0) > v x
2 (0)), then the time horizon T0 is bounded

by ⌊
v R

max − v x
1 (0)

δax
1,max

⌋
≤ T0 ≤

⌈
v R

max − v x
2 (0)

δax
2,max

⌉
.

The lower bound is the minimal time at which the velocity
of V1 reaches the velocity limit v R

max. The upper bound is the
minimal time at which the velocity of V2 reaches v R

max, i.e., the
overtaking time of the worst-case scenario where V2 prevents
the overtaking. One can use the bisection method for searching
T0 by checking the feasibility of P̂(x1(0), x2(0), T0).
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2) At Each Time Step k: We first check if the overtaking
is completed (lines 7–10). If the longitudinal position px

1(k)
of V1 is in front of V2, the lateral position py

1(k) of V1 is
d/2, and the heading angle θ1(k) of V1 is 0, then Algorithm 1
terminates with an output Successful.

If the overtaking is not completed, we solve the optimization
problems for obtaining the control input. Let the time horizon
Tk = T0 − k. If the problem P̌(x1(k), x2(k), Tk) is feasi-
ble, solve P̌(x1(k), x2(k), Tk) (lines 12–14); otherwise, solve
P̂(x1(k), x2(k), Tk). If P̂(x1(k), x2(k), Tk) is infeasible, stop
with output Infeasible (lines 18–19); otherwise, implement
u∗

1(k|k) which is picked up from the optimal solution of
P̌(x1(k), x2(k), Tk) or P̂(x1(k), x2(k), Tk) (lines 22–28).

In Algorithm 1, the resulting solution will not be directly
implemented. As shown in line 22, we use S1(x1(k + 1|k))∩
S2(k + 1|k) = ∅ to detect whether the first input can ensure
safety at next time step. If S1(x1(k + 1|k))∩ S2(k + 1|k) 
= ∅,
it implies that there exist some possible states x2(k + 1) in
P(k+1|k) such that S1(x1(k+1|k))∩S2(x1(k+1)) 
= ∅. In this
case, Algorithm 1 terminates with an output Undecidable.

C. Theoretical Results

In the following, we will provide some theoretical results.
Under Algorithm 1, the overtaking maneuver is computed in
a closed-loop manner. The closed-loop system for V1 is

x1(k + 1) = f
(
x1(k), u∗

1(k|k))
where u∗

1(k|k) is derived from the optimal solution of
P̃(x1(k), x2(k)).

Proposition 3 (Safety): If Algorithm 1 terminates with the
output Successful, the closed-loop overtaking trajectory is
collision-free.

Proof: In lines 22–28 of Algorithm 1, the collision
avoidance between vehicles is guaranteed by S1(x1(k +1|k))∩
S2(k +1|k) = ∅; in other works, the occupancy intersection of
two vehicles at the next time step is empty. The feasibility of
P̌(x1(k), x2(k), Tk) or P̂(x1(k), x2(k), Tk) implies that under
the control of u∗

1(k|k), there is no collision between V1 and
the obstacles Q1 and O2. If the output of Algorithm 1 is
Successful, the closed-loop overtaking trajectory is collision-
free throughout the whole overtaking process.

Proposition 4 (Successful Overtaking): By implementing
Algorithm 1, if the optimization problem P̌(x1(k), x2(k), Tl)

Algorithm 1 Risk-Aware Optimal Overtaking Algorithm

is feasible at some time step k, Algorithm 1 will terminate
with the output Successful.

Proof: The feasibility of P̌(x1(k), x2(k), Tl) implies
that there exist a time horizon Tk , a sequence of con-
trol inputs, {u1(k + i |k), i ∈ N[0,Tk −1]}, such that the
constraints (15f)–(15g) are satisfied with α(k + i |k) = 0,
∀i ∈ N[0,Tk ]. At next time step k + 1, with time hori-
zon Tk − 1 and control inputs {u1(k + i + 1|k), i ∈
N[0,Tk −2]}, the constraints (15f)–(15g) are still satisfied with

∀ j = 1, 2,

⎧⎪⎨
⎪⎩

−gT
1 μ j(k + i |k)+ (

H j p(x1(k + i |k))− h j
)T
λ j (k + i |k) > 0

GT
1 μ j(k + i |k)+ RT (x1(k + i |k))H T

j λ j (k + i |k) = 0

λ j (k + i |k) ≥ 0, μ j (k + i |k) ≥ 0, ‖H T
j λ j (k + i |k)‖ ≤ 1

(18)

⎧⎪⎨
⎪⎩

−gT
1 μ̌3(k + i |k)+ (S(k + i |k)p(x1(k + i |k))− s(k + i |k))T λ̌3(k + i |k) > 0

GT
1 μ̌3(k + i |k)+ RT (x1(k + i |k))S(k + i |k)T λ̌3(k + i |k) = 0

λ̌3(k + i |k) ≥ 0, μ̌3(k + i |k) ≥ 0, ‖S(k + i |k)T λ̌3(k + i |k)‖ ≤ 1.

(19)

⎧⎪⎨
⎪⎩

−gT
1 μ̂3(k + i |k)+ (

Ŝ(k + i |k)p(x1(k + i |k))− ŝ(k + i |k))T
λ̂3(k + i |k) > 0

GT
1 μ̂3(k + i |k)+ RT (x1(k + i |k))Ŝ(k + i |k)T λ̂3(k + i |k) = 0

λ̂3(k + i |k) ≥ 0, μ̂3(k + i |k) ≥ 0, ‖Ŝ(k + i |k)T λ̂3(k + i |k)‖ ≤ 1.

(20)
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Fig. 5. Successful overtaking: (a) position of two vehicles. (b) Yaw angle
of V1. (c) Longitudinal velocities of two vehicles. (d) Steering angle of V1.
(e) Acceleration of V1. (f) Distance between two vehicles.

α(k +1+ i |k +1) = 0, ∀i ∈ N[0,Tk −1]. By induction, it follows
that the optimal solution of the problem P(x1( j), x2( j)) is 0
for all j ≥ k. We conclude that Algorithm 1 will terminate
with the output Successful at most Tk steps.

Remark 5: Recall that the problem P̂(x1(k), x2(k), Tl) is
a simplified version of P(x1(k), x2(k)) by fixing the risk
coefficients to 1 and the horizon to Tk . Even though only
P̂(x1(k), x2(k), Tl) is feasible at the initial step k = 0,
i.e., there exists collision risk along the prediction horizon,
successful overtaking without collision is still possible. Intu-
itively, this is because uncertainty about future positions of V2

is reduced significantly as time proceeds.
In the following, we give some tips for improving the online

computational efficiency.

1) Both P̌(x1(k), x2(k), Tk) and P̂(x1(k), x2(k), Tk) are
nonlinear programming problems. Good initial guesses
can improve the efficiency when solving nonlinear pro-
gramming problems. In our case, one can choose the
optimal solution {u∗

1(k − 1 + i |k − 1)}Tk−1
i=1 at time step

k − 1 to be the initial guess at time k.

Fig. 6. Unsuccessful overtaking: (a) position of two vehicles. (b) Yaw angle
of V1. (c) Longitudinal velocities of two vehicles. (d) Steering angle of V1.
(e) Acceleration of V1. (f) Distance between two vehicles.

2) If P̌(x1(k), x2(k), Tk) is feasible at some step k, the
sequence of the optimal solution {u∗

1(k + i |k)}Tk
i=1 can

be directly implemented without solving the optimiza-
tion problem for the remaining time steps. According
to Proposition 4, this still ensures the safety of the
overtaking.

VI. NUMERICAL EVALUATIONS

This section provides simulated case studies to demonstrate
the effectiveness of our theoretical results. The following
numerical experiments are run in MATLAB R2018b with
ICLOCS2 toolbox [34], IPOPT toolbox [35], and MPT3
toolbox [36] on a Dell laptop with Windows 10, Intel i7-6600U
CPU 2.80 GHz, and 16.0 GB RAM.

A. Successful and Unsuccessful Overtakings

The parameters used in the simulated example are listed
in Table I, where li and wi denote the length and width of
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Fig. 7. Risk-aware optimal overtaking, first realization: (a) position of two
vehicles. (b) Yaw angle of V1. (c) Longitudinal velocities of two vehicles.
(d) Steering angle of V1. (e) Acceleration of V1. (f) Distance between two
vehicles.

TABLE I

CASE STUDY PARAMETERS

vehicle Vi , respectively. We choose the initial state: x1(0) =
[0; 1.5; 0; 8] and x2(0) = [20; 3]. A feasible time horizon T0

at the initial time step is 31. To measure safety, we define the
distance between the vehicles as

D(k) = min
z1∈S1(x1(k))
z2∈S2(x2(k))

‖z1 − z2‖.

In the following, we implement Algorithm 1 and provide
two overtaking scenarios: one results in a Successful output
while the other results in an Infeasible output.

Fig. 8. Receding horizon control with constant velocity prediction, first
realization: (a) position of two vehicles. (b) Yaw angle of V1. (c) Longitudinal
velocities of two vehicles. (d) Steering angle of V1. (e) Acceleration of V1.
(f) Distance between two vehicles.

A successful overtaking attempt is shown in Fig. 5, where
V1 finally arrives in front of V2 through a set of sequen-
tial maneuvers: lane-changing, lane-keeping, and merging.
Fig. 5(a) shows the position trajectories of the two vehicles.
In Fig. 5(b) and (c), we show the yaw angle of V1 and
the longitudinal velocities, respectively. Here, the longitudi-
nal velocity of V1 is v1(k) cos θ1(k). It is noted that the
longitudinal velocity of V2 increases. Both yaw angle and
longitudinal velocities satisfy their corresponding constraints.
In Fig. 5(d) and (e), we show that the control inputs of the
automated vehicle (steering angle and acceleration) satisfy the
control input constraints. Furthermore, Fig. 5(f) shows that
the collision avoidance between two vehicles is guaranteed.

An infeasible overtaking attempt is shown in Fig. 6.
In Fig. 6(a), we show the position trajectories of two vehicles.
In Fig. 6(b) and (c), we show the yaw angle of V1 and
longitudinal velocities of two vehicles, respectively. Both yaw
angle and longitudinal velocities satisfy their corresponding
constraints. Initially, since the problem P̂ is feasible, the
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Fig. 9. Risk-aware optimal overtaking, second realization: (a) position of
two vehicles. (b) Yaw angle of V1. (c) Longitudinal velocities of two vehicles.
(d) Steering angle of V1. (e) Acceleration of V1. (f) Distance between two
vehicles.

vehicle V1 performs a lane change. However, due to the signif-
icant increase of the longitudinal velocity of V2, the problem
P̂ becomes infeasible when the longitudinal position of V1 is
about 5m. Then, the vehicle V1 gives up the overtaking attempt
and moves back to the previous lane. In Fig. 6(d) and (e),
we show that the control inputs of the automated vehicle
(steering angle and acceleration) satisfy the control input
constraints. Furthermore, Fig. 6(f) shows that the collision
avoidance between two vehicles is still guaranteed even though
the overtaking attempt fails.

B. Comparison With the Constant Velocity Assumption

We run a Monte Carlo simulation to compare Algorithm 1
with receding horizon control with constant velocity prediction
adapted from [5], [7]. We sample 1000 realizations of state
trajectories for V2 with random inputs generated by u2(k) =
−2+6r but still guarantee the constraint satisfaction, where r
is a uniformly sampled random variable in interval [0, 1]. For

Fig. 10. Receding horizon control with constant velocity prediction,
second realization: (a) position of two vehicles. (b) Yaw angle of V1. (c) Lon-
gitudinal velocities of two vehicles. (d) Steering angle of V1. (e) Acceleration
of V1. (f) Distance between two vehicles.

the 1000 realizations, we implement Algorithm 1 and receding
horizon control with constant velocity prediction.

The simulation results show that the probability of suc-
cessful overtaking under Algorithm 1 is 89.7%. This is much
higher than the 25.3% successful rate under receding horizon
control with constant velocity prediction. One explanation for
this is that the risk-aware optimal overtaking control takes into
account the (partial) reachable sets of V2 at each time step and
such design exhibits more robustness than the control with
constant velocity prediction.

Over the 897 successful overtaking scenarios under
Algorithm 1, the average computational time at each time step
is 2.18 s, where the minimal computational time is 0.87 s
and the maximal computational time is 5.62 s. At each time
step, the average percent of the total computation time spent
on the reachable sets is about 28.4%. Thus, the time for
solving the nonlinear programming problem is about 1.56 s.
Currently, this computational time is not fast enough for real-
time implementation. Thus, to take advantage of the increased
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success rate of Algorithm 1, an important future work will be
to optimize its implementation and evaluate its performance
on a realistic hardware platform.

In the following, we detail and compare two realizations.
In the first realization, both control methods allow V1 to safely
overtake V2, as shown in Figs. 7 and 8. We can see that
the state, control, and safety constraints are respected in this
realization. From Figs. 7(a) and 8(a), we see that our risk-
aware optimal overtaking control achieves shorter overtaking
distance and time (77.61 m and 6.2 s) than the control with
constant velocity prediction, (100.30 m and 9.0 s).

In the second realization, the risk-aware optimal overtaking
control achieves successful overtaking as shown in Fig. 9,
while the control with constant velocity prediction is unable
to perform a safe overtaking before the overtaking becomes
infeasible as shown in Fig. 10. In Fig. 9, we show the state
and control trajectories, which satisfy the constraints. We can
see that V1 is in front of V2 when V2 is at the x-position
with 64.34 m. At the same position, however, the vehicle
V1 is still moving in the other lane under the control with
constant velocity prediction. Even when the velocity of V2

reaches the maximal velocity (at about 102.28 m), which
implies that overtaking becomes infeasible, V1 has no chance
to merge back and fails to safely overtake V2. Finally, V1 gives
up overtaking attempt and moves back to the previous lane,
as shown in Fig. 10(a).

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work, we studied the overtaking problem where
an automated vehicle tries to overtake another vehicle. Here,
we did not require the conventional assumption that the vehicle
we want to overtake moves at a constant velocity, which might
impose feasibility issues. To increase the possibility of feasible
overtaking, we used martingale theory to perform a risk-aware
reachability analysis by analytically characterizing the pre-
dicted collision probability. We designed a risk-aware optimal
overtaking algorithm which can ensure collision avoidance
during the whole overtaking process. Finally, we illustrated
the effectiveness of the proposed algorithm in a simulated
case study and compared our approach to some that has been
suggested in the literature.

Future directions of great interest include more efficient
methods for solving the optimization problem, the study of
the interplay between the automated vehicle and the human-
driven vehicle, and experimental evaluation of our approach.
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