
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021 4715

Analysis and Design of Vehicle Platooning
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Abstract—Platooning of connected and autonomous ve-
hicles (CAVs) has a significant potential for throughput
improvement. However, the interaction between CAVs and
non-CAVs may limit the practically attainable improve-
ment due to platooning. To better understand and ad-
dress this limitation, we introduce a new fluid model of
mixed-autonomy traffic flow and use this model to ana-
lyze and design platoon coordination strategies. We pro-
pose a tandem-link fluid model that considers randomly
arriving platoons sharing highway capacity with non-CAVs.
We derive verifiable conditions for stability of the fluid
model by analyzing an underlying M/D/1 queuing process
and establishing a Foster–Lyapunov drift condition for the
fluid model. These stability conditions enable a quantitative
analysis of highway throughput under various scenarios.
The model is useful for designing platoon coordination
strategies that maximize throughput and minimize delay.
Such coordination strategies are provably optimal in the
fluid model and are practically relevant. We also validate
our results using standard macroscopic (cell transmission
model) and microscopic (simulation for urban mobility)
simulation models.

Index Terms—Fluid model, piecewise-deterministic
Markov processes, traffic control, vehicle platooning.

I. INTRODUCTION

P LATOONING of connected and autonomous vehicles
(CAVs) has the potential for significant throughput
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Fig. 1. Traffic scenarios without (top) and with (bottom) interplatoon
coordination. (a) Without interplatoon coordination, the exiting traffic can
be blocked by local congestion induced by platoons. (b) Interplatoon
coordination can help mitigate the “movingobstacle” effect and maintain
free flow.

improvement [1], [2]. The idea of automatically regulating
strings of vehicles is well-known [3], [4], and several experi-
mental studies in real-world traffic conditions have been con-
ducted in the past decades [5]–[8]. Important progress has been
made in vehicle-level control design [6], [7], [9] and system-
level simulations [10]. However, we still lack both link- or
network-level models for evaluating the impact of platooning on
highway traffic and coordinating the movement of platoons on
mixed-traffic highways. In particular, although platooned CAVs
have smaller intervehicle spacing, uncoordinated and randomly
arriving CAV platoons may act as “moving obstacles” and result
in recurrent local congestion, especially at bottlenecks (see
Fig. 1(a) for illustration). Appropriate interplatoon coordination,
such as regulating the headways between platoons and managing
the platoon sizes, is essential for realizing the full benefits of
platooning in mixed-traffic conditions.

In this article, we consider a platoon coordination problem
over a generic highway section as shown in Fig. 1(a). The
highway section has a downstream on-ramp, which forms a
geometric bottleneck. If more traffic is arriving at the bottle-
neck than the bottleneck can discharge, then a queue would be
growing there. The bottleneck may impede free flow of traffic,
and consequently uncoordinated platoons may start inducing
congestion (via local queuing), thereby impacting the upstream
off-ramp. One of the objectives of platoon coordination is to
ensure that the potential throughput gain due to platooning is
not limited by such local congestion. Interplatoon coordination
can be achieved by regulating the times at which platoons arrive
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TABLE I
MODELS FOR TRAFFIC WITH PLATOONING

at the bottleneck by specifying the average or reference speed of
platoons over the highway section (called headway regulation)
and maintaining desirable platoon sizes through split or merge
maneuvers (called size management). Implementation of such
coordination strategies can be facilitated by traffic sensors that
collect real-time traffic information and road-side units that
send coordination instructions to each platoon [see Fig. 1(b)];
such capabilities are already available in modern transportation
systems [11].

To model the interaction between platoons and background
traffic, we present a multiclass tandem-link fluid model. Fluid
models are standard for highway bottleneck analysis [12, Ch.
2] and allow tractable analysis [13]. Our model specifically
captures two important features of platooning operations. First,
platoons travel in a clustered manner (i.e., with small between-
vehicle spacings and relatively large interplatoon headways),
whereas non-CAVs do not follow such a configuration. In our
model, random platoon arrivals are modeled as Poisson jumps
in the traffic queue at the bottleneck. This model captures
the inherent randomness in platooning operations [7]. Second,
platoons share highway capacity with the background traffic
and may act as “moving obstacles”; our model captures this
interaction by constraining the sum of discharge rates of platoons
and background traffic at the bottleneck with an overall capacity.

For comparison, Table I lists various models that researchers
have studied for traffic flow with CAV platoons under various
contexts.Fluid models are particularly suitable for link-level
analysis and control design due to the following advantages.
Compared with discrete queuing models, fluid models do not
track individual vehicles; instead, only the aggregate flow is
required. This considerably simplifies the state space and the
system dynamics. Compared with partial differential equation
(PDE) models, fluid models entail smaller computational re-
quirements and enable tractable analysis. Compared with static
models, fluid models allow real-time control design rather than
long-term decisions such as day-to-day traffic assignment.

Two major differences are also worth noting here. First, the
behavior of discrete queuing models (e.g., M/M/1) is closely re-
lated to their fluid counterparts [23]. As opposed to fully discrete
queuing models, our model considers platoon as discrete Poisson
arrivals and non-CAVs as a continuous inflow. This is motivated
by practical situations where the arrival rate of CAV platoons
(less than 5 per minute) is much lower than that of non-CAVs

(50–100 per minute). Second, fluid models share some common
features with PDE models [24] or their discretization [e.g., cell
transmission model (CTM)][25]. In contrast to PDE models, the
fluid model retains the queuing delay due to demand–capacity
imbalance, but does not capture the evolution of congestion
waves. Still, both the traffic fluid model and classical traffic flow
models are based on conservation laws. Some authors showed
that these two types of models lead to equivalent results in traffic
network optimization [26]. This article also demonstrates the
consistency between the fluid model and more detailed models
via simulation (see Section V-B).

Using the fluid model, we study the throughput of the highway
section with uncoordinated platoons.1 We utilize an M/D/1
queuing characterization of the fluid model and establish a
Foster–Lyapunov drift condition for stability of the fluid model.
This leads to an easy-to-check sufficient condition for bounded
queues of the uncontrolled system (see Theorem 1), which
relies on the general stability/convergence theory of Markov
processes [28]. We also derive explicit lower and upper bounds
for throughput in the uncoordinated scenario (see Theorem 2).
These results also contribute to the literature on fluid queuing
systems [13], [29]–[32].

We also design a class of platoon coordination strategies that
realize the full potential of platooning for throughput improve-
ment. The control actions that we consider include regulating
interplatoon headways and splitting platoons into shorter pla-
toons. In terms of the fluid model, these regulation strategies
are formulated as control laws regulating the arrival process of
platoons with the knowledge of the arrival times of previous pla-
toons. In practice, such knowledge can be obtained by tracking
the movement of existing platoons on the highway section via
vehicle-to-infrastructure (V2I) communications [27]. We prove
that a set of control laws (see Theorem 3) stabilize the system in
a fairly strong sense (bounded moment-generating function and
exponential convergence to steady-state distribution) if and only
if the total inflow is less than the capacity. Thus, they are optimal
in the sense of throughput maximization and delay minimiza-
tion. Intuitively, these control laws coordinate the movement
of platoons so that they arrive at the bottleneck with relatively
evenly distributed headways; thus, queuing delay is absorbed
en route, congestion at the bottleneck does not build up, and
spillback is eliminated.

Note that the control actions considered in this article are
related to, but different from, a class of longitudinal/lateral co-
operative adaptive cruise control (CACC) capabilities. We focus
on link-level decision variables including the reference speed or
the average speed that a traffic manager would recommend a
platoon to take over a highway section and the decision whether
to maintain or split a platoon over a highway section, both of
which are concerned with a typical scale of 10 km or 10 min.
In the context of vehicle-level CACC, however, the real-time
speed is dynamically regulated to maintain string stability [14]

1In this article, “coordination” refers to the link-level coordination of multiple
platoons. We acknowledge that “coordination” is also used to refer to the CACC
applied to individual vehicles within one platoon [27].
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or to mitigate local stop-and-go behavior [16], [33], [34], which
involves much finer space and time resolutions. The objective
of CACC design is to optimize microscopic driving behavior
and regulate congestion waves, whereas our control objective is
to reduce the congestion due to randomness in platoon arrivals
and develops coordination strategies that work effectively in the
presence of such randomness.

Finally, we discuss how the fluid model-based results can be
translated to implementable actions for actual CAV platoons
and validate the proposed coordination strategies in standard
simulation environments. We implement the proposed strategies
in a macroscopic (CTM) [35] and a microscopic (simulation for
urban mobility, SUMO) [36] simulation models. Results indicate
that the proposed strategy effectively and consistently improves
travel times in both simulation models. In spite of multiple
simplifications that our modeling approach makes, simulation
results suggest that the theoretically optimal headway regulation
strategy attains more than 80% of the improvement attained by
the simulation-optimal strategies.

The main contributions of this article include the following.
1) A novel fluid model highway with randomly arriving

platoons and constant inflow of background traffic that
captures the queuing and throughput loss due to interac-
tion between various traffic classes.

2) A set of easily checkable conditions for stability of the
fluid model derived by combining ideas from queuing
theory (mainly M/D/1 process) and the theory of stability
of continuous-time, continuous-state Markov processes.
These conditions enable quantitative analysis of through-
put of mixed-autonomy highways.

3) A set of platooning strategies that regulate movement
of platoons to attain maximum throughput as well as
minimum delay.

4) Validation of the fluid model-based analysis and design
results via simulation of macroscopic and microscopic
models.

The rest of this article is organized as follows. Section II intro-
duces the fluid model. Section III presents throughput analysis
based on stability conditions. Section IV discusses a class of
optimal control strategies. Section V presents the implemen-
tation and validation in simulation environments. Section VI
summarizes the main results and mentions several directions for
the future work.

II. MODELING AND PROBLEM DEFINITION

In this section, we introduce our stochastic fluid model for
highway bottlenecks with mixed traffic consisting of both CAVs
and non-CAVs (see Section II-A) and formally define the prob-
lems that we study in the rest of this article (see Section II-B).

A. Stochastic Fluid Queuing Model

Consider a highway section with a downstream bottleneck and
an off-ramp, as illustrated in Fig. 2(a). We model the highway
as a tandem-link fluid queuing system in Fig. 2(b). Link 1
has a mainline capacity F (veh/h) and an off-ramp capacity
R (veh/h). Link 2 has an on-ramp with capacity R, which

Fig. 2. Fluid queuing system for a highway section with CAVs and
non-CAVs. (a) Two-link highway section and main parameters. (b) Fluid
model for a system in (a).

creates a bottleneck with capacity F–R.2 To model the effect of
coordinated platooning operations [see Fig. 1(b)], we introduce
a “virtual link” 0 upstream to link 1, which we refer as the gate.
In our model, this gate can temporarily hold platoons and control
their rate of release in order to regulate the downstream traffic
flow. Furthermore, the storage space in link 2 (i.e., the maximum
queue length that it can admit before the traffic spills over to
link 1) is finite, modeled as a buffer with space Θ (veh). On the
other hand, links 0 and 1 are assumed to have an infinite buffer
space. However, the model can be extended to other typical road
configurations [26], which allows extension of our approach to
more general settings. Note that our model does not account for
details such as car following and lane changing.

The highway section is subject to a total demand a > 0
(veh/h). This demand comprises ρa amount of mainline demand
that is discharged into link 2, and (1–ρ)a amount of demand
exiting through the off-ramp. Out of the ρa mainline demand,
CAVs traveling in platoons amount to a fraction η ∈ [0, 1], and
the remaining (1–η) fraction is comprised of non-CAV traffic. In
this demand pattern, CAVs only contribute to the mainline traffic
(with demand ηρa), and the off-ramp demand (1–ρ)a is entirely
comprised of non-CAVs.3 We call ρ the mainline ratio and η
the platooning ratio. We refer to the total non-CAV demand
(1− ηρ)a as background traffic. For CAV platoons, the mean
interarrival time is much greater than minimal interarrival times,
so we consider platoons as discrete arrivals. For non-CAVs,
however, the mean and the minimal interarrival times are in the
same order, so we consider background traffic as continuous
fluid. We consider a Poisson process rather than a general
renewal process, since Poisson processes are standard models
for random arrivals in transportation systems [12] and ensure
that the model is Markovian [37].

CAV platoons arrive according to a Poisson process of rate λ

(platoons per hour), which is given by

λ :=
ηρa

l
(1)

2For simplicity, we assume the on-ramp capacity to be identical to the off-ramp
capacity.

3Our setup can be extended to a more general case of CAV platoons that are
bound to different destinations.
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where l is the number of CAVs in each platoon. Typical val-
ues of l are between 2 and 10 [7]. For ease of presentation,
we consider homogeneous platoon lengths. Nonhomogeneous
platoon lengths can be modeled as jumps with randomized
magnitudes, and our Lyapunov function-based approach (see
Appendixes 1–3) is still valid. The Poisson process captures the
randomness of the arrival of platoons.

We are now ready to introduce the stochastic fluid model.
Definition 1: The stochastic fluid model is defined as the tuple

〈Q,U , G, λ,V, S〉, where following the statements hold:
1) Q := R3

≥0 × [0,Θ] is the state space as well as the set of
initial conditions;

2) U ⊆ R≥0 is the set of control inputs to the vector field G
(called the “gate discharge”);

3) G : Q× U → R4 is a vector field such that (d/dt)Q(t) =
G(Q(t));

4) λ ∈ R≥0 is the Poisson rate at which resets occur (called
the “arrival rate”);

5) V ⊆ R3 is the set of control inputs to the reset mapping
S (called the “allocation”);

6) S : Q× V → Q is a mapping that resets the state when
a platoon arrives.

In our model, queuing happens due to sudden increases in
queues, which occur at rate λ and according to the reset mapping
S, and interaction between queues in various links, which is
captured by the vector field G. We consider the control inputs
(u, v) to be determined by a control policy (μ, ν), i.e., (u, v) =
(μ(q), ν(q)).

Definition 2 (Control policy): A control policy (μ, ν) is spec-
ified by functions μ : Q → U and ν : Q → V .

We will describe how control policies for the stochastic fluid
model can be translated to platoon coordination strategies in
Section IV.

Given a control policy (μ, ν), the model’s dynamics can be
expressed via the infinitesimal generator

L g(q) = GT (q;μ(q))∇qg(q) + λ

(
g (S(q; ν(q)))− g(q)

)

q ∈ Q (2)

where g is a differentiable function [38]. In the above, the first
term on the right-hand side results from the fluid dynamics
governed by the vector fieldG, and the second term results from
the resets governed by the reset mapping S.

In summary, our model (as well as the subsequent analysis)
focuses on the impact due to the following parameters:

1) total demand a;
2) platooning ratio η (or equivalently, platoon arrival rate λ);
3) platoon size l;
4) buffer size Θ.

The rest of this section is devoted to specifying the elements
in the tuple 〈Q,U , G, λ,V, S〉.

1) State Space Q: We use qm0 to denote the CAVs held in
the gate, qm1 and qm2 to denote the queues of mainline traffic in
links 1 and 2, respectively, and qo1 to denote the queue of off-ramp
traffic in link 1. The state of the stochastic fluid model is q =

Fig. 3. H is the spacing between ordinary vehicles, whereas h is the
spacing within a platoon; γ = H/h.

Fig. 4. Two examples of trajectories of Qm
2 (t) with (left) and without

spillback (right).

[qm0 qm1 qo1 q
m
2 ]T ∈ Q. Note that qm0 consists of only CAVs, qm1

and qm2 consist of both CAVs and non-CAVs, and qo1 consists of
only non-CAVs. A key characteristic of platooning is the reduced
intervehicle spacing. We model this by scaling down the CAV
part of qmk by a factor γ > 1: a platoon of l CAVs are roughly
equivalent to l/γ non-CAVs in terms of the occupied road space,
where γ is the ratio between the inter-non-CAV spacing H and
the inter-CAV spacing h (see Fig. 3). A typical value for γ is
2 [7], [39]. Hence, q is the vector of effective queue lengths
with the CAV part scaled down, which is in general smaller
than the nominal queue lengths. Throughout this article, we use
Q(t) = [Qm

0 (t) Qm
1 (t) Qo

1(t) Q
m
2 (t)]T to denote the vector of

queues at time t and q to denote a particular state.
2) Gate Discharge U: The rate at which the gate discharges

traffic to link 1 is u ∈ U . We consider u to be controlled by a
gate discharge policy μ : Q → R≥0 satisfying the following.

Assumption 1: The gate discharge policy μ satisfies the fol-
lowing:

i) μ(q) is nonnegative, bounded, and piecewise continuous
in q;

ii) μ(q) = 0 for q such that qm0 = 0;
iii) μ(q) is nonincreasing in qm1 , q

o
1 , q

m
2 .

In the above, (i) ensures regularity to facilitate analysis, (ii)
means that the gate discharge must vanish if qm0 = 0, and (iii)
means that CAVs in the gate will be discharged slower if the
downstream queues are longer. We use U to denote the set of
gate discharge policies satisfying the above assumption. This
assumption basically ensures thatQ(t) is bounded and piecewise
continuous in t.

3) Vector Field G: The vector field G specifies the model’s
dynamics between resets. Specifically, the inflow of mainline
background traffic is (1− η)ρa, and the inflow of off-ramp
background traffic is (1− ρ)a. If the queue in link 2 is less
than the buffer size, then the queue in link 1 is discharged at
the link’s capacity F ; otherwise, the queue propagates to link 1
and reduces the off-ramp flow (called spillback, see Fig. 4). The
flows in Fig. 2(b) are given by

f0(q;μ(q)) := μ(q) (3a)
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f1(q;μ(q))

:=

⎧⎪⎪⎨
⎪⎪⎩

min{(1− η)ρa+ μ(q), F} ifqm1 = 0, qm2 < Θ
F ifqm1 > 0, qm2 < Θ
min{(1− η)ρa+ μ(q), F −R} ifqm1 = 0, qm2 = Θ
F −R ifqm1 > 0, qm2 = Θ

(3b)

f2(q;μ(q)) :=

{
min{f1(q;μ(q)), F −R} ifqm2 = 0
F −R ifqm2 > 0

(3c)

r(q;μ(q))

:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min{(1− ρ)a, F − f1(q;μ(q)), R} ifqo1 = 0, qm2 < Θ
min{F − f1(q;μ(q)), R} ifqo1 > 0, qm2 < Θ
min{(1− ρ)a, F −R

−f1(q;μ(q)), R} ifqo1 = 0, qm2 = Θ
min{F −R− f1(q;μ(q)), R} ifqo1 > 0, qm2 = Θ.

Equations (3b) and (3d) indicate that spillback happens if qm2 =
Θ: whenever the threshold is attained, the upstream capacity is
dropped. To focus on the impact of capacity, we assume that
traffic queues are always discharged at the rate of F or F–R.4

Then, the fluid dynamics is specified by the vector field G :
Q× U → R4 defined as

Gm
0 (q;μ(q)) := −μ(q) (4a)

Gm
1 (q;μ(q)) := (1− η)ρa− (f1(q;μ(q)) + r(q;μ(q)))

(4b)

Go
1(q;μ(q)) := (1− ρ)a− r(q;μ(q)) (4c)

Gm
2 (q;μ(q)) := f1(q;μ(q))− f2(q;μ(q)). (4d)

To emphasize that the vector field depends on the control policy,
we use the notation G(q, μ(q)). Note that for an admissible
gate discharge policy μ ∈ U , G is bounded and piecewise
continuous in q. Since we focus on the aggregate behavior of both
traffic classes, our results hold for a variety of capacity-sharing
models (see, e.g., [40]). In addition, microscopic maneuvers,
such as overtaking, are implicitly captured by the flow dynamics.

4) Arrival Rate λ: CAV platoons arrive according to a
Poisson process of rate λ (per hour), which is given by (1).
λ specifies the rate at which the continuous state Q(t) is reset.
Randomness of the platoon arrival process can be attributed to
the process of platoon formation [41], [42].

5) Allocation V: Platoon control is modeled by a vector v =
[v0 v1 v2]

T ∈ V . Arriving platoons are allocated to each link
according to v: for example, v = [l, 0, 0]T means that a platoon
is allocated to the gate. Recall that v is determined by a mapping
ν : Q → V . We assume the following for ν.

Assumption 2: The allocation policy ν satisfies the following:
i)
∑2

k=0 νk(q) = 0, 0 ≤ ν0(q) ≤ l/γ, −l/γ ≤ ν1(q) ≤ 0,
max{−l/γ, qm2 −Θ} ≤ ν2(q) ≤ 0;

ii) ν2(q) = 0 for q such that qm1 > 0, and ν1(q) = ν2(q) =
0 for q such that qm0 > 0;

4Simulation results show that this simplified flow model is largely consistent
with more sophisticated models such as the CTM (see Section V-B1).

iii) νk(q) is nonincreasing in qmk and nondecreasing in qmj
for j 
= k, and νk(q) is nonincreasing in qo1 for k = 1 and
nondecreasing in qo1 for k 
= 1.

In the above, (i) means that ν only distributes but does
not create traffic, (ii) results from the “first-come-first-served”
principle: a platoon cannot be allocated to link k if there is a
nonzero queue in link k − 1, and (iii) means that more traffic is
allocated to a link with a shorter queue. We use V to denote the
set of gate discharge policies satisfying the above assumption.

6) Reset Mapping S: Arrivals of platoons lead to sudden
increases in the state Q(t), and the reset mapping is given by

Sm
0 (q; v) := qm0 + v0 (5a)

Sm
1 (q; v) := qm1 + (qm2 + l/γ −Θ)+ + v1 (5b)

So
1(q; v) := qo1 (5c)

Sm
2 (q; v) := min{Θ, qm2 + l/γ}+ v2. (5d)

In particular, S(q; 0) represents the reset mapping if no control
is applied (i.e., platoons are not coordinated).5 For v = 0, no
platoons will be allocated to the gate upon arrival; instead, every
platoon will be allocated to link 2 unless Qm

2 (t) attains the
buffer size Θ. If a platoon arrives at time t, then the state is
reset according to

Q(t) = S (Q(t−); v)

where Q(t−) is the vector of queues immediately before the
arrival.

B. Problem Definition

The main questions that we study are as follows.
1) Given model parameters and a control policy, how to de-

termine whether the queues are bounded (in expectation)
and compute or estimate the model’s throughput?

2) How to design the control policy to ensure bounded
queues and improve throughput and travel time?

To study the above questions, we introduce the following
definitions.

First, following [23], we define stability as follows.
Definition 3 (Stability): The stochastic fluid model is stable

if there exists Z <∞ such that for each initial condition q ∈ Q

lim sup
t→∞

1

t

∫ t

s=0

E [|Q(s)|] ds ≤ Z. (6)

Practically, stability means that expected queue size is
bounded, and hence the probability of long queues is small.

Second, given a control policy (μ, ν), the stochastic fluid
model typically admits an invariant set, which is defined as
follows:

Definition 4 (Invariant set): Given a control policy (μ, ν),
a compact set Mμ,ν ⊆ Q is an invariant set if the following
statements hold:

i) limt→∞ Pr{Q(t) ∈ Mμ,ν |Q(0) = q} = 1, ∀q ∈ Q;
ii) Q(t) ∈ Mμ,ν , ∀Q(0) = q ∈ Mμ,ν .

5If v = 0, then no CAVs will ever be allocated to the gate; hence the gate
discharge has no impact.
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The interpretation of an invariant set is that (i) for each initial
condition, the process {Q(t); t ≥ 0} enters the set Mμ,ν almost
surely (a.s.), and (ii) if the process {Q(t); t ≥ 0} starts within
Mμ,ν , then it never leaves Mμ,ν . Since stability is defined for
an infinite time horizon in (6), we can focus on the model’s
evolution over Mμ,ν rather than over Q; this simplifies the
analysis. Also note that Mμ,ν depends on (μ, ν) and is thus
typically determined based on characteristics of (μ, ν).

The theoretical tool that we use to establish stability is the
Foster–Lyapunov criterion, which is a sufficient condition for
(6):

Foster–Lyapunov criterion [43]: Consider a Markov process
with an invariant set Y and infinitesimal generator A . If there
exist a Lyapunov function W : Y → R≥0 and constants c > 0,
d <∞ satisfying

AW (y) ≤ −cg(y) + d ∀y ∈ Y (7)

then for each initial condition y ∈ Y

lim sup
t→∞

1

t

∫ t

τ=0

E[g(Y (t))]dτ ≤ d/c. (8)

In the above, (7) is called the “drift condition” [43]. Verifying the
drift condition is in general challenging, since it requires finding
an effective Lyapunov function, which is not straightforward for
a nonlinear system as our stochastic fluid model, and checking
the inequality (7) over a possibly unbounded set Y , which
involves a nonconvex optimization. In Section III, we argue how
we address these challenges.

Third, with the notion of stability, we define the stochastic
fluid model’s throughput as follows.

Definition 5 (Throughput): Given a control policy (μ, ν) ∈
U × V , the throughput of the stochastic fluid model is

āμ,ν := sup a

s.t. fluid model is stable under (μ, ν) ∈ U × V .

where āμ,ν is defined as supremum rather than maximum, since
the stability constraint may lead to strict inequalities. As indi-
cated in the above definition, the key to throughput analysis is to
develop stability conditions for the stochastic fluid model, which
we discuss in Section III. We have the following preliminary
result for throughput.

Lemma 1 (Nominal throughput): For any control policy
(μ, ν) ∈ U × V , throughput āμ,ν of the stochastic fluid model
is upper bounded by

āμ,ν ≤ a∗ := min

{
R

1− ρ
,

F −R

(η/γ + 1− η)ρ

}
. (9)

We call a∗ as defined in (9) the nominal throughput. To
interpret the expression for a∗, note that the first (resp. second)
term in min{·} results from the capacity constraint of the off-
ramp (resp. the mainline bottleneck). Importantly, we will show
that the nominal throughput cannot always be attained due to
the interaction between CAV and non-CAV traffic and due to
spillback of traffic queues.

Finally, for control design, we consider the following formu-
lation:

decision: (μ, ν) ∈ U × V

(P) objective: max āμ,ν

s.t. stability.

That is, the first objective is stabilization, and the second
objective is throughput maximization or queue minimization.
Note that the objective value of (P) is upper bounded by a∗ in
Lemma 1.

III. STABILITY AND THROUGHPUT

In this section, we study the stability and throughput of
the stochastic fluid model, which provides insights about the
efficiency of the mixed-traffic highway.

The first main result gives a criterion to check the stability of
the stochastic fluid model under a given control policy (μ, ν).

Theorem 1 (Stability criterion): Suppose that the stochastic
fluid model admits an invariant set Mμ,ν ⊆ Q. The stochastic
fluid model is stable if

a < a∗, and (10a)

max
ξ∈Mμ,ν :

ξm0 =ξm1 =ξo1=0

ξm2
Θ

((1− η)ρa− (F −R))

+
ηρa

l

(
Sm
0 (ξ; ν(ξ)) + Sm

1 (ξ; ν(ξ))

+
1

2Θ
(Sm

2 (ξ; ν(ξ)))2 − 1

2Θ
(ξm2 )2

)

<
R− (1− ρ)a

(1− ρ)a
((F −R)− (η/γ + 1− η)ρa) . (10b)

One can interpret the stability criterion as follows. Equa-
tion (10a) results from the nominal upper bound in Lemma 1.
Equation (10b) essentially results from the interaction between
the mainline and the off-ramp traffic. Equation (10b) also cap-
tures the influence of the control policy (μ, ν). Although the
complexity of the maximization on the left-hand side of (10b)
depends on the control policy (μ, ν), the decision variable ξ can
only vary in the direction of ξm2 ; all the other components of ξ
must be zero. Hence, the maximization involves essentially only
one decision variable ξm2 , which takes values from a compact
interval [0,Θ], and is thus not hard to solve numerically. This
is a significant refinement of the Foster–Lyapunov criterion,
which, in its general form, does not give a ready-to-use stability
criterion for our stochastic fluid model. Theorem 1 can be used
for throughput analysis by finding the largest demand a that
satisfies (10a)–(10b). Since Theorem 1 is a sufficient condition
for stability, it leads to a lower bound for throughput.

We prove Theorem 1 by considering a quadratic Lyapunov
function and establishing the Foster–Lyapunov criterion [28]
for the queuing process. The main technique is to relate the
fluid queuing process to an underlying M/D/1 process, which
we discuss below. The detailed proof is in Appendix 1.
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Fig. 5. Relation between M/D/1 process N(t) and fluid process∑2

k=0
Qm

k (t). (a) Trajectories. (b) Steady-state CDFs.

In particular, if no control is applied, then (10b) can be manu-
ally solved, and explicit lower and upper bounds for throughput
can be derived. To see this, consider the process

N(t) :=
⌈γ
l

(
2∑

k=0

Qm
k (t)

)⌉
t ≥ 0 (11)

which satisfies the following.
Lemma 2: The process {N(t); t ≥ 0} is an M/D/1 pro-

cess with arrival rate λ = ηρa/l and service time s :=
l

γ(F−R−(1−η)ρa)) . Furthermore

((l/γ)N(t)− 1)+ ≤
2∑

k=0

Qm
k (t) ≤ (l/γ)N(t) ∀t ≥ 0. (12)

That is, we can use N(t) to bound
∑2

k=0Q
m
k (t) [see

Fig. 5(a)]. The steady-state probabilitiesπn of the M/D/1 process
are given by a standard result in queuing theory [44]

πn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− λs n = 0
(1− λs)(eλs − 1) n = 1

(1− λs)
(
enλs +

∑n−1
k=1 e

kλs(−1)n−k

×
[
(kλs)n−k

(n−k)! + (kλs)n−k−1

(n−k−1)!

])
n ≥ 2.

(13)

Using the above result, we can obtain a lower bound

ω = 1−
�γΘ/l�∑
n=0

πn (14)

for the actual fraction of time ω0 that the stochastic fluid model
experiences spillback [see Fig. 5(b)].

With the above arguments, we can state the second main result
of this section as follows (the proof is in Appendix 2).

Theorem 2 (Throughput without control): Suppose that the
stochastic fluid model is not controlled, i.e., μ(q) = 0 and
ν(q) = 0 for all q ∈ Q. Then, the throughput ā of the model
is bounded by

min

⎧⎨
⎩ F −R

ρ(η/γ + 1− η)
,

R

1− ρ+ 1
2

(√
ζ2 + 2ρRl

γΘ(F−R) − ζ)
)
⎫⎬
⎭

≤ ā ≤ min

{
F −R

ρ(η/γ + 1− η)
,
(1− ω)R

(1− ρ)

}
(15)

where

ζ = (1− ρ)− ρ(η/γ + 1− η)
R

F −R
(16)

TABLE II
NOMINAL MODEL PARAMETER VALUES

and ω is given by (14).
Using the bounds in Theorem 2, we can analyze the model’s

throughput without control. Fig. 6(a)–(c) summarizes our results
for throughput analysis with the nominal parameters in Table II.
Importantly, due to the interaction between multiple traffic
classes and due to lack of coordination between platoons, the
nominal throughput given by Lemma 1 is not attained. Specific
discussions about the figures are as follows.

1) Fig. 6(a) shows that higher fraction of platooning lead
to higher throughput, which is consistent with previous
results [17]. The nominal throughput is not attained due
to interaction between CAVs and non-CAVs.

2) Fig. 6(b) shows that platooning does improve throughput,
but overly long platoons may result in lower throughput.
The reason is that longer platoons have stronger impact
on local traffic and cause larger local congestion. For
this example, the empirically optimal platoon size is four
CAVs.

3) As shown in Fig. 6(c), when the buffer size Θ is small
(e.g., less than 20), spillback occurs frequently, and thus
an obvious throughput drop (with respect to the nomi-
nal throughput) is observed. As Θ approaches infinity,
spillback hardly occurs, and both bounds approach the
nominal throughput given by Lemma 1.

IV. CONTROL DESIGN

In this section, we study a set of control policies that attain
the nominal throughput given by Lemma 1.

One can indeed use Theorem 1 as the stability constraint and
solve (P). However, since Theorem 1 is a sufficient condition, it
in general leads to a suboptimal solution. The main result of this
section is a sufficient condition for optimality of a given control
policy.

Theorem 3 (Optimality criterion): Suppose that a control
policy (μ, ν) ∈ U × V satisfies:

μ(q) = 0 ∀q : qm1 > 0 or qm2 = Θ (17a)

μ(q) ≤ F − ((1− η)ρ+ (1− ρ))a ∀q ∈ Q (17b)

μ(q) + (1− η)ρa ≥ F −R ∀q : qm0 > 0 and qm2 = 0 (17c)

Sm
1 (q; ν(q)) = 0 ∀q ∈ Q (17d)

Sm
2 (q; ν(q)) < Θ ∀q ∈ Q. (17e)

Then, (μ, ν) stabilizes the stochastic fluid model if and only if

a < a∗ (18)
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Fig. 6. Relation between throughput and model parameters. Bounds are computed using Theorem 2. “Nominal maximum” refers to a∗ in Lemma 1.
In (a) [resp. (b)], η = 0 (resp. l = 1) means no platooning. (a) Throughput versus fraction. (b) Throughput versus platoon size. (c) Throughput versus
buffer size.

where a∗ is the nominal throughput given by (9). Furthermore,
under (18), the control (μ, ν) minimizes the total queue length
|Q(t)| among all admissible controls at any time t ≥ 0, and the
time-average queuing delay converges as follows:

lim
t→∞

1

t

∫ t

τ=0

|Q(τ)|dτ a.s.
= Q̄ :=

ηρal

2γ2(F −R− (1− η)ρa)

×
(

ηρa

γ(F −R− (η/γ + 1− η)ρa)
+ 1

)
. (19)

Note that Theorem 3 addresses not only stabilization, but
also throughput maximization and queue minimization. The
optimality criterion (17a)–(17d) can be interpreted as follows.
Equations (17a), (17b), and (17d) ensure no queuing in link 1
(i.e.,Qm

1 (t) = 0). Equations (17a) and (17e) ensure no spillback
at link 2 (i.e., Qm

2 (t) < Θ). Equation (17c) ensures that as long
as there is a nonzero queue in the gate (i.e., Qm

0 (t) > 0), link 2
must be discharging traffic at its capacity F–R.

We use U ∗ × V ∗ to denote the set of control policies satisfy-
ing (17a)–(17e). Since (μ, ν) ∈ U ∗ × V ∗ stabilizes the stochas-
tic fluid model if and only if the demand is less than the nominal
throughput, (μ, ν) maximizes the throughput. In addition, each
control in U ∗ × V ∗ not only maximizes throughput, but also
minimizes queuing delay in a sample pathwise manner. Further-
more, an analytical expression for the mean queuing delay is
obtained. The proof of Theorem 3 is in Appendix 3.

In the rest of this section, we discuss two concrete control
policies with practical interpretations, viz., headway regulation
and platoon size management. Here, we focus on their formu-
lation in the stochastic fluid model. In Section V-A, we discuss
and demonstrate how they can be implemented in practice (e.g.,
speed).

A. Headway Regulation

Under this strategy, if a large number of platoons arrive within
a short time period, some platoons will be allocated to the
gate so that their arrival at the bottleneck is postponed to avoid
cumulative congestion at the bottleneck. In the stochastic fluid
model, the headway regulation strategy can be formulated as a

Fig. 7. Illustration of how regulating headway (μhr, νhr) and splitting
platoons (μsm, νsm) avoid spillback (see Fig. 4 for the uncontrolled
case). (a) Regulating headway. (b) Splitting platoon.

control policy (μ, ν) such that

μhr(q) :=

⎧⎨
⎩
α if qm0 > 0, qm2 = 0
α if γqm0 /l /∈ {0, 1, 2, . . . , }
0 o.w.

(20a)

νhr(q) :=

⎡
⎣ l/γ
qm1 − S1(q; 0)
qm2 − S2(q; 0)

⎤
⎦ (20b)

where α is the saturation flow rate of CAVs given by

α = v0/h (21)

where v0 is the nominal speed of the highway section, and h
is the between-vehicle spacing within platoons. One can check
that (μhr, νhr) ∈ U ∗ × V ∗.

Fig. 7(a) illustrates the idea of this control policy: if two
platoons enter the highway with a short interarrival time, the fol-
lowing platoon is decelerated so that its arrival at the bottleneck
is postponed byW hr amount of time. Consequently, the platoons
arrive at the bottleneck with sufficient headway in between. As
illustrated in Fig. 7(a), (μhr, νhr) essentially regulates times at
which platoons arrive at the bottleneck so that congestion does
not build up or spill back from the bottleneck, and the off-ramp
traffic is not blocked. To compute W hr, suppose that a platoon
enters the highway at time t and the state immediately before
the arrival isQ(t−), thenW hr is the solution to the deterministic
equation ∫ W hr

s=t

μhr(Q(s))ds = Qm
0 (t−). (22)

Note that W hr is independent of any platoon arrivals after t.
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B. Platoon Size Management

If the highway is congested, long platoons will be disad-
vantageous at bottlenecks due to their sizes. Consequently, the
operator can instruct platoons to split into shorter platoons to
mitigate local congestion. The decision variable is whether to
split or maintain a platoon as it enters the highway. In the
stochastic fluid model, splitting a platoon can be modeled by
a control policy (μsm, νsm) defined as follows:

μsm(q) :=

⎧⎨
⎩
α if qm0 > 0, qa2 ≤ Θ− l((η/γ+1−η)ρa−(F−R))

2γηρa

α if (γqm0 /l) /∈ {0, 12 , 1, 32 , . . . , }
0 o.w.

(23)

νsm(q) :=

⎡
⎣ l/γ
qm1 − S1(q; 0)
qm2 − S2(q; 0)

⎤
⎦ . (24)

One can check that (μsm, νsm) ∈ U ∗ × V ∗. As shown in
Fig. 7(b), μsm opens the gate only if link 2 has sufficient space
to accept at least half a platoon. Furthermore, if qa2 is close to
the buffer size Θ, νsm will split a platoon into two short platoons
and allocate the two short platoons to links 0 and 2 to avoid
spillback. In practice, suppose a platoon enters the highway at
time t and let T be the solution to∫ T

s=t

f2(Q(s))ds = Qm
0 (t−) +Qm

1 (t−)

+ min

{
l

2γ
,

(
Θ− l

2γ
−Qm

2 (t−)
)

+

}
(25)

where Qm
k (t−) is the queue size in the gate immediately before

the platoon arrives. Then, the delaysW sm
1 andW sm

2 indicated in
Fig. 7(b) are given by

W sm
1 = T, W sm

2 = T +
l

2γ(F −R− (1− η)ρa)
. (26)

V. IMPLEMENTATION, SIMULATION, AND DISCUSSION

In this section, we translate the control laws discussed in the
previous section to platoon coordination instructions that can
be implemented in practice (see Section V-A). We also vali-
date the optimality of the headway regulation strategy via two
standard simulation environments, viz., CTM and SUMO (see
Section V-B).

A. Implementation of Proposed Control Policies

We now discuss how the two platoon coordination strategies
presented in Section IV, viz., headway regulation and size man-
agement, can be translated to implementable instructions for
platoons. Fig. 8 illustrates the implementation. These strategies
are enabled by modern V2I communications technologies [45].
We do not explicitly consider lower level control actions such
as longitudinal and lateral control; instead, we assume that the
platoons are equipped with adequate lower level controllers that
can implement the instructions from the operator.

1) Headway Regulation: To regulate headways, the opera-
tor sends a recommended speed to each platoon when it enters

Fig. 8. Two practical platoon coordination strategies. (a) Headway
regulation. (b) Platoon size management.

the highway, and no more instructions need to be sent to this
platoon [see Fig. 8(a)]. The decision variable is the average speed
for each platoon over the highway section, or, equivalently, the
time at which a platoon is scheduled to arrive at the bottleneck.
In practice, let L1 and L2 be the lengths of links 1 and 2,
respectively, as in Fig. 2(a), and let v0 be the nominal speed for
the highway section. The recommended speed for an incoming
platoon is

vhr =
L1 + L2

L1+L2

v0
+W hr

(27)

where W hr is given by (22).
2) Size Management: To manage the size of platoons, when

a platoon enters the highway, the coordination strategy first
predicts the traffic condition if the platoon arrives at the bot-
tleneck without any intervention; then, if congestion is pre-
dicted at the bottleneck, the strategy will split the platoon into
shorter platoons [see Fig. 8(b)]. The fluid model can be used
to make such predictions. In practice, suppose a platoon enters
the highway at time t and let T be the solution to (25). Specif-
ically, the coordination decision is made in the following two
steps.

1) Whether to split. The platoon is instructed to split if
Qm

2 (T ) ≥ Θ− l
2γ and not to split otherwise; if the pla-

toon is splitting, then the separation (i.e., headway) be-
tween the short platoons will be l/(2γ(F −R− (1−
η)ρa)).

2) When to arrive at bottleneck. If the platoon is not splitting,
then it will travel at the nominal speed and no intervention
will be needed. If the platoons are splitting into two
short platoons, the leading short platoon will travel at the
speed

vsm
1 =

L1 + L2

L1+L2

v0
+W sm

1

and the following short platoon will travel at the speed

vsm
2 =

L1 + L2

L1+L2

v0
+W sm

2

where W sm
1 and W sm

2 are given by (26).

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 16:47:46 UTC from IEEE Xplore.  Restrictions apply. 



4724 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

Fig. 9. Simulated performance metrics for various values of minimal
interplatoon headways.

B. Simulation-Based Validation

The purpose of the simulations is to show that the optimal
headway regulation strategy designed using the fluid model-
based approach is consistent with the simulation-optimal values.
We use two standard simulation models, viz., the CTM) [35]
and the SUMO [36]. The CTM is a macroscopic traffic flow
model, which evolves according to the conservation law and
the flow-density relation (also called “fundamental diagram”
by transportation researchers [35]). The CTM accounts for
the spatial distribution of traffic and the detailed flow-density
relation, which are not captured by the fluid model. The SUMO
is a microscopic simulation model, which evolves according
to vehicle-following and lane-changing behavior models for
individual drivers. Such microscopic details are captured by
neither the CTM nor the fluid model.

Fig. 9 shows the simulation results with parameters in Table II.
The mainline demand is 2500 veh/h, and the off-ramp demand
is 1400 veh/h. The theoretical optimal headway W hr (36 s) is
close to the simulation-obtained value (30 s). As expected, the
theoretical optimum W hr is greater than the simulated one. The
main reason is that in the fluid model decelerating a platoon
only affects the platoon itself and does not directly impact the
neighboring traffic. In both the CTM and the SUMO, however,
a decelerated platoon will induce local congestion. Hence, both
CTM and SUMO prefer less deceleration than the fluid model.

Next, we provide more details and discussion of the simula-
tions.

1) Macroscopic Simulation (CTM): We consider the CTM
[35] for the highway section in Fig. 2(a). In particular, we
consider CAVs and non-CAVs as multiple traffic classes in the
CTM. More details of the multiclass CTM is available in [46].

The parameters of the macroscopic model are chosen in
accordance with the ones given in Table II, i.e., the capacity
of the bottleneck will be set to F–R, and platoon and buffer
lengths chosen appropriately. Note that in order for platoons to
be properly represented in this framework, we need the spatial
and temporal discretization steps to be fairly short, with the
platoon length spanning at least two cells. In this article, the
physical platoon length is taken to be 0.1 mi, or 10 cells.

Fig. 10. Traffic density contour plots for CTM simulation. The vertical
red (resp. black) dashed line indicates the location of the bottleneck
(resp. off-ramp). Color indicates traffic density in veh/mi. (a) Without
coordination. (b) With coordination.

Fig. 10(a) shows the simulated traffic evolution without in-
terplatoon coordination using color-coded traffic density. The
location of the bottleneck is shown in dashed red line, and the
location of the off-ramp is outlined in dashed black line. The
streaks of brighter color represent the increased traffic density
near the moving platoons. The congestion from the bottleneck
propagates upstream and the off-ramp cell becomes congested
approximately 1 h into the simulation. Because of the conges-
tion, the off-ramp is partially blocked, preventing vehicles from
exiting the highway and further degrading the traffic situation.
Although the total demand a is lower than the capacity of the
bottleneck, randomness of the platoon arrivals may still create
local congestion that disrupt the traffic flow. Such disruptions
produce congestion at the bottleneck and block the off-ramp (i.e.,
the bright-color area in the interval indicated by black dashed
lines near distance x = 24.4 mil), as shown in Fig. 10(a) from
t ≈ 1.25 h to t ≈ 1.5 h.

We apply the recommended speed (27) to coordinate platoons
in the CTM simulation. Fig. 10(b) shows the traffic evolu-
tion under headway regulation of platoons. The simulation run
considers the same situation as in the uncoordinated case [see
Fig. 10(a)]; whereas in the uncoordinated case, the congestion
from the bottleneck blocked the off-ramp, in the coordinated
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Fig. 11. Microsimulation environment. Red, cyan, and yellow vehicles represent mainline traffic, on-ramp/off-ramp traffic, and CAV platoons,
respectively.

case, we are able to spread the arrival of platoons more evenly,
thus avoiding causing spillback. Fig. 9 further illustrates how
close the theoretical optimal strategy (36 s) is closed to the
simulated one (30 s).

2) Microscopic Simulation (SUMO): We also implement
the headway regulation strategy introduced in Section V-A in
a microsimulation model (see Fig. 11). We use the traffic con-
trol interface (TraCI) to customize the simulation and realize
the functions required for this specific experiment. The TraCI
features 13 individual modules varying from simulation, vehicle
type, vehicle. We use Python to code the route and runner files.
Some variables that we control in particular include platoon
speed, total simulation time, platooning ratio, platoon length,
and platooning state. We also customized the lane-changing
function to prevent platoons from breaking apart at the bottle-
neck. The coordination instructions are realized by the runner
script.

The simulation results are shown in Fig. 9. The simulations
lead to a simulation-optimal interplatoon headway (30 s), which
is close to the valueW hr given by the fluid model and computed
via (22) (36 s). A prominent pattern to be noted in Fig. 9
is that as the coordinated headway increases, the travel time
in SUMO grows more slowly than the vehicle hours traveled
(VHT) in the CTM. A reasonable explanation is that the CTM
that we simulated assumes the first-come-first-serve principle:
if a platoon is decelerated, then all the traffic behind will be
simultaneously decelerated. However, overtaking is allowed in
SUMO, which is implemented according to SUMO’s internal
overtaking algorithm. Consequently, the impact of decelerating
platoons is less significant in SUMO than in the CTM.

C. Further Discussion

The stochastic fluid model that we consider focuses on the
following:

1) the capacity sharing between platoons and background
traffic;

2) the throughput gain due to reduced intervehicle spacing
in platoons;

3) the impact of congestion propagation (spillback).
From a practical perspective, our model is based on the

following simplifications.
1) The interaction between platoons and background traffic

only occurs at the link boundaries. This is actually a
characteristic of any queuing model. Consequently, our
model does not account for interactions occurring over a
distance, such as the impact of speed difference between
platoons and background traffic.

TABLE III
IMPROVEMENT ATTAINED BY VARIOUS COORDINATION STRATEGIES

2) At the interface between links 1 and 2, mainline traffic
(i.e., demands a and b) are prioritized for discharging.
This is reflected in the definition of the off-ramp flow (3).
Alternative models for discharging exist [47], which can
be incorporated in our model as well.

3) Each link’s capacity is independent of speed difference
between CAVs and non-CAVs. In practice, headway reg-
ulation modifies CAVs’ speeds. Consequently, highway
capacity is dependent on the speed difference between
CAVs and non-CAVs as well as the traffic mixture, i.e.,
the percentage of CAVs. In our model, the impact of
heterogeneous speed can be modeled as state-dependent
link capacities.

Note that the CTM and SUMO simulations that we conducted
are not restricted by the above simplifications. The simulation
results indicate that the fluid-model approach is adequate in spite
of the above simplifications. As Table III shows, compared to the
baseline scenario without headway regulation, the theoretically
optimal strategy attains 85% (resp. 81%) of the improvement
attained by the simulation optimum in CTM (resp. SUMO).

VI. CONCLUSION

In this article, we develop a stochastic fluid model for analysis
and design of platoon coordination strategies. The model focuses
on the interaction between CAV platoons and non-CAVs, the
impact of key platooning parameters (including platooning ratio
and platoon size), and road geometry (buffer space). Based
on the theory of Markov processes and queuing properties of
the model, we derive theoretical bounds for the throughput
of the model and identify a set of coordination strategies that
maximize throughput as well as minimize delay. We discuss
how such strategies can be implemented in practice and validate
the fluid model-based results using standard macroscopic and
microscopic simulation environments. Our results are useful for
link-level coordination of CAV platoons.

This article can be extended in the following directions:
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1) evaluation of macroscopic impact due to various vehicle-
level controllers;

2) extension to multiple-section highways;
3) integration with network-level scheduling and routing of

CAVs.

APPENDIX 1
PROOF OF THEOREM 1

The stability criterion is obtained by showing that the Lya-
punov function

V (q) :=
1

2
(qm0 + qm1 + qm2 )2

+

(
k

(
qm0 + qm1 +

1

2Θ
(qm2 )2

)
+ qo1

)
qo1 (28)

satisfies the Foster–Lyapunov criterion if (10a)–(10b) hold.
Specifically, we show that there exist k > 0, c > 0, and d <∞
such that

L V (q) ≤ −c|q|+ d ∀q ∈ M (29)

which implies stability via the Foster–Lyapunov criterion. To
proceed, we decompose V into

V m(q) :=
1

2
(qm0 + qm1 + qm2 )2 (30a)

V o(q) :=

(
k

(
qm1 +

1

2Θ
(qm2 )2

)
+ qo1

)
qo1 (30b)

and show that there exists cm, co > 0 and dm, do <∞ such that
for all q ∈ Mμ,ν

L V m(q) ≤ −cm(qm0 + qm1 + qm2 ) + dm (31a)

L V o(q) ≤ −coqo1 + do. (31b)

Note that the above implies (29) and hence stability. The rest of
this section is devoted to the proof of (31a)–(31b).

1) Proof of (31a): For q such that qm2 = 0, we have

L V m(q) =
1

2
(λl/γ)2 =

ηρa

2γ
.

For q such that qm2 > 0, we have

L V m(q) = ((1− η)ρa+ λl/γ − (F −R))(qm0 + qm1 + qm2 )

= ((η/γ + 1− η)ρa− (F −R))(qm0 +m
1 +qm2 ).

Hence, we have

cm = (F −R)− (η/γ + 1− η)ρa
(10a)
> 0

dm =
ηρa

2γ
<∞

that satisfy (31a).
2) Proof of (31b): For q such that qo1 = 0, we have

L V o(q) = 0. (32)

For q such that qo1 > 0, we need to consider the following cases:

1) qm0 = qm1 = 0. In this case, we require co > 0 such that

L V o(q)

=

(
k(qm2 /Θ)((1−η)ρa− (F−R)) + λk (Sm

0 (q; ν(q))

+Sm
1 (q; ν(q)) +

1

2Θ
(Sm

2 (q; ν(q)))2 − 1

2Θ
(qm2 )2

)

+ (1− ρ)a−R

)
qo1

≤ −coqo1 ∀q : qm1 = 0, qo1 > 0. (33)

By Assumption 2, we have

Sm
0 (q; ν(q)) + Sm

1 (q; ν(q)) +
1

2Θ
(Sm

2 (q; ν(q)))2

− 1

2Θ
(qm2 )2 ≤ Sm

0 (q; ν(q)) + Sm
1 (q; ν(q))

+
1

2Θ
(Sm

2 (q; ν(q)))2 − 1

2Θ
(qm2 )2

∣∣∣
qo1=0

∀q ∈ Q.

Hence, we require k > 0 such that

(qm2 /Θ)((1− η)ρa− (F −R)) + λ (Sm
0 (q; ν(q))

+Sm
1 (q; ν(q))+

1

2Θ
(Sm

2 (q; ν(q)))2 − 1

2Θ
(qm2 )2

∣∣∣
qo1=0

)

<
R− (1− ρ)a

k
∀q : qm0 = qm1 = 0, qo1 > 0. (34)

2) qm0 > 0or qm1 > 0, qm2 < Θ. In this case, we require c0 >
0 such that

L V o(q) = (k ((1− η)ρa− F + (qm2 /Θ)(F

−(F −R))) + kλ(l/γ)) + (1− ρ)a−R

)
qo1

=

(
k

(
(
η

γ
+1−η)ρa−(F−R)

)
+ (1−ρ)a−R

)
qo1

≤ −coq1 o ∀q : qm0 > 0 or qm1 > 0, qo1 < Θ. (35)

For all k > 0, the existence of such co is ensured by (10a).
3) qm>0

0 or qm>0,
1 qm2 = Θ. In this case

L V o(q) =

(
k ((η/γ + 1− η)ρa− (F −R))

+ (1− ρ)a

)
qo1 ≤ −coqo1. (36)

We require k > 0 such that

k ((F −R)− (η/γ + 1− η)ρa) > (1− ρ)a. (37)

Note that (10b) ensures the existence of k > 0 that simulta-
neously satisfies (34) and (37). Hence, there exists k > 0 and
co > 0 such that satisfying (33), (35), and (36), which, together
with (32), imply (31b).
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APPENDIX 2
PROOF OF THEOREM 2

1) Lower Bound: The lower bound is the minimum of the
following two terms:

a1 :=
F −R

ρ(η/γ + 1− η)

a2 :=
R

1− ρ+ 1
2

(√
ζ2 + 2ρRl

γΘ(F−R) − ζ)
)

where ζ is given by (16). We prove the lower bound by ap-
plying Theorem 1, i.e., verifying that (10a)-(10b) hold if a <
min{a1, a2}.

1) Since 2ρRl/(γΘ(F–R)) > 0, we have a2 ≤ R/(1− ρ).
Hence, a < a2 and a < a1 ensure that (10a) holds.

2) For ξ ∈ Q such that ξm0 = ξm1 = 0

ξm2
Θ

((1− η)ρa− (F −R)) +
ηρa

l

(
Sm
0 (ξ; 0)

+ Sm
1 (ξ; 0) +

1

2Θ
(Sm

2 (ξ; 0))2 − 1

2Θ
(ξm2 )2

)

=

(
ξm2
Θ

((1− η)ρa− (F −R)

)

+
λ

2Θ
(2ξm2 l/γ + (l/γ)2).

Since a < a1 and since ξm2 ≤ Θ, the above implies that

max
ξ∈Q:ξm0

=ξm1 =ξo1=0

ξm2
Θ

((1− η)ρa− (F −R)) +
ηρa

l

(
Sm
0 (ξ; 0)

+ Sm
1 (ξ; 0) +

1

2Θ
(Sm

2 (ξ; 0))2 − 1

2Θ
(ξm2 )2

)

≤
(

λk

2Θ
(2Θl/γ + (l/γ)2)

)
.

With the above, one can verify that if a < a2, then (10b)
holds.

2) Upper Bound: We prove the upper bound by showing
that if {Q(t); t > 0} is stable, then a ≤ min{ā1, ā2}, where

ā1 :=
F −R

ρ(η/γ + 1− η)

ā2 :=
(1− ω)R

1− ρ
.

1) a ≤ ā1 can be obtained from the nominal throughput
given by Lemma 1.

2) To show a ≤ a2, note that when a < ā1, the M/D/1
process {N(t); t > 0} is stable and admits a steady-state
distribution {πn;n = 0, 1, . . . , } defined in (13). Hence,
there exists ω0 and ω such that

lim
t→∞

1

t

∫ t

τ=0

IQm
1 >0,Qm

2 =Θdτ = ω0 a.s.

lim
t→∞

1

t

∫ t

τ=0

IN(t)≥/ceilγΘ/ldτ = ω a.s.

where ω is in fact given by (14).
Next, consider the set M0,0 ⊂ Q defined by

M0,0 = (({0} × [0,Θ]) ∪ ((0,∞)× {Θ}))× [0,∞).
(38)

One can show that M0,0 is an invariant set. Hence, for
each initial condition q ∈ Mμ,ν , we have Q(t) ∈ Mμ,ν

for all t > 0. Thus, we haveQm
2 (t) = Θ ifQm

1 (t) > 0 for
sufficiently large t. Hence, if Qm

1 (t) +Qm
2 (t) > Θ, i.e.,

if Qm
1 (t) > 0 and Qm

2 (t) = Θ, then N(t) ≥ /ceilγΘ/l.
Therefore, we have ω0 ≥ ω. Finally, note that if |Q(t)| is
bounded, then

(1− ρ)a ≤ lim
t→∞

1

t

∫ t

τ=0

r(Q(τ); 0)dτ

= lim
t→∞

1

t

(∫ t

τ :Qm
1 (τ)+Qm

1 (τ)≤Θ

r(Q(τ); 0)dτ

+

∫ t

τ :Qm
1 (τ)+Qm

1 (τ)>Θ

r(Q(τ); 0)dτ

)

a.s.
= (1− ω0)R ≤ (1− ω)R = ā2.

APPENDIX 3
PROOF OF THEOREM 3

1) Stability: The necessity of (18) results from Lemma 1.
To show the sufficiency, one can indeed use Theorem 1 to show
that the model is stabilized by (μ, ν) ∈ U ∗ × V ∗ ifa < a∗ in the
sense of a bounded 1-norm. In this section, we use an alternative
Lyapunov function

Ṽ (q) = eβ|q|, q ∈ Q (39)

and obtain a stronger stability

lim sup
t→∞

1

t

∫ t

τ=0

E[eβ|Q(τ)|]dτ ≤ Z. (40)

That is, the state is bounded in the moment-generating function
(MGF).

To proceed, define

ζμ,ν := max

{
max
q∈Q

Sm
2 (q; ν(q)), sup{ζ ≥ 0 :

(∀q : qm2 = ζ) μ(q) ≥ F −R− (1− η)ρa}} . (41)

We know from (17a)–(17d) that ζμ,ν < Θ for all (μ, ν) ∈ U ∗ ×
V ∗. Then, consider the set

Mμ,ν = [0,∞)× {0}2 × [0, ζμ,ν ]. (42)

Lemma 3: The set Mμ,ν as defined in (42) is an invariant set.
Proof.
1) For all q ∈ Mμ,ν , we have

Gm
1 (q;μ(q)) = μ(q) + ((1− η)ρ+ (1− ρ))a

−min {((1−η)ρ+ (1−ρ)) a+μ(q), F}
(17b)
= 0.
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Hence, {0} is invariant for qm1 . In addition, for q ∈ Mμ,ν

such that qm2 = ζ, we have

Gm
2 (q;μ(q)) = f1(q;μ(q))− f2(q;μ(q))

(41)
< (μ(q) + (1− η)ρa)

− (μ(q) + (1− η)ρa) < 0.

Hence, [0, ζμ,ν ] is invariant for qm2 .
2) By (17d), since Sm

1 (q; ν(q)) = 0 for all q ∈ Q, {0} is
invariant for qm1 . By (41), Sm

2 (q; ν(q)) ≤ ζ for all q ∈ Q.
Hence, [0, ζ] is invariant for qm2 .�

In the rest of this proof, we show that there exists β > 0,
c > 0, and d̃ <∞ verifying the drift condition

LṼ (q) ≤ −ceβ|q| + d̃ ∀q ∈ Mμ,ν (43)

which leads to (40) by the Foster–Lyapunov criterion.
We partition the invariant set Mμ,ν into two subsets

M0
μ,ν = {0}3 × [0, ζμ,ν ]

M1
μ,ν = (0,∞)× {0}2 × [0, ζμ,ν ]

For q ∈ M0
μ,ν , we have

LṼ (q) = ∇qe
β|q|G(q;μ(q)) + λ(eβ|S(q;ν(q))| − eβ|q|)

= (β((1− η)ρa− f̃2(q;μ(q))) + λ(eβl/γ − 1))eβ|q|

≤ λ(eβl/γ − 1)eβl/γ = d̃∗

which also defines d̃∗. For q ∈ M1
μ,ν , we have

LṼ (q) = (β((1− η)ρa− (F −R)) + λ(eβl/γ − 1))eβ|q|

= φ(β)eβ|q|

where the definition of the function φ is clear. Since

φ(0) = 0,
d

dβ
φ(β)

∣∣∣
β=0

= (1− η)ρa− (F −R) + ηρa/γ

there exists β∗ > 0 such that φ(β∗) < 0 if a < a∗.
In conclusion, there exist β = β∗, c = φ(β∗), and d̃ = d̃∗ that

verify (43). Then, by the Foster–Lyapunov stability criterion, we
conclude (40).

2) Queue Minimization: Next, we use a sample path-based
method to show that any (μ, ν) ∈ U ∗ × V ∗ minimizes the total
queue size |Q(t)| for all t over all control policies (μ, ν) ∈ U ×
V .

Let {M(t); t > 0} be the counting process of platoon arrivals.
For a given sample path {m(t); t > 0} of the counting pro-
cess and a given initial condition q ∈ Q, let {q(t); t > 0} and
{ψ(t); t > 0} be the corresponding trajectories under a control
policy (μ∗, ν∗) ∈ U ∗ × V ∗ and under a control policy (μ, ν) ∈
U × V , respectively. To show the optimality of (μ∗, ν∗), it
suffices to show |q(t)| ≤ |ψ(t)| for any t ≥ 0. Without loss of
generality, we consider zero initial condition. We prove this by
contradiction as follows.

Assume by contradiction that there exists (μ, ν) ∈ U × V
such that

∃t1 > 0, |q(t1)| > |ψ(t1)|. (44)

Between resets, the continuity of q(t) and ψ(t) follows from
Assumption 1. Therefore, there must exist a “crossing time”
t0 ∈ [0, t) such that

|q(t0)| = |ψ(t0)|, d

dt
|q(t)| > d

dt
|ψ(t)|. (45)

Note that the “crossing” must happen between resets. To see
this, recall that Assumption 2 ensures that if |q(t−)| = |ψ(t−)|
and if a reset occurs at time t, then

|q(t)| = |ψ(t)| = |q(t−)|+ l/γ.

Since the system admits the invariant set Mμ∗,ν∗ as given in
(42) under (μ∗, ν∗), we have qm1 (t) = qo1(t) = 0 for all t ≥ 0.
Hence, a necessary condition for (45) is that

qm0 (t0) + qm2 (t0) ≥ ψm
0 (t0) + ψm

1 (t0) + ψm
2 (t0) (46a)

Gm
0 (q(t0);μ

∗) +Gm
2 (q(t0);μ

∗)

> Gm
0 (ψ(t0);μ) +Gm

1 (ψ(t0);μ) +Gm
2 (ψ(t0);μ)). (46b)

However, one can obtain from (4a)–(4d) that if qm0 (t0) +
qm2 (t0) ≥ ψm

0 (t0) + ψm
1 (t0) + ψm

2 (t0) = 0, then

Gm
0 (q(t0);μ

∗) +Gm
2 (q(t0);μ

∗)

= Gm
0 (ψ(t0);μ) +Gm

1 (ψ(t0);μ) +Gm
2 (ψ(t0);μ)). (47)

If qm0 (t0) + qm2 (t0) ≥ ψm
0 (t0) + ψm

1 (t0) + ψm
2 (t0) > 0, then

Gm
0 (q(t0);μ

∗) +Gm
2 (q(t0);μ

∗) = (1− η)ρa− (F −R)
(48a)

Gm
0 (ψ(t0);μ) +Gm

1 (ψ(t0);μ) +Gm
2 (ψ(t0);μ))

= (1− η)ρa− r(ψ(t0)) ≥ (1− η)ρa− (F −R). (48b)

Since both (47) and (48a)-(48b) contradict with (46b), we
conclude that (μ, ν) cannot achieve (44). That is, if |q(t1)| =
|ψ(t1)|, then |q(t)| cannot increase faster (or decrease slower)
than |ψ(t)| at time t = t1. This proves the optimality of (μ∗, ν∗).

3) Mean Queue Size: To show that the 1-norm of the state
converges as in (19), we first need to show that the process
{Q(t); t ≥ 0} is ergodic. Formally, let Pt(q) be the distribution
of Q(t) given the initial condition Q(0) = q for q ∈ Q. Then,
there exists a unique probability measure P ∗ on Q such that

lim
t→∞‖Pt(q)− P ∗‖TV = 0 (49)

where ‖ · ‖TV is the total-variation distance between two proba-
bility measures [37]. Ergodicity ensures convergence of the time
average toward the expected value, if the expected value exists.

Convergence. The Foster–Lyapunov criterion ensures the ex-
istence of an invariant measure P ∗ [43, Th. 4.5]. We only need
to further show that the invariant measure is unique. This can be
shown via the “coupling” condition given as follows.

Coupling Condition [43]: Let q, q′ ∈ Q be two initial condi-
tions and Q(t) and Q′(t) be the trajectories starting therefrom.
Then, there exists δ > 0 and T <∞ such that

Pr{Q(T ) = Q′(t)|Q(0) = q,Q′(0) = q′} = δ. (50)

To show that the stochastic fluid model controlled by
(μ, ν) ∈ U ∗ × V ∗ satisfies the coupling condition, note that
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Fig. 12. Controlled fluid process Q(t) envelops an M/D/1 process
Ñ(t).

for an arbitrary initial condition q ∈ Q, there exists T =
(
∑3

k=1 q
m
k )/(F −R) + qo1/R such that

Pr{Q(T ) = 0|Q(0) = q} ≥ e−λT > 0.

Then, by [28, Th. 6.1], the above, together with (43), implies
convergence in the sense of (49).

Remark 1: In fact, the above argument ensures exponentially
convergent [43] in the sense that there exist a constant κ > 0
and a finite-valued function U : Q̃ → R≥0 such that

‖Pt(q)− P ∗‖TV ≤ U(q)e−κt ∀t ≥ 0.

Queuing Delay: The evolution of the total queue length |Q(t)|
can be viewed as the superposition of two subprocesses (see
Fig. 12).

1) The first process is an M/D/1 process {N(t); t ≥ 0} de-
fined by (11). By the Pollazcek–Khinchin formula [48, p.
248] and the Little’s theorem [48, Th. 5.5.9], the mean
number of waiting jobs (excluding the one being served)
of this process is

N̄ =
λ2s2

2(1− λs)

=
η2ρ2a2/(2γ2)

(F −R− (1− η)ρa)(F −R− (η/γ + 1− η)ρa)
.

2) The second process is the “services” each job experiences.
As Fig. 12 shows, the cumulative queuing delay during
services is given by

R̄ =
l2

2γ2(F −R− (1− η)ρa)
.

Thus, the total fluid queue length is

Q̄ =
l

γ
N̄ +

ηρa

l
R̄

which leads to (19).
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[46] M. Čičić, L. Jin, and K. H. Johansson, “Coordinating vehicle platoons for
highway bottleneck decongestion and throughput improvement,” 2019,
arXiv:1907.13049.

[47] M. A. Wright, G. Gomes, R. Horowitz, and A. A. Kurzhanskiy, “On node
models for high-dimensional road networks,” Transp. Res. B, Methodolog-
ical, vol. 105, pp. 212–234, 2017.

[48] R. G. Gallager, Stochastic Processes: Theory for Applications. Cambridge,
U.K.: Cambridge Univ. Press, 2013.

Li Jin (Member, IEEE) received the B.Eng. de-
gree in mechanical engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2011,
the M.S. degree in mechanical engineering from
Purdue University, West Lafayette, IN, USA, in
2012, and the Ph.D. degree in transportation
from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2018.

He is currently an Assistant Professor with
the New York University Tandon School of En-
gineering, Brooklyn, NY, USA. He was also a

Visiting Scholar with the University of Erlangen-Nuremberg in 2016.
His background is stochastic processes, dynamic control, and optimiza-
tion. His research focuses on developing resilient control algorithms for

cyber–physical systems with guarantees of efficiency in nominal set-
tings, robustness against random perturbations, and survivability under
strategic disruptions. Specific applications of his work include connected
and autonomous vehicles, automatic traffic control, air transportation,
and gas network.
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